
FunState—An Internal Design Representation for Codesign

L. Thiele and K. Strehl

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)

Zurich, Switzerland

D. Ziegenbein and R. Ernst

Institute of Computer Engineering (IDA)
Technical University of Braunschweig

Braunschweig, Germany

J. Teich

Computer Engineering Lab (DATE)
University of Paderborn

Paderborn, Germany

Abstract

In this paper, an internal design model called FunState (functions
driven by state machines) is presented that enables the representation
of different types of system components and scheduling mechanisms
using a mixture of functional programming and state machines.

It is shown here how properties relevant for scheduling and ver-
ification of specification models like boolean dataflow, cyclostatic
dataflow, synchronous dataflow, marked graphs, and communicat-
ing state machines as well as Petri nets may be represented in the
FunState model. Examples of methods suited for FunState are de-
scribed, such as scheduling and verification. They are based on the
representation of the model’s state transitions in form of a periodic
graph.

1 Introduction

In the design of complex embedded systems, the specification of the
functional and timing behavior necessitates a mixture of different
basic models of computation and communication which come from
transformative or reactive domains. On the other hand, we are faced
with an increasing heterogeneity in the implementation.

This heterogeneity caused a broad range of allocation, binding,
and scheduling policies in hardware and software implementations.
Recently, a methodology has been designed to deal with the mod-
eling problem of complex embedded systems for the purpose of
scheduling [38, 39]. This model called SPI (System Property Inter-
vals) is a formal design representation internal to a design system. It
combines the representation of communicating processes with corre-
lated operation modes, the representation of non-determinate behav-
ior, different communication mechanisms such as queues and regis-
ters, and scheduling constraints.

This paper is concerned with FunState, a major enhancement
of the SPI model. While SPI is intended to capture the semantics
of multiple input languages with different semantics, FunState has
been defined to support verification and the representation of im-
plementation decisions, such as scheduling strategies. FunState is a
more complex model, but it allows to explicitly model control which,
in SPI, is always linked to data tokens. So, one design scenario
would be to start with a SPI notation capturing the design intent and
then gradually extend the SPI processes for verification and imple-
mentation. SPI and FunState are semantically equivalent, as will
be shown in this paper, and great care has been taken that SPI and
FunState processes and channels are interface compatible. This ap-
proach supports incremental implementation and verification. An-
other application of a mixed representation is the inclusion of third
party or legacy system parts where control information is incom-
plete.

So in conclusion, FunState is the preferred representation wher-
ever the control of a process shall be exposed to a tool or to the user.
A good example is the application of conflict-dependent scheduling,
as will be demonstrated in this paper.

The role of such an internal model in a multi-language design
setting is as follows. A specification of a system consists of differ-
ent input formalisms. These different parts may be modeled and
optimized independently. Then the information useful for meth-

ods like allocation of resources, partitioning the design, schedul-
ing, and verification must be estimated or extracted and mapped
onto internal representations which describe properties of the sub-
systems and their coordination (synchronization and communica-
tion). There may be different internal models for different tasks
to be performed using system analysis and design. Methods like
scheduling, abstraction, and verification work on these internal rep-
resentations and eventually refine them by adding components and
reducing non-determinism.

To justify the approach, efficient verification and scheduling
methods are described and several examples are given. The follow-
ing new results are described in the paper:

� The FunState representation is defined which serves as an in-
ternal representation of heterogeneous embedded systems for
the purpose of scheduling and verification. Extensions are
provided which enable hierarchical representations and sup-
port abstraction mechanisms.

� As the FunState model explicitly separates control and data
flow, properties of many different models of computation can
be represented, such as communicating finite state machines,
marked graphs, synchronous, cyclo-static, dynamic dataflow
graphs, and Petri nets. In contrast to other approaches, con-
straints and refinements as occurring in a typical design pro-
cess can be represented directly in the model. Examples are
different scheduling policies such as static scheduling, quasi-
static scheduling, and constant-rate scheduling.

� The methods which will be described in this paper are based
on the representation of a state space in form of a regular state
transition graph, i.e., the state transition graph of a regular
state machine. These dynamic or periodic graphs are theoret-
ically well investigated. The simplicity of the underlying se-
mantics distinguishes the presented representation from other
approaches.

2 Related Work

In many applications such as embedded systems, the transformative
domain (data processing, stream processing) and the reactive domain
(reaction to discrete events, control flow) are tightly interwoven. Ap-
plication examples include mode and parameter control of dataflow
processing systems, system configuration and initialization, e.g., in
packet-based transmission systems [14], wireless modems [6], etc.

It is not possible to give here an overview of all specification
models which have been proposed in this area. Many of them will be
covered in later sections when we relate FunState to other models of
computation. An overview and classification of different models of
computation including discrete-event, reactive, and dataflow models
is given in [23].

In the SPI model [38, 39], the control information is communi-
cated using data tokens. Two similar approaches are Huss’ codesign
model CDM [4] and Eles’ conditional process graph [10]. Many
other research groups independently proposed models that separate
data and control flow. These are, for example, SDL [31], codesign
finite state machines (CFSMs) [2], combining synchronous dataflow
(SDF) [25] with finite state machines (FSMs) [29, 14] and program

state machines [36]. Most of these approaches have limited com-
posability as control and data flow cannot be mixed arbitrarily in the
hierarchical levels.

