
REDUCING POWER IN SUPERSCALAR PROCESSOR CACHES USING SUBBANKING,
MULTIPLE LINE BUFFERS AND BIT–LINE SEGMENTATION *

Kanad Ghose and Milind B. Kamble**

Department of Computer Science
State University of New York, Binghamton, NY 13902–6000

email: {ghose, kamble}@cs.binghamton.edu

Abstract

Modern microprocessors employ one or two levels of on–chip
caches to bridge the burgeoning speed disparities between the
processor and the RAM. These SRAM caches are a major
source of power dissipation. We investigate architectural
techniques, that do not compromise the processor cycle time,
for reducing the power dissipation within the on–chip cache
hierarchy in superscalar microprocessors. We use a detailed
register–level simulator of a superscalar microprocessor that
simulates the execution of the SPEC benchmarks and SPICE
measurements for the actual layout of a 0.5 micron, 4metal
layer cache, optimized for a 300 MHz. clock. We show that a
combination of subbanking, multiple line buffers and bit–line
segmentation can reduce the on–chip cache power dissipation
by as much as 75% in a technology–independent manner.

Key words: Low power caches, power estimation.

1. INTRODUCTION

All modern microprocessors incorporate one or two levels of
on chip caches to accommodate the large memory bandwidth
requirements of the superscalar pipeline. To allow fast
pipeline clock frequencies to be used, these on–chip caches
are implemented using arrays of densely packed static RAM
cells. The device count for these on–chip caches are often a
significant fraction of the total transistor budget for the entire
chip; indeed in some cases, the number of transistors devoted
to the on–chip caches exceeds the transistor count for the
processor’s datapath and control logic. An extreme example
of this is found in the HP PA 8500 microprocessor where 70%
of the die area is occupied by large L1 caches to speed up
OLTP applications. These on–chip caches are thus a
significant source of power dissipation (e.g., 25% of the total
chip power for the DEC 21164 [ERB+95], 43% of the total
power for the SA–110 [Mon 96]).

* This work is supported in part by the National Science Foundation through award
No. MIP–9504767.

** Currently with the Hewlett–Packard VLSI Technology Laboratory, Fort Collins,
CO 80528. Work performed while at SUNY–Binghamton.

In the short term, as processor vendors put additional
transistors made available through improvements in device
technology into the on–chip caches, the fraction of the total
chip power dissipated in the caches is likely to go up. There
are several reasons why significant power dissipation occurs
within the on–chip caches. First, the tag and data arrays of
these caches are implemented as static RAMs, to allow the
cache access rate to match the pipeline clock rate. Second, the
cache area is more densely packed than other areas on the die,
so that the number of transistors devoted to the cache are quite
a significant percentage of the total number of transistors on
the die. Third, these caches are frequently accessed; the
I–cache is accessed on each clock cycle unless a cache miss
occurred.

Several techniques have been proposed (and actually used in
some cases) for reducing the power dissipated by caches in
general. These include the use of: (a) alternative
organizations [SuDe 95, KaGh 97, KBN 95], including
similar techniques that apply to SRAMs [EvFr 95, Itoh 96];
(b) circuit design techniques that are generally applicable to
SRAM components [HKY 95, Itoh 96], (c) Alternative
realizations [FrPe+ 97] and (d) instruction scheduling
techniques, such as the ones presented in [SuDe 95]. The
techniques in these four categories are generally independent
from each other and can thus be used in conjunction. The
focus of this paper is on techniques that fall into the first
category.

In this paper we propose and evaluate the use of multiple line
buffers, subbanking and bit line segmentation for reducing
the power dissipation within on–chip caches for superscalar
CPUs. We show that a suitable combination of these
techniques can be extremely effective in reducing the energy
dissipation in all caches across the memory hierarchy.

