
Prototype Microprocessor LSI with Scheduling Support Hardware
for Operating System on Multiprocessor System

Naoki Nishimura Takahiro Sasaki Tetsuo Hironaka
Graduate School of Information Sciences,Hiroshima City University, Japan

3-4-1, Ozukahigashi, Asaminami-Ku, Hiroshima city, 731-3194, Japan
Tel:+81-82-830-1566, Fax:+81-82-830-1792

e-mail:fnaoki,sasaki,hironakag@csys.ce.hiroshima-cu.ac.jp

Abstract— In this paper we describe the details of SSH (Schedul-
ing Support Hardware) which makes it possible to use fine grain
parallelism effectively in multiprocessor systems. The SSH sup-
ports fast and concurrent thread scheduling that is very important
in fine grain parallel processing.

I. I NTRODUCTION

In recent years, multiprocessor systems are used in everyday
usage. Most of these systems are based on the usage of coarse
grain parallelism, with heavy requirement on program tuning for
performance. Another method is fine grain parallelism, that the
programs are decomposed into large numbers of very fine threads
and executed on the multiprocessor system by dispatching threads
to the idle processors dynamically. But the overhead seen on
scheduling threads becomes large compared to the execution time
of the threads. In order to reduce this problem, we introduce
SSH(Scheduling Support Hardware) architecture which acceler-
ates the performance of the OS with hardware, by scheduling
threads/tasks concurrently with the thread execution on CPUs.

As a similar approach to this paper, reference[1] is proposed.
Different from our proposition, this approach assumes to be im-
plemented by FPGA, and scheduling policy is changed by re-
configuration the FPGA. Furthermore scheduling policy can be
changed only once at the beginning. In our proposition, each thread
can select and change its scheduling policy dynamically at run-
time. Reference[2] is another similar approach, but this approach
aims for real-time systems. Our approach aims for general multi-
processor systems and operating systems.

II. M ULTIPROCESSOR SYSTEM WITHSSH

Figure 1 shows the architecture of the multiprocessor system
with SSH. In our architecture, we assume shared memory system to
make it easy to dispatch the thread to any arbitrary PE(Processing
Element). This system is constructed by the following units, a
number of PE’s constructed by a CPU andSSH-s (SSH-slave),
a Shared Memory , Memory Bus Arbiter , and SSH-m(SSH-
master). CPU and SSH-s are assumed to be implemented on a
single LSI, especially in our implementation CPU andSSH-s is
tightly coupled by a 32-bit memory bus with a memory mapped
I/O interface.

To meet the goals, SSH takes over the thread scheduling, usu-
ally done by operating system or by user program, using hardware
scheduler. The main part of the thread scheduling takes place in the
SSH-m. Data of the new created thread are transmitted toSSH-m

Memory Bus
Arbiter Shared Memory

Scheduler Bus
Arbiter

CPU

SSH-s

PE#0

CPU

SSH-s

PE#n

SSH-m

Bus
 Snooping

Shared Memory Bus

Scheduler Bus

Fig. 1. Multiprocessor architecture with SSH.

and registered here for scheduling based on scheduling policy of
each thread. When there is a request for dispatching thread from
SSH-s , SSH-mreturns the thread with the highest priority to the
concernedSSH-s . As seen, thread scheduling by SSH is done com-
pletely concurrently with the execution of user program on CPU.

SSH-s and SSH-m are connected by the special bus called
Scheduler Bus , which is used to keep all the memory bus band-
width just for computing. In our implementation, the bus width of
Scheduler Bus is set to 16-bit, based on the bandwidth needed
by SSH. Scheduler Bus Arbiter is an arbiter to guaran-
tee that the dispatch request from eachSSH-s is handled fair.
Scheduler Bus Arbiter gives the request fromSSH-malways
the highest priority, and the request priority from SSH-s ’s is given
by using the Round Robin algorithm, for arbitration. Details of
SSH-mand SSH-s will be discussed in the next section.

III. STRUCTURE OFSSH

SSH is constructed bySSH-m, where the scheduling is done, and
SSH-s which provides the interface to CPU andSSH-m. This sec-
tion will discuss the detailed architecture ofSSH-mand SSH-s .

A. SSH-m

SSH-m schedules threads, and sends the thread data with the
highest priority to SSH-s . SSH-m is constructed by three units;
Bus Snooping Unit , Hardware Scheduler , and Global
Queue.