Also in this area, graphical formalisms based on extensions of
classical FSMs like hierarchical, concurrent FSMs as introduced by
Harel [16] with many variants [26, 37] have been developed. In the
implementation of i-Logix Inc., the dataflow aspect is covered in a
separate domain called activity-chart. In *charts [6, 13], unlike stat-
echarts, CFSMs, and other concurrent hierarchical FSMs, no model
of concurrency is defined a priori. Instead, the goal is to show how to
embed FSMs within a variety of concurrency models, i.e., dataflow
models, discrete-event models, and the synchronous/reactive model.

Whereas these authors favor the systematic combination of
disjoint semantics often combined with abstract graphical models
(block diagrams), e.g. [6], others seek for a consistent semantics
for specification of the complete system, for example the COSYMA
system [12] and the OLYMPUS system [9].

Complementary to the above approaches, the FunState internal
model attempts to reduce the design complexity by representing only
those characteristics of a heterogeneous input specification which
are relevant to certain design methods, in particular scheduling and
verification. Therefore, the primary purpose is not to provide a uni-
fying algorithm specification.

Besides the usual requirements for specification models such
as composability, hierarchical structure, well-defined semantics and
adaptation to the heterogeneity present in the application domain,
we require four further properties. (1) The properties of different
specification models (computer languages, block diagrams) relevant
to certain design methods should be representable in the internal
model. (2) The internal model must support abstraction mechanisms
as necessary for the design of complex systems. (3) The internal
model should support refinement such that results in the design pro-
cess can be incorporated into the model, e.g., scheduling decisions
reducing the degree of non-determinism or back-annotation of com-
putation times of tasks.

3 The Basic FunState Model

At first, the basic non-hierarchical FunState model is explained. The
activation of functions in a network is controlled by a finite state ma-
chine, similar to the semantics of activity-charts in statecharts imple-
mentations, see [17]. In contrast to dataflow models of computation,
functions (or actors) are not autonomous.

Definition 3.1 The basic untimed FunState component consists of a
network N and a finite state machine M. The network N = (F;S;E)
itself contains a set of storage units s 2 S, a set of functions f 2 F,
and a set of directed edges e 2 E where E� (F�S)[(S�F).

Data is represented by valued tokens. Storage units and functions
form a bipartite graph. In other words, there are no edges connecting
two storage units or two functions.

Fig. 1 shows an example of a simple FunState model. The upper
part represents the network N containing storage units q1, q2, q3, and
q4 with 1, 2, 0, and 3 tokens, respectively, and functions f1, f2, and
f3. The lower part contains a finite state machine, in this example
with just one state and three transition edges. Details concerning the
behavior of the FunState model are described below.

3.1 Elements of the Network

3.1.1 Storage Units

For the sake of simplicity, only two sorts of storage elements are
introduced here, namely queues and registers.
Queueshave FIFO (first in first out) behavior and unbounded length.
They store tokens which are added (removed) via incoming (outgo-
ing) edges. The tokens represent data flowing through the network.

q2# 4≥ q4# 3≥∧ f1⁄

Cq1

f1

1

q2

q3q4

f2

f3

2
3

21

4

2

3

q1# 1≥ f2⁄
q3# 2≥ f3⁄

Figure 1: Example of a simple FunState model.

The numbers of tokens q# 2 Z�0 in queues q are part of the system
state. q$1, q$2, : : : denote the values of the first, second, : : : token
in queue q, respectively. The assignment of initial values to tokens
is not considered here.
Registersare linear arrays of pairs (address;value). In contrast to
tokens in a queue, the number of values in a register is constant.
These values r$1, r$2, : : : , r$n of a register r can be replaced via
tokens on incoming edges or read non-destructively via outgoing
edges. Registers are modeled in order to represent the flow of infor-
mation, e.g., for estimating the necessary communication bandwidth
and imposing timing constraints.

3.1.2 Functions

The function objects f 2 F of a FunState model are uniquely named
and operate on tokens or values when firing. Inputs and outputs of
functions have associated variables ci 2 Z�0 and pi 2Z�0 which de-
note the number of consumed tokens (read values) and the number of
produced tokens (replaced values), respectively. The variables rep-
resent expressions which evaluate to constants or random processes.
If required, additional constraints, for example intervals, involving
these variables may restrict the numbers of consumed or produced
tokens. In case of firing, the function f shown in Fig. 2 consumes c
tokens from queue q1 and reads 3 values from register r1. It adds to
q2 some non-deterministically chosen number of tokens in the inter-
val [1;4] and replaces p values in r2.

q1

3
f

r1 r2

q2c

p

[1,4]

Figure 2: Example of a function.

3.2 State Machine

There are many different possibilities to specify the finite state ma-
chine M which controls the activation of embedded components or
functions. In order to facilitate analysis, scheduling, and the concept
of hierarchy, a synchronous/reactive model is chosen. In particular,
the model is similar to ARGOS [26] developed at IMAG (Grenoble).
It resembles the statecharts formalism by Harel [16, 17] but resolves
circular dependencies using fixed point semantics.