2. ORGANIZING CACHES FOR LOW POWER

The dominant cache organization employed in modern
microprocessors today is the set–associative cache [Smith
82], [Handy 93]; the direct–mapped cache and fully
associative cache organizations are two extremes of this
organization. In a normal m–way set associative cache, there
are m tag and data array pairs, each consisting of S rows,
where S = 2s. Each data array location is known as a cache
line, which is a group of W consecutive words (W = 2w). A
cache line is capable of holding the contents of what is called a
memory block, consisting of W consecutive memory words.
Tag and data array locations at the same offset within the tag
and data arrays make up what is called a set. The placement
rules for such a cache dictates that a word at an address A in the

memory (RAM), if present in the cache, can be found in any
cache line within the set at offset (A div W) mod S. To
uniquely identify the memory block that resides within a
cache line, the tag part of the address (obtained by stripping
the lower order (s+w) bits of A) are kept in the associated tag
array location. The access steps for the m–way
set–associative cache are as follows:

Step 1: Use the middle order s bits in the address of the word to
be accessed to read out the set that potentially contains these
words into output latches of the tag and data arrays. These
latches together make up what is called a line buffer.

Step 2: Compare the tag part of the address being accessed in
parallel with the m outputs from the tag arrays (using m
independent comparators). A match with the output of the tag
array indicates that the required data is within the output latch
of the corresponding data array. If this is the case, a situation
called a cache hit, the lower order w bits of the address are
used to multiplex out the desired word from the data array
output latch. If no match occurs, we have a cache miss,
implying that the desired data is not within the cache.

In the pipelined caches that we have implemented in our
simulator, the two steps mentioned above are naturally
divided into 2 stages, thereby providing a peak throughput of
one cache request per cache cycle (per port). The tag and data
arrays need to be updated when a missing line is fetched or
when a STORE request updates the contents of an existing
line. This update of the arrays is performed by a third stage of
the cache pipeline. On a cache miss, some replacement
algorithm – implemented in hardware – is used to select a
victim line from the set read out in step 1 and appropriate steps
are followed to install the memory block into the victim’s line
frame when it is delivered from the lower levels of the
memory hierarchy.

For a superscalar CPU, to maximize the number of
instructions to be examined for dispatch in each cycle, a
facility is needed to transparently step across the cache line
boundary to the physically next line (if that line is cached).
One way of doing this is to use a deck buffer mechanism (as
used in the MIPS 10K) or to use odd and even cache banks
(with an automatic line address incrementing facility, as
originally used in the IBM RISC/6000 [Gro 90]). Modern
superscalar CPUs also tend to support multiple pipelined
load/store units that can request access to the D–cache
simultaneously. This requirement is met by using a
multiported cache or an interleaved cache.

2.1 Caches with multiple line buffers

We propose the extension of the set–associative cache with
multiple output latches i.e., line buffers. The key idea is to
exploit the temporal (and spatial) locality of reference in
address streams. There is a very good chance that the cache
line being currently accessed was accessed in the recent past,
and that this cache line is still resident in one of the output
latches. If the cache line being currently accessed is indeed
present in one of the line buffers (a situation called a line
buffer hit), Step 1 above of the normal cache access can be
aborted and the desired line can be accessed directly from the

line buffer. This not only saves accesses of the data arrays but,
at the same time, also saves the access to the tag arrays.

Caches with a single line buffer were introduced by Su and
Despain in a slightly different form in [SuDe 95]. In their
design, the line address of the current access is first compared
against the line address of the set that is currently resident in
the line buffer. The normal access of the cache – including bit
line precharging and row address decoding – is started only
when a mismatch occurs. Consequently, this arrangement
prolongs the cache access latency, a solution unattractive in
practice. Second, if the cache access is pipelined in two
stages, a completely new set of tag comparators are needed
(along with a comparator for the set number) to allow a line
buffer hit to be determined in parallel with the tag comparison
step of a normal cache access for the previous access. Both of
these problems are not present in our proposed line buffering
scheme, as described below.

Figure 1 depicts a set–associative cache with multiple (in this
case, 4) line buffers. The hardware augmentations to the basic
set–associative cache are as follows. First, we need four
latches to hold the number of the four most recently accessed
sets. Second, four more comparators are needed to compare
the set number field of the current access against the set
numbers of the lines sitting in the four line buffers. Third, if no
line buffer hit occur, the data from the set selected by the
current address applied to the cache must be retrieved into one
of the four line buffers. Consequently, on a line buffer miss, a
victim must be selected from one of the four line buffers. The
need to write back an updated line buffer’s content into the tag
and data arrays, when the line buffer gets selected as a victim,
is avoided by writing through updates to the line buffer into
the corresponding data array on write accesses that result in a
line buffer hit. Along with these, a multiplexing facility is
needed to direct the outputs of the tag and data arrays into the
victim line buffer. In this case, the four line buffers
effectively make up a 4–entry fully–associative
write–through cache, which is accessed in parallel with the
normal cache without any prolongation in the cycle time or
without any impact on the normal cache access pipeline.