Functions of each unit are:

Bus Snooping Unit: This unit snoopsShared Memory Bus to
check if there is any access to the semaphore variable. If the
access to the semaphore variable is detected,Bus Snooping
Unit reports it to Hardware Scheduler .

Hardware Scheduler: This unit schedules the thread for dispatch-
ing. The scheduling policy implemented here is FIFO, Round
Robin, and Other as defined in pthread.

Global Queue: Global Queue contains theReady Queue and
the Wait Queue for each scheduling policy.

B. SSH-s

SSH-s works as an interface between CPU andSSH-m, and
constructed by the following three units; CPU-SSH Interface
Unit , SSH-SSH Interface Unit , and Register Unit .

Functions of each unit are:

CPU-SSH Interface Unit: This unit provides an interface for inter-
action with CPU. CPU and SSH-s communicate with each
other via memory mapped I/O. This unit maps the internal
register in the SSH-s to the memory address space.

SSH-SSH Interface Unit: This unit watches theRead Queue in-
side the Register Unit , when the Read Queue gets
empty, request for the next thread to dispatch is sent out to
SSH-mon demand. And also if a thread is newly created dy-
namically by CPU, it will be buffered in the Write Queue in-
sideRegister Unit for transmitting to SSH-m. The thread
transmitted to SSH-mis registered in the suitable queue inside
Global Queue .

Register Unit: This unit functions as a buffer for the thread down-
loaded from SSH-mand for the new thread to upload, which
are registered inGlobal Queue insideSSH-m.

C. Performance of SSH

As SSH schedules the next thread to execute in parallel with the
execution of the current thread by CPU, the minimum time needed
for scheduling is the data transmission time between CPU and the
SSH-s . The LSI we have implemented requires 20 cycles to look
up the next thread to execute.

IV. LSI D ESIGN

Detailed design of the multiprocessor system using SSH proposed
in this paper was done using Verilog-HDL. And we had imple-
mented the PE which was constructed by a CPU andSSH-s .

The LSI was designed as a PE of the multiprocessor system. The
specifications of the PE are the following:

� Five stages 32-bit RISC CPU with the subset ofMIPS R3000
instruction set, without the multiply/ divide unit, because of
the limitation of die size.

� For chip I/O, the LSI has one 32-bitMemory Bus that is time
shared with address and data transfer, two 32-bit buses for
instruction address and instruction fetching, and one 16-bit
Scheduler Bus for SSH.

� LSI was designed to work at 32 MHz. 32MHz was chosen by
the available print board design technology we could use.

TABLE I
SPEC OF THEPECHIP.

Chip size 6.0� 6.0mm
Cells of CPU 9,739
Gates�1 of CPU 18,706
Cells of SSH-s 954
Gates�1 of SSH-s 2,264
Technology Hitachi 0.35�m
Max Clock Freq�2. 51MHz

�1: in terms of NAND, �2: measured

Fig. 2. The micrograph of the LSI designed.

The detailed specification of the LSI designed is listed in Ta-
ble I. Max Clock Frequency is a measured number using the LSI
tester, but since the limitation of Clock Frequency available from
the LSI tester was 50MHz, the real Max Clock Frequency maybe
more higher. Figure 2 shows the chip micrograph.

V. CONCLUSION

In this paper we described the details of PE LSI with SSH which
make it possible to use fine grain parallelism effectively in multi-
processor systems. The SSH supports fast and concurrent thread
scheduling that is very important in fine grain parallel processing.
In the status of the project, we finished all of the logic designs of the
multiprocessor system, and now we are implementing an environ-
ment to evaluate the LSI which we have designed.

ACKNOWLEDGEMENTS

The VLSI chip in this study has been fabricated in the chip fab-
rication program of VLSI Design and Education Center (VDEC),
the University of Tokyo with the collaboration by Hitachi Ltd. and
Dai Nippon Printing Corporation. We will like to thank Seiko In-
struments Inc. for the support with VisualHDL.

REFERENCES

[1] M. Iida, M. Kuga, T. Sueyoshi: “On Chip Multiprocessor
Using Multithread Control Library Implemented as Hard-
ware,” Joint Symposium on Parallel Processing’97, pp.337-344,
1997(Japanese).

[2] T. Nakano, Y. Komatsudaira, A. Shiomi, M. Imai: “Evaluation
of a Real-Time OS Chip and Extension for a Distribution OS”
Technical report of IEICE. CPSY98-51, pp.23-30, 1998(Japanese).

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