Transitions are labeled with conditions and actions. Conditions
are predicates on storage units s 2 S in the network. These predi-
cates very often only concern the number of tokens in a queue, e.g.,
q# � v for some integer variable v. Again, this variable may repre-
sent a deterministic value or a random process, possibly constrained.
A transition is enabled if the corresponding predicate is true. The
action consists of a set of the names of those functions which are
activated when the transition is taken.

Fig. 3 shows the example of a simple automaton. The transition
t is taken if the automaton is in its initial state, if there are at least
3 tokens in queue q, and if the value of the second token is less

than 1:5. At the same time instant, functions named f1 and f2 are
activated.

predicate

initial state
transition t

action

q# 3≥() q$2 1.5<() / f1 f2,∧

Figure 3: Part of a simple automaton M of some component.

3.3 Operational Semantics of the Flat Model

Until now, we have not described how the state machine and the
network interact. At first, the current state xc of the state machine
is set to its initial state x0. All queues and registers are filled with
initial tokens and values. Then the following steps are executed in
turn:
(1) Predicate evaluation:All predicates over storage units used in
conditions of transitions originating from the currently active state of
the state machine are evaluated. (2) Check for possible progress:If
there is no enabled transition, i.e., no one with a satisfied predicate,
the execution is stopped. (3) State machine reaction: One non-
deterministically chosen enabled state transition is taken of which
the source is the current state. All functions in the corresponding
action set are activated. (4) Function firing: All activated functions
are fired in non-deterministic order. A fired function removes tokens
(reads values) from its input storage units and adds tokens (writes
values) to its output storage units1.

4 Model Extensions

In order to allow for refinement, abstraction, and hierarchy, the basic
model can be extended using the following principles:

� The state machine M can be hierarchical, similar to ARGOS
[26]. To this end, XOR and AND decompositions as well as
signals are introduced.

� The network N can also contain embedded components and
interfaces through which a component exchanges values and
tokens with the component into which it is embedded. The
state machine can send signals to embedded components.

The hierarchy can be nested arbitrarily deep. The semantics of
the hierarchical model can be given through a simple flattening op-
eration [35]. The concept of hierarchy does not complicate the se-
mantics. In Fig. 4, part of a hierarchical FunState model and its
equivalent flat model are shown.

C1
C

f1

a p / f1∧

b / C2,C1.a

C

f1

a p / f1∧b /
·

C2,a

C2
C2

Figure 4: Part of a hierarchical FunState model and its equivalent
flat model.

If predicate b in Fig. 4 is true, the state machine of C makes a
transition. It also activates the components C1 and C2. The condition
a for the transition of the state machine of C1 is true also, resulting
in a reaction of the state machine of C1 in the same execution cycle
if p is satisfied, too. The flat model has two parallel state machines
(AND decomposition).

1It may happen that a function tries to remove tokens from an empty queue. There
are many possibilities to deal with such a case. One may even apply the verification
methods described later on in order to statically prove that this cannot happen at run-
time.

5 Regular State Machines

The purpose of this section is to introduce the underlying compu-
tational model of FunState. It serves as the basis for the methods
derived in this paper, i.e., verification and scheduling. Because of
the simplicity of this model and its thorough investigation in com-
binatorial mathematics, many further results can be expected in the
future.

The model is introduced in its simplest form. In particular, we
start from the following class of FunState models: (1) The condi-
tions in the FunState model do not contain data dependencies, i.e.,
the free variables in predicates denote numbers of tokens in queues
only. (2) We suppose that the hierarchy of components has been un-
folded using the techniques described above. (3) The functions have
constant consumption and production rates c and p, respectively.

An example for the relation between a FunState model and its
computational model is given in Fig. 5. The numbers of tokens in
queues qk correspond to the respective vector elements ik.

f3

q2# 1≥ / f1
f2

q1# 1≥ / f3

f1

f2

1

1

1

1 1

q1 q2

1

0

0

0

1

i1 1≥ / 1–

0

i2 1≥ / 1

1–

I0
1

1
=

i2

i1

Figure 5: A basic FunState model, its equivalent static state transi-
tion graph, and its dynamic state transition diagram.

Definition 5.1 A static state diagram is a directed edge-labeled
graph G = (V;A;D;P;v0; I0) with a set of nodes V, a set of directed
edges A where a = (v1;v2) denotes an edge with source v1 2 V and
target v2 2 V, a function D : A ! Zm which associates to each edge
a = (v1;v2)2 A an integer distance vector d(a) = d(v1;v2) 2 Zm of
dimension m, a predicate function P : A�Zm

!ftrue; falseg, and a
node v0 2V and a vector with non-negative elements I0 2 Zm which
are called the initial state.

The static state diagram as defined above is a shorthand notation
for the (infinite) state transition diagram of a regular state machine,
denoted as a dynamic state transition diagram.