The access steps for a pipelined cache with multiple line
buffers are:

Cycle 1:

φ1: – Precharge the tag and data arrays for a read access
– Start the decoding of the set address applied to the arrays

(This is identical to what happens in normal set–associative cache).
– Simultaneously, compare the set selector field in the address being

accessed with the set numbers of the four sets stored in the four
line buffers.

– Concurrently, identify a victim line buffer in advance to handle
misses on the line buffers and start the setup of the multiplexor at
the output of the tag and data arrays.

φ2: – If the set number of the current access matches the set number
associated with any of the line buffers (line buffer hit), abort the
readout of the tag and data arrays and steer the tag and data values
from the matching buffer into the tag comparators and the word
multiplexer, respectively.
Otherwise (on a line buffer miss), latch in the contents of the set read
out from the arrays into the victim line buffer and move the set

abort array
readout M

=

Tag Data Tag Data

Line Buffer #0

T

Address issued by
CPU

=
=

=

=

s

“cache hit”

E Word multiplexer
w

Required word

b

set number
latches

set number
comparators

M: Match, replacement logic, multi-
plexing control for line buffers

Line Buffer #1
Line Buffer #2
Line Buffer #3

==
=
=

Inter–stage latch
== set number comparators

Tag/data
output latch

Figure 1. A 2–way Set–Associative Cache
with Four Line Buffers

selector bits in the currently accessed address to the set number
latch associated with this victim line buffer.

Cycle 2:

φ1: – Perform the tag comparison, as in a normal set–associative cache.

φ2: – Perform the word multiplexing on a cache hit, as in a normal cache.

In [KGM 97], Kin et al describe the use of a small “filter
cache” that sits in front of a conventional L1 cache for
reducing the power dissipation of the cache memory system.
If a hit occurs in the smaller filter cache, data is accessed from
the filter cache. The normal L1 cache access is started only
after a miss has been detected in this filter cache.
Consequently, the cache access latency is increased on a miss
in the filter cache – this can have adverse impact on
performance. Notice that although the multiple line buffers
we have proposed behave as a fully associative cache and
serves the same purpose as a filter cache, it does not impact the
cache latency at all. This is because we probe the line buffers
in parallel with the normal cache access. In the filter cache
mechanism, the access time penalties can be avoided only
when the filter cache has a sufficiently high hit rate – this
requires the filter cache to be reasonably big (256 entries or
more). Making the filter cache bigger increases its power
dissipation and also takes a toll on performance, since the
bigger size translates to a higher access time. Also, unlike a
fully associative filter cache, we need only one set of tag
comparators (which are the same ones that are needed in a
conventional set–associative cache anyway) and four set
number comparators to detect a line buffer hit. In contrast, in a
four entry fully associative cache like the filter cache, four tag
comparators would be needed. Thus, compared to the filter
cache, the cache with multiple line buffers makes more
effective use of the hardware without increasing the normal
cycle time of the cache.

What is the number of line buffers that one should employ?
Clearly, for reducing the number of accesses to the tag and

data array, the hit ratio on the line buffers should be fairly high.
This requires the use of a large number of line buffers, whose
effective delays are likely to be higher. The delay within the
match, replacement and multiplexing control logic are also
likely to be higher, resulting in a critical path that prolongs the
cache cycle time – an undesirable consequence. Furthermore,
the power dissipations in the additional components will also
increase, offsetting the power savings. In practice, as our
subsequent results show, a small number of line buffers result
in significant power savings, without any undue increase in
the overall area of the cache and without any increase in the
cache cycle time.

2.2 Subbanking

One of the major source of power dissipation in a
conventionally organized cache can be attributed to
transitions in the bit lines of the data and tag arrays. Bit line
dissipations occur when the bit lines are precharged or
discharged.