Definition 5.2 The dynamic state diagram Gd = (X;T;x0) of a
given static state diagram G = (V;A;D;P;v0; I0) is an infinite di-
rected graph defined as follows: The nodes X are called the states
of the regular state machine. We have X = V� I where I = Zm

�0
denotes the index set of the regular state machine and x = (v; I) 2 X
denotes a state for all v 2 V and I 2 I . The state x0 = (v0; I0) is the
initial state. The edges T are called transitions of the dynamic state
diagram. There is an edge t = (x1;x2) 2 T with x1 = (v1; I1) 2 X
and x2 = (v2; I2) 2 X iff a = (v1;v2) 2 A, I2 � I1 = d(v1;v2), and
P(a; I1) = true.

A given FunState model can be transformed into a static graph
by a simple syntactic operation. In particular, the nodes of the finite
state machine in the FunState model are the nodes V, the transitions
the edges A, the predicates on the transitions are P, and the initial
state is v0. The dimension n is the number of queues in the Fun-
State model, I0 is a vector containing the numbers of initial tokens,
and d(a) denotes the change in the number of tokens caused by the
transition corresponding to a.

The state transition diagram of a FunState model is given by its
dynamic state transition diagram. Therefore, the FunState model
is in state x0 = (v0; I0) initially. A state transition via some edge
a = (v1;v2) 2 E with source v1 and target v2 may happen iff the
state machine is in a state x1 = (v1; I1) for some index point I1 and

P(a; I1) = true. After the transition, the FunState model is in state
x2 = (v2; I1 +d(a)).

The model is similar to that of vector addition systems or Petri
nets. But in our case, there are several nodes for each index point I.
Moreover, many results from combinatorial mathematics are known
for the class of periodic graphs considered here, e.g., [1, 19, 28].

6 Relationship to Other Models

As the FunState model serves as an internal representation, proper-
ties relevant to scheduling and verification of different input specifi-
cations should be easily representable.

The modeling power of FunState is coming neither from the con-
cept of hierarchical or parallel automata (as they can be transformed
to simple automata without signals) nor from the concept of embed-
ded components (as they can be flattened). Instead, the partition into
a purely reactive part (state machine) without computations and a
passive functional part is the main source for this capability.

On the other hand, it cannot be expected that efficient analysis,
code generation, and scheduling techniques exist in general. As it
will be seen, the combination of embedded components, refinement
and abstraction mechanisms leads to a new approach to solving these
complex problems.

The following comparison may lead to useful application or do-
main specific restrictions of the FunState model. This is one of the
major capabilities which leads to efficient methods for this model of
computation.

6.1 Communicating Finite State Machines

Basic concepts of statechart-like [16] specifications and syn-
chronous parallel state machines like ARGOS [26] are directly in-
cluded as the FunState model supports AND and XOR substates.
As two further examples, the communication mechanisms of the
POLIS [2] model for specification and design of embedded systems
and those of the communicating finite state machines are described
in some detail.

Communicating Finite State Machines In the case of a com-
municating finite state machine, e.g., as in SDL process networks
[31], asynchronously operating finite state machines communicate
via FIFO ordered queues. An FSM M1 can write a value into a
queue q during a transition. An FSM M2 can guard its transitions
with predicates on the value of the first element in the queue q#1. If
the transition is taken, the element is removed from the queue.

In the FunState model, the finite state machines can be embed-
ded into components, e.g., C1 and C2 for M1 and M2. Writing into
and removing from queues can be modeled using functions, e.g.,
f1 and f2, with production and consumption rates of 1. The asyn-
chronous reactions of the finite state machines are implemented us-
ing a finite state machine M in the top component with one state and
loops for each finite state machine, see Fig. 6.

C1
C

q

0 C2

/C2

/C1

C2C1

M1 M2

f1
1

f2
1

Figure 6: Representation of communicating finite state machines in
the FunState model.

POLIS The POLIS model [2] has been invented for designing
control dominated embedded systems. Here, it will be shown how
the communication mechanism can be represented in the FunState

model. All finite state machines (FSMs) operate asynchronously,
here M1 and M2. They communicate via single element buffers,
e.g., q. If an FSM M1 writes into this buffer, the old value is re-
placed by a new one. Reading from the buffer is non-destructive.
This communication model can be represented as shown in Fig. 7.

C1
C

q

C2

/C2

/C1

C2C1

M1 M2

f1
1

f2
1

Figure 7: Representation of the POLIS model.

6.2 Marked Graphs and Synchronous Dataow Graphs

Marked graphs [7] and synchronous dataflow (SDF) graphs [24, 25]
are labeled directed graphs with nodes representing the actors of the
system and edges denoting the communication and the correspond-
ing queues between the actors. A function m determines for each
edge the number of initial tokens in the corresponding FIFO queue.
Two functions c and p denote the numbers of tokens removed from
the queue if the actor at its target fires and the number of tokens
added to the queue if the actor at its source fires, respectively. An
actor may fire if in its input queues e there are at least c(e) tokens.
For marked graphs, we have c(e) = p(e) = 1 for all edges e.

A FunState model which behaves like an SDF graph can be con-
structed as follows. The whole graph is embedded into one compo-
nent. Each actor is replaced by a function, each edge is replaced by
a concatenation of an edge, a queue, and another edge. The initial
numbers of tokens in these queues are determined by the initial num-
bers of tokens on the edges of the SDF graph. The values c(e) and
p(e) are written at the corresponding incoming and outgoing edges
of the functions. The state machine of the component has one state
and one loop transition for each actor. The condition of each loop is
the firing condition of the corresponding data flow actor (e# � c(e)
for all input queues e), and the action is an activation of the cor-
responding function. Thus, although the actors are no longer au-
tonomous, no further constraints on the model execution have been
added.

Fig. 1 shows a FunState model corresponding to the SDF graph
shown in Fig. 8. This is constructed as above and is an example of a
global control strategy. An example of a model with a local control
strategy is shown in Fig. 8. In the following sections, this strategy
will be used to represent cyclo-static, Boolean, and dynamic actors.

Cq1

/C1

C1

q2

q3q4

C2

C3

/C3
/C2

3

2

4

1 2

32

1
f1

4
2

3

C1

q2# 4≥ q4# 3 / f1≥∧

Figure 8: Example of a synchronous dataflow graph and its repre-
sentation as a FunState model with local control. Only embedded
component C1 is shown.

6.3 Cyclo-Static Dataow Graphs

In cyclo-static dataflow [3, 11], production and consumption rates of
actors change periodically. Fig. 9 shows a cyclo-static actor and the
corresponding FunState component. The different communication
behaviors of the cyclo-static actor are represented by separate func-
tions in the FunState component. The state machine of the FunState
component cycles through all possible consumption and production

rates by cyclically activating the corresponding functions. The Fun-
State components representing the actors are connected as in Fig. 8.

C1f1

f2

1 2

3
(1,3)

(2,4)

i1 o1

4

i1# 1 / f1≥

i1# 3 / f2≥

Figure 9: A cyclo-static dataflow node.

6.4 Boolean and Dynamic Dataow Graphs

Boolean and dynamic dataflow graphs extend the previously de-
scribed SDF model by introducing data dependent dataflow. In
particular, in the BDF model, two additional types of nodes called
SELECT and SWITCH are defined, see Fig. 10. SWITCH is en-
abled if the data input edge i and the control input edge c contain at
least one token. Once enabled, the node decides based on the value
c$12 ftrue; falseg of the first token to which output o1 or o2 the first
token on the data input edge is transferred. The SELECT node acts
similarly, i.e., a token on either input i1 or input i2 is transferred to
output o if there is a token on c with value c$1 = true or c$1 = false,
respectively.

SELECT SWITCH

i1 i2

o2o1

i

o

c c

Figure 10: SELECT and SWITCH nodes in Boolean dataflow
graphs.

Fig. 11 shows the corresponding FunState models. The condi-
tions are defined as

c1 : i1# >= 1 ^ c# >= 1 ^ c$1 = true
c2 : i2# >= 1 ^ c# >= 1 ^ c$1 = false
c3 : i# >= 1 ^ c# >= 1 ^ c$1 = true
c4 : i# >= 1 ^ c# >= 1 ^ c$1 = false

f1

f2

c1/f1

1i1

oi2

c2/f2

1

1

1 f1

f2

c3/f1

1 o1
i

o2

c4/f2

c

1

1
1

1

SELECT SWITCH

c

1

1
1

Figure 11: SELECT and SWITCH nodes in the FunState model.

As an example of a node type defined in dynamic dataflow
graphs, Fig. 12 shows a non-deterministic merge node and its equiv-
alent FunState model. A MERGE node is enabled for firing if at
least one input edge contains at least one token. The node selects
non-deterministically which token is transferred to the output.

6.5 Petri Nets

At a first glance, the FunState model seems to be almost equivalent
to colored Petri nets (CPN) [18]. But there are several major dif-
ferences which as well tune the Petri net model to the application
domain of the FunState model and at the same time generalize it.

The queues can be related to places in Petri nets. But queues
in the FunState model have a FIFO behavior whereas this is not the

f1

f2

1i1

oi2 1

1

1
MERGE

i1 i2

o
i1# 1 / f1≥

i2# 1 / f2≥

Figure 12: MERGE node in the FunState model.

case in CPN. This restriction matches the modeling power necessary
for embedded systems and simplifies the operational semantics to a
great extent.

Usually, there are no registers defined in CPN. In order to model
the usual mechanism of passing values through writing and reading
of variables, this capability has been added.

The activation and firing conditions are more general than in
CPN as arbitrary predicates on the queues in the preset of a func-
tion can be used. Moreover, in the FunState model, these predicates
can be different from the number of tokens removed while firing.

In a CPN, the transitions are continuously ready for being acti-
vated. In the FunState model, this can be controlled by the finite
state machine. This capability enables the simple consideration of
limited resources and scheduling policies.