To achieve further savings on the bit line energy, the data
arrays can be subdivided into subbanks, so that only those
subbanks that contain the desired data can be read out [SuDe
95]. (To the traditional RAM designers, subbanking is known
as column multiplexing, a technique that is used to reduce the
number of sense amps.) A subbank consists of a number of
consecutive bit columns of the data array. A data line is thus
spread across a number of subbanks. Since data is read out
from one subbank at a time, a common set of sense amps can
be shared across the subbanks, cutting down on the cache area.
In effect, columns are multiplexed within a subbank. Column
multiplexing in this manner is routinely used within static
RAMs. The size of a subbank refers to the physical word
width of each subbank. Each subbank within a data array can
be activated independently. By using an array of bit flags to
indicate the presence/absence of subbanks in the line buffer,
the array access stage can determine if a subbank needs to be
read out for the current request. This again does not affect the
cycle time nor the pipeline of the cache. At the same time, the
readout of line data from subbanks which might never be
needed is avoided. Figure 2 depicts a two–way set associative
cache with two subbanks per data array.

2.3 Bit–line Segmentation

Bit line segmentation offers a solution for further power
savings. The internal organization of each column in the data
or tag array gets modified as shown in Figure 3. Here every
column of bitcells, sharing one (or more) pair of bitlines are
split into independent segments as shown. An additional pair
of lines are run across the segments. (These lines are shown as
a single line in Figure 3 (b).) The bit lines within each segment
can be connected or isolated from these common lines as
shown. The metal layer used for clock distribution can
implement this line, since the clock does not need to be routed
across the bit cell array. Before a readout, all segments are
connected to the common lines, which are precharged as
usual. In the meantime, the address decoder identifies the
segment targeted by the row address issued to the array and
isolates all but the targeted segment from the common bit line.
This reduces the effective capacitive loading (due to the

00

=

w

Tag Data Tag Data

Latches

Comparators=

“hit”

MUX

b

m

s

T
T L

Required word

Address issued
by CPU

E

1
1 1

subbank 0

subbank 1

E: Encoder

Inter–stage latch

Figure 2. A 2–way Set–Associative Cache
with 2 subbanks per data bank

diffusion capacitances of the pass transistors) on the common
line. This reduction is somewhat offset by the additional
capacitance of the common line that spans a single segment
and the diffusion capacitances of the isolating switches. The
common line is then sensed. Because of the reduced loading
on the common line, the energy discharged due to a readout or
spent in a write are small. Thus, smaller drivers, precharging
transistors and sense amps can be used.

(a) original structure of column of bit cells

Big precharger/
driver

Big sense amp

Smaller
precharger/driver

Smaller sense amp

(b) segmented column of bitcells

Figure 3. Segmented data/tag array column

(a)

: bypass switch

: segment of bits

(b)

3. POWER ESTIMATION METHODOLOGY

We now describe the experimental setup used in our study of
the energy efficiency achieved through the use of set
associative caches with multiple line buffers, subbanking and
bit line segmentation.

3.1 RTL Simulator for Processor & Caches

We use a detailed register–level simulator, SCAPE, which
accurately simulates at the cycle level a superscalar pipelined
processor, based on the MIPS instruction set. For the results
presented here, we used a 3 level cache hierarchy, with split
L1 caches (clocked at 300 MHz.), an unified L2 cache

(running at half the CPU clock rate) and an unified L3 cache.
The L1 and L2 caches were assumed to be on–chip and the L3
cache was assumed to be off–chip. Since superscalar CPUs
need to fetch multiple instructions at a time to feed the
instruction dispatch unit, the L1 I–cache was designed to
supply multiple instructions per instruction fetch request. To
improve the I–cache bandwidth, the I–cache was designed to
have even–odd directories (and banks) so that requests that
spanned consecutive rows could still be completed in the
same cycle. The presence of multiple LOAD/STORE
functional units in the superscalar pipeline demanded the use
of multiple ports for the L1 D–cache.

Our simulations were for a 4–way superscalar CPU with 2
LOAD units, 1 STORE unit, 6 integer units, 2 Integer
multiply/divide (pipelined) units and 2 Floating point
(pipelined) units. We simulated the execution of the
SPECInt95 and few SPECFp95 (su2cor, mgrid, applu)
benchmarks to get a good mix of CPU–intensive and
memory–intensive load.