7 Relationship between FunState and SPI

In contrast to FunState, SPI does not explicitly separate between
control and data flow. Although SPI processes may have internal
data and thus an internal state [38], this state is not explicitly rep-
resented and thus not visible. Differences in a SPI process external
behavior due to state-dependencies are modeled by uncertainty inter-
vals. Even the refinement of process behavior using process modes
[39] does not have a notion of state since the execution mode of a
process is determined only based on the contents of incoming chan-
nels and is ”forgotten” at completion of execution. Thus, with the
existing set of constructs2, the state of a SPI model is only composed
of the channel contents (amounts of tokens and mode tags). FunState
refines the SPI model by adding the capability of explicitly modeling
state information and control flow separately from data flow.

In the following, it is shown how both models correspond, and
translation rules are given and explained by means of simple exam-
ples. Since in this paper only an untimed version of FunState is
presented, timing is ignored for SPI elements as well.

The most important difference between FunState and SPI is the
control strategy. While SPI processes are autonomous like actors in
dataflow models of computation, FunState functions and (embed-
ded) components are controlled by a state machine. Due to state
machines in FunState, it is not generally possible to represent every
FunState model with SPI3. On the other hand, the representation of
SPI models in FunState is generally possible and equivalent to the
representation of dataflow models using a local control strategy (see
Fig. 8).

Straight forward correspondences exist for the directly equiva-
lent storage elements in FunState and SPI. Also, FunState functions
and SPI processes without modes and hierarchy directly correspond.
In the following, it is shown how a SPI process can be represented
by a FunState component and vice versa.

A SPI process can be directly represented by a FunState com-
ponent having a state machine with a single state and several loop
transitions that all start and end in this state. The actions of these
transitions trigger functions in the dataflow network representing
the modes of the corresponding SPI process. The condition of each

2excluding function variants and configurations as proposed in [30]
3It is possible to explicitly model the state machine by a process that controls the

execution of each element of the dataflow network. But the synchronous semantics is
lost when doing this

transition can be extracted from the activation function of the SPI
process by combining the conditions of the rules mapping to the re-
spective mode. A potential uncertainty in the mode selection of a
SPI process resulting in a set of possible modes is equivalent to the
possible non-determinism in the state machine of a FunState com-
ponent. This analogy is shown for an example in Fig. 13 where M is
the set of modes, A is the activation function for process P, and CP
is the FunState component representing process P.

o2

m1

o2

1o

i

i1

2

a /m 221 1

C P
1

1

2

1

1 2m2

a /m

P
2

1 4

3

1o

i2

1i

a2:(i1#�1)^(i2#�1)^(i1$1 6=”a”)
a1:(i1#�1)^(i2#�1)^(i1$1=”a”)
A=fa1 7!m1;a2 7!m2g

m2=<1;1;0;2>
m1=<1;1;2;0>
M=fm1;m2g

Figure 13: Translation of a SPI process into a FunState component.

For the translation of a FunState component into a SPI process,
there are two different strategies. One approach is to abstract the
FunState component such that it complies with the above compo-
nent template that can be easily translated into a SPI process. In the
general case, this abstraction of the FunState component involves
loss of information due to the necessary state reduction in the com-
ponent’s state machine.

The other approach is to model the state-dependent behavior of
the FunState component in SPI. This can be achieved by using vir-
tual feedback channels for the SPI process that shall represent a Fun-
State component. So the SPI process can change the state informa-
tion as well as use it for adapting its behavior accordingly.

The state of a FunState component is composed of the state of its
state machine and the contents of its internal storage elements. Due
to the unbounded FIFO queues this results in an infinite state space
that cannot be visualized using a single feedback channel since there
is only a finite mode tag set to encode the state. Thus, one virtual
channel is used for encoding the states of the FunState component’s
state machine using mode tags. Additionally, for each internal stor-
age element that is contained in a predicate of the component’s state
machine, a virtual feedback channel is added to the corresponding
SPI process. Then, each transition in the FunState component’s state
machine can be represented by a mode of the SPI process. The be-
havior and activation rules of this mode can be directly derived from
the triggered actions and the predicates, respectively.

8 Applicable Methods

The purpose of this section is to show the versatility of the Fun-
State model by the use of examples for its application. Again, we
would like to emphasize that FunState essentially is used as an inter-
nal representation model during the design phase, e.g., for HW/SW
codesign.

8.1 Formal Veri�cation

There are many different purposes of formal verification of an inter-
nal design representation. Instead of dealing directly with the system
specification, properties of a representation can be checked which is
the basis for design steps like scheduling, binding, and allocation.
It is possible to verify certain properties of a partially completed
design. For example, one may want to prove that a chosen sched-
ule results in a deadlock-free implementation or necessitates only a
bounded amount of memory.

The proposed verification strategy for FunState models is based
on their representation in form of regular state machines, see Sec-
tion 5. Of course, during the verification, the state space is not enu-
merated explicitly.

The efficient verification of process models like FunState leads
to a number of problems. Here, a new approach based on interval
diagram techniques is described based on previous results described
in [33]. These results are extended from simple process networks to-
wards the more complex FunState model containing both finite-state
control components and infinite-state dataflow queues. In particular,
the verification consists of four steps. (1) Formulation of the veri-
fication goal by means of a computation tree logic (CTL) formula,
e.g., [27]. (2) Representation of the state transition relation in form
of an interval mapping diagram (IMD). (3) Representation of state
sets as interval decision diagrams (IDDs). (4) Applying to IDDs
Boolean operations, quantification, and state set mapping using an
IMD until a fixpoint is reached according to the verification goal.