3.2 Energy Dissipation Measures from VLSI Layout

For getting accurate measures of the dissipation in all major
components of the cache organizations studied, we laid out
the cache in a 4–metal layer, 0.5 micron technology and
verified through SPICE simulations that it performed all
major cache operations correctly. In particular, we sized
critical components and made the bitcell arrays as compact as
possible to make sure that a cycle time of 3.3 nsecs.
(corresponding to a 300 MHz. clock rate) was sustainable
[GhKa 99]. We also used SPICE to compute the energy
dissipations in the cache components on major transition
events, using a supply voltage of 3.3 volts. These measures
included not only dissipations due to capacitive loading, but
also leakage and short circuit currents (the later being a
particularly dominating component in the sense amps).

The register level simulator generated transition counts
within various cache components when the execution of the
SPEC benchmarks were simulated. These were fed into a
power estimation program that looked up appropriate energy
dissipations for each event as obtained from the SPICE
simulations. This power estimation program eventually
produced a summary report of the power dissipations in
various cache components as well as in the on–chip cache
system as a whole.

3.3 Configurations Studied

For our base case, we assume a 32 Kbyte, direct–mapped L1
I–cache and a 32 Kbyte, 4–way set–associative L1 D–cache.
The line sizes for both of these caches are set to 32 bytes, a
typical number, with 16 byte subblock size. The L2–cache is
assumed to be a 128 Kbyte, 4–way set–associative unified
(i.e., shared by instructions and data) on–chip cache with a
line size of 64 bytes and 32 byte subblock size. The 64 byte
line size was chosen, since L2 caches must have a line size
longer than that of the L1 caches to be effective. The off–chip
L3–cache is assumed to be a 1Mbyte, 8–way set–associative
unified off–chip cache with a line size of 128 bytes. The
interconnection bus width was 32 bytes between L2 and L3,
16 bytes between L1 and L2 and 64 bytes between L3 and the

main memory. All the caches used write–back except L3
which was write–through with a 16 deep write back buffers. A
buddy replacement algorithm, approximating LRU, was used
for all the set–associative caches, as well as for choosing the
victim line buffer on a line buffer miss.

4. RESULTS AND DISCUSSIONS

Figure 4 depicts the impact of subbanking on the base case and
variations (with a smaller line size). In all cases depicted in
this figure, the width of a subbank was maintained at 4 bytes.
As expected, in the conventional organizations (i.e,
organizations that do not use subbanks) power dissipation
goes up with the line size. This is a direct consequence of
activating the sense amps for all subbanks during a readout.
The relative power savings are more substantial with
subbanking for larger line sizes, since only the sensing of the
enabled subbanks take place.

In Figure 5, we depict how power dissipations in the caches
for the base configuration are reduced with the addition of line
buffers. To avoid an explosion in the number of results to be
depicted, if multiple line buffers were deployed, all caches
(L1–I, L1–D and L2) used an identical number of line buffers.
As the number of line buffers were varied from 1 to 8 (in
powers of 2, although there is no reason not to have linear
increases), the power requirements of each cache dropped,
although non–linearly. Our power estimations took into
account the dissipations due to the use of additional set
number comparators, tri–stated line buffer latches and the
longer interconnections. The decrease in power dissipation
with the number of line buffers is as expected; the likelihood
of accessing a recently accessed line held in a line buffer goes
up as the number of line buffers increase. Beyond 8 to 10 line
buffers, although the power dissipations continued to drop,
the critical path in detecting a set number match followed by
the time needed to steer the tag and data out of the matching
line buffer increased beyond the targeted cycle time of 3.3
nsecs. Not much of an improvement resulted in the critical
path despite sizing of the tri–state drivers in the line buffers or
the pull–down transistors in the set number comparators. The
key observation is that with the use of a small number of line
buffers (8 in this case), a reduction of 40% to 50% in the
dissipations of the individual caches and the total for all
on–chip caches is easily achieved without compromising the
cache cycle time.