Interval diagram techniques have shown to be convenient for for-
mal verification of, e.g., process networks [33], Petri nets, and timed
automata. This new approach remedies some deficiencies of tra-
ditional symbolic model checking [27] approaches based on binary
decision diagrams (BDDs) and provides advantages with regard to
computation time and memory resources.

Consider the example FunState model of Fig. 1. To show
that q2 may never contain more than 4 tokens, the CTL formula
AG (q2# � 4) can be checked. As this formula evaluates to true,
it is proven that the memory required for q2 is bounded by 4. An-
other simple example is the formula AG EF (q1#� 1) which means
that it is always possible to reach a system state which allows f2 to
be executed. Thus, such formulae can be used to prove the absence
of deadlocks.

Apart from this, formal verification may assist during the devel-
opment of scheduling policies. The system model may be extended
to describe one or several dynamic or hybrid scheduling policies,
too, of which the behavior is verified together with the system model.
Thus, common properties such as the correctness of a schedule may
be affirmed by proving the boundedness of the required memory and
the absence of artificial deadlocks as described above. The verifica-
tion procedure for FunState models has been implemented, and its
efficiency in comparison to other state set representations has been
shown using several examples [33].

8.2 Representing Schedules

First, we describe the use of FunState as a representation model for
several classes of scheduling policies. Afterwards, a methodology is
sketched how to symbolically determine a partially static schedule
of a FunState model.

In a hierarchical approach to solve complex scheduling problems
it is necessary that the result of partially scheduling components can
be represented in the same model. With this information, further
scheduling steps can be performed. This stepwise refinement cor-
responds to the stepwise reduction of the non-determinism in the
model. Due to the lack of space, we have to concentrate on one
scheduling example. Further mechanisms which may be represented
by FunState models are shown in [35].

8.2.1 Static Scheduling

As a first example we consider a purely static periodic schedule of
the synchronous dataflow graph shown on the left-hand side of Fig. 8
for a uni-processor system. Methods to construct such a schedule are
well-known and will not be repeated here.

The chosen schedule executes the functions f1, f2, and f3 iter-
atively in the following order: (f2; f3; f1; f2; f3; f3). In comparison
with Fig. 1, only the state machine of the component C must be
changed in order to represent the schedule. Fig. 14 shows two dif-
ferent possibilities, both reflecting the periodic schedule described
above. The second possibility takes into account that the sub-
sequence (f2; f3) occurs twice in the schedule and uses the AND

composition facility of parallel state machines.

/f2 /f3

/f1/f3 /f2
/f3

C

u/s
/f1

C

/f2
/f3,uu/t

s

t

/f3

Figure 14: Two possibilities for static periodic scheduling.

8.3 Symbolic Scheduling

In addition to formal verification as described above, symbolic meth-
ods may be used not only to analyze but even to develop scheduling
policies for FunState models. A symbolic scheduling method for
heterogeneous embedded systems represented by FunState models
has been introduced in [34]. Symbolic scheduling methods often
outperform both ILP and heuristic methods while yielding exact re-
sults.

To overcome drawbacks of either purely static or dynamic
scheduling approaches and to combine their advantages, Lee pro-
posed a technique called quasi-static scheduling [21]. Similarly to
static scheduling, most of the scheduling decisions are made dur-
ing the design process, providing only few run-time overhead and
partial predictability. Only data-dependent choices—depending on
the value of the data or resulting from a reactive, control-oriented
behavior—have to be postponed until run time. Techniques related
to quasi-static scheduling have been developed using, e.g., con-
straint graphs [20, 8], dynamic dataflow graphs [5], actors with data-
dependent execution times [15], free-choice Petri nets [32], and Fun-
State models [34].

8.3.1 Conict-Dependent Scheduling

Problems which are typical for the design of complex embedded
systems are, e.g., different kinds of non-determinism such as par-
tially unknown specification (to be resolved at design time), data-
dependent control flow (to be resolved at run time), or unknown
scheduling policy (to be resolved at compile time), and dependencies
between design decisions for different system components. These
properties necessitate new scheduling approaches as the number of
execution paths to be considered grows exponentially with increas-
ing degrees of non-determinism. Moreover, the complexity of the
models of computation and communication greatly increases the
danger of system deadlocks or queue overflows, see, e.g., [22].

The new scheduling method named conflict-dependent schedul-
ing [34] is able to deal with mixed data/control flow specifications
and takes into account different mechanisms of non-determinism as
occurring in the design of embedded systems. It guarantees to find
a deadlock-free and bounded schedule if one exists. The generated
schedule consists of statically scheduled blocks which are dynami-
cally called at run time.