The impact of segmenting the bit lines on the power
dissipation of the caches is shown in Figure 6. (To avoid an
explosion in the number of results, the number of segments
were kept identical in all the caches.) An interesting variation
in the degree of power savings is seen among the caches in this
figure. Increasing the number of segments in the L1 I–cache
or the L2 cache does not result in the kind of power savings
that are realized for the L1 D–cache. For the L1 I–cache,
which is directly mapped, this can be explained as follows.
Because of the direct mapping (which is a one way
set–associative cache), the length of the bit lines in the L1
I–cache is considerably longer than the length of the bit wires
for the 4–way L1 D–cache. Consequently, the precharge
transistors needed for the L1 I–cache are bigger than the ones

0
600

1200
1800
2400
3000
3600
4200
4800
5400
6000

4–way Superscalar

Conv 16B line
Subbanked 16B line
Conv 32B line
Subbanked 32B line
Conv 64B line
Subbanked 64B line

L1 I–cache L1 D–cache L2 cache TOTAL

Figure 4. Power dissipation in caches with subbankng (in
milliwatts). Cache sizes & associativities correspond to
the base configuration (see text), but other parameters
are varied as shown.

subbank width = 4 bytes

0
300
600
900

1200
1500
1800
2100
2400
2700
3000

Conv. – no line buffers
1 line buffer
2 line buffers
4 linebuffers
8 line buffers

4–way Superscalar

L1 I–cache L1 D–cache L2 cache TOTAL

Figure 5. Power dissipation in caches with line buffering
(in milliwatts). Cache parameters correspond to the
base configuration (see text), but number of line buffers
are varied as shown.

needed for the L1 D–cache. Consequently, the diffusion
capacitance of the bigger precharge transistors dominates the
bit line capacitance. The effective capacitance of the bit line
during sensing and precharging depends less heavily on the
length of the bit line segments. A similar explanation is valid
for the L2 cache, which also has longer bit lines because of its
larger capacity. In any case, the use of 8 to 16 segments result
in a savings of 25% to 30%+ in the overall on–chip cache
dissipations.

The power savings realized when subbanking, bit–line
segmentation and multiple line buffers are all employed is
shown in Figure 7. In all of these variations, 16 bit line
segments are used. Clearly, the overall savings is not the sum
of the savings achieved using each technique on its own. This
is obvious from the manner in which the various techniques
interact with each other. Line buffering using multiple buffers
and subbanking are the two techniques that result in the most
power savings. Bit line segmentation saves a smaller fraction
of the resulting power when either or both of these two
techniques are deployed. No matter what, with the use of all of
these techniques (with 8 line buffers), the total dissipation of
the on–chip caches come down from about 2690 mWatts (for
the conventionally organized caches) to about 624 mWatts,
representing a staggering power savings of about 75%.

Figure 8 shows a breakdown of the energy dissipations within
major components of the L1 Icache and L1 Dcache and the L2
cache of the base case with subbanking, 8 line buffers and 16
bit line segments. These figures show that bitline and sense

Ç
Ç

Ç
Ç
Ç
ÇÇ
ÇÇ

ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ0

300
600
900

1200
1500
1800
2100
2400
2700
3000

Conv
2 segments
4 segments
8 segments

Ç 16 segments

Figure 6. Power dissipation in caches with bit line seg-
mentation (in milliwatts). Cache parameters correspond
to the base configuration (see text), but number of bit line
segments are varied as shown.

L1 I–cache L1 D–cache L2 cache TOTAL

4–way Superscalar

0
300
600
900

1200
1500
1800
2100
2400
2700
3000

Conv
1 line buffer+subbanking+blseg
4 line buffers+subbanking+blseg
8 line buffers+subbanking+blseg

L1 I–cache L1 D–cache L2 cache TOTAL

Figure 7. Power dissipation in caches with subbank-
ing, multiple line buffers and bit line segmentation (in
milliwatts). Cache sizes, associativities and line sizes
correspond to the base case.

4–way Superscalar

ÂÂ
ÂÂ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÂÂ
ÂÂ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÍÍÍÂÂ
ÂÂ
ÂÂ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÍÍÍ

ÂÂ
É
É

Bitline
Wordline

Output Driver
Address Input

Comparator
Latch Writeback BufferÍ

Sense Amplifier

L1 Icache L1 Dcache L2 cache

Figure 8. Components of the power dissipation in individual
caches with subbanking, 8 line buffers and 16 bit line seg-
ments (in milliwatts). Cache sizes, associativities and line
sizes correspond to the base case. Address decoder power
is part of the “address input” component.

amp dissipations are the most dominant component of the
total power dissipation. One should be careful not to compare
the absolute “slice” represented by the bitline power
dissipation in the pie charts for the conventional and the line
buffered caches since the total power dissipations for these
caches are widely different. Latches and comparators, as
expected, also represent a non negligible component of the
overall power dissipations in the caches with line buffers.
Although not shown here, the bit line and sense amp
dissipations form an even bigger fraction of the overall power

dissipation for the conventional organizations, as one would
expect.

5. CONCLUSIONS

On–chip caches are a major source of power dissipation in
contemporary superscalar microprocessors. The bulk of the
energy dissipated in conventionally organized caches is in
precharging, sensing and discharging the bit lines of the tag
and data arrays. We demonstrated that an alternative cache
organization with multiple line buffers, subbanking and
bitline segmentation can be very effective in reducing the
power dissipation in on–chip caches. This organization does
not compromise the cache cycle time (and other aspects of
performance, such as the cache hit ratio and cache access
rate). The maximum power saving achieved using this
organization was about 75%, suggesting that the proposed
cache architecture to be a viable choice for modern CPUs.

References

[ERB+ 95] Edmondson, J. F. et al, “Internal Organization of the
Alpha 21164, a 300–MHz 64–bit Quad–issue CMOS RISC
Microprocessor”, Digital Technical Journal, Vol. 7, No. 1, 1995, pp.
119–135.

[EvFr 95] Evans, R. J. and Franzon, P. D., “Energy Consumption
Modeling and Optimization for SRAM’s”, IEEE Journal of
Solid–State Circuits, Vol. 30, No. 5, May 1995, pp 571–579.

[FrPe+ 97] Fromm R., et al., “The Energy Efficiency of IRAM
Architectures”, in Proc. of the 24th International Symposium on
Computer Architecture, June 1997.

[GhKa 99] Ghose, K. and Kamble, M. B., “A 0.5 micron Cache
and Its Low Power Variants”, Technical Report CS–TR–99–2, Dept
of Comp. Sci., SUNY–Binghamton, January 1999.

[Gro 90] Grohoski, G.F., “Machine Organization of the IBM
RISC System/6000 Processor”, IBM Jrnl. of Resaerch and
Development, Vol. 34, No. 1 (Jan. 1990), pp. 37–58.

[Handy 93] Handy, J., The Cache Memory Book, , Academic Press,
1993.

[HKY+ 95] Hasegawa, A. et al, “SH3: High Code Density, Low
Power”, IEEE Micro magazine, Dec. 1995, pp. 11–19.

[Itoh 96] Itoh, K., “Low Power Memory Design”, in Low Power
Design Methodologies, ed. by Rabaey, J. and Pedram, M., Kluwer
Academic Pub., pp. 201–251.

[KaGh 97] Kamble, M. B. and Ghose, K., “Energy–Efficiency of
VLSI Caches: A Comparative Study”, in Proc. IEEE 10–th. Int’l.
Conf. on VLSI Design, Jan. 1997, pp. 261–267.

[KBN 95] Ko, U., Balsara, P. T. and Nanda, A.K., “Energy
Optimization of Multi–Level Processor Cache Architectures”, in
Proc. of the Int’l. Sym. on Low Power Design, 1995, pp. 45–49.

[KGM 97] Kin, J., Gupta, M. and Mangione–Smith, W.H., “The
Filter Cache: An Energy–Efficient Memory Structure”, in Proc.
MICRO 30, 1997, pp. 184–193.

[Mon 96] Montanaro, J. et al., “A 160 MHz, 32b 0.5 W CMOS
RISC Microprocessor”, in IEEE ISSCC 1996 Digest of Papers,
1996.

[Smith 82] Smith, A. J., “Cache Memories”, ACM Computing
Surveys, Sept. 1982, pp. 473–530.

[SuDe 95] Su, C. and Despain, A., “Cache Design Tradeoffs for
Power and Performance Optimization: A Case Study”, in Proc. of
the Int’l. Sym. on Low Power Design, 1995, pp. 63–68.

	Main Page
	ISLPED'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