Applying conflict-dependent scheduling to a FunState model
may be regarded as an example of a refinement step using FunState
as an internal design representation. The specification as well as the
result of the scheduling procedure are represented as FunState mod-
els. The scheduling method proceeds as follows. (1) The basis is
a FunState model which specifies all possible schedules by means
of non-determinate transition behavior—representing all design al-
ternatives. (2) By symbolic exploration of the resulting regular state
machine, the state space is traversed to search for cycles represent-
ing valid schedules. This is motivated by the fact that after having
traversed a cycle in the dynamic state transition diagram, an already
visited state is reached for which the scheduling behavior is known.
(3) The extracted schedule is transformed into a finite state ma-
chine which then is compacted using state minimization techniques.

(4) Finally, the result is embedded in the original FunState model
by replacing the schedule specification part. Furthermore, it may be
transformed into program code.

8.3.2 Molecular Dynamics Simulation Example

The scheduling methodology is explained with the following exam-
ple. The introduced approach has been applied to perform conflict-
dependent scheduling for a molecular dynamics simulation system
[34]. As shown in Fig. 15, the simplified fundamental algorithm
has been mapped onto a host workstation (Host) linked to a special
purpose hardware accelerator serving as a coprocessor (CoPro).

DF

AC

PP

100

AF S

I

AR

C CG D
SV V FV

SU

P

44

30
306

6

66

20
20

3 3 15

20

PL

U

F

100
100

100

20

15

Host CoPro

/C

l
1

l
2

l
3

l
4

l
1

l
2

l
3

l
4

Figure 15: Molecular dynamics model with schedule specification.

The simulation mainly consists of repeated computations in the
feedback loop distributed among both processors where atom forces
(AF) are computed (F), added up (S), and integrated (I) to calculate
new atom coordinates (AC, AR). After a variable number of itera-
tions, the central coordinates of slowly moving sub-molecules called
charge groups (CG) are updated (C). Then, a new list of neighbors
called pair list (PL) is computed (D, V , P, U). The state machine of
component Host describes a specification of possible schedules for
Host (item 1 of the above methodology description).

The moment when to start the pair list computation is unknown
until run time. This fact represents a conflict which is modeled us-
ing a light-shaded conflict state. Conflicts can be resolved only at
run time, hence, no design decision is possible. Conflicts occur, for
instance, when decisions depending on the value of data or environ-
mental circumstances have to be taken. In contrast to this, all tran-
sitions starting in a dark-shaded state represent design alternatives
which may be chosen during schedule development. White states in
the FunState model are states which either have only one outgoing
transition or of which all transitions have disjoint predicates. Thus,
the transition behavior of these states is determinate. Note that in
component CoPro the state with two outgoing transitions is deter-
minate for this reason.

Intuitively, the symbolic techniques for conflict-dependent
scheduling as proposed in [34] replace dark-shaded states by white
states—taking decisions and thus removing design alternatives
(item 2). The result is the schedule controller automaton shown in
Fig. 16 (item 3) which may replace the automaton of component
Host of Fig. 15 for analysis or synthesis purposes (item 4). It con-
sists of two static cycles and a conflict state switching between them.
The schedule is respecting the specification of CoPro. Note that
even the schedule of CoPro is not static as it depends on the content
of queue PP. For implementational efficiency, the original compari-
son DF# � 15 has been automatically replaced by the non-zero test
DF# > 0.

The controller automaton can easily be transformed into program
code as shown in Table 1 as pseudo code. The predicate p identifies
the run-time decision associated to the conflict node.

Host ...

Figure 16: Resulting controller automaton.
a: if p then

C; D; V; P;
I;
while DF# = 0 nop;
S;
goto a;

Table 1: Controller program code.

9 Summary and Conclusion

As has been explained in this paper, the FunState model enables the
internal representation of complex system behavior. To cope with
the design complexity, a hierarchical step-by-step approach is ad-
vertised and supported by the FunState model. The approach can
be interpreted as a stepwise reduction of the non-determinism in a
system specification.

In the present paper, only the basic untimed semantics of Fun-
State is described. Extensions towards timed functions, the repre-
sentation of timing constraints and timing properties can be found in
[35].

References

[1] W. Backes, U. Schwiegelshohn, and L. Thiele. Analysis of free schedule in peri-
odic graphs. In 4th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 333–342, San Diego, CA, USA, June 1992.

[2] F. Balarin, A. Jurecska, and H. Hsieh et al. Hardware-Software Co-Design of
Embedded Systems: The Polis Approach. Kluwer Academic Press, Boston, 1997.

[3] G. Bilsen, P. Wauters, M. Engels, R. Lauwereins, and J. Peperstraete. Develop-
ment of a static load balancing tool. In Proc. of the fourth Workshop on Parallel
and Distr. Processing, pages 179–194, Sofia, Bulgaria, 1993.

[4] W. Boßung, S. A. Huss, and S. Klaus. High-level embedded system specifications
based on process activation conditions. Accepted for publication in the Journal
of VLSI Signal Processing, Special Issue on System Design, Kluwer Academic
Publishers, 1999.

[5] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the
Token Flow Model. Technical Report UCB/ERL 93/69, Ph.D dissertation, Dept.
of EECS, UC Berkeley, Berkeley, CA 94720, U.S.A., 1993.

[6] W.-T. Chang, A. Kalavade, and E. A. Lee. Effective heterogeneous design and co-
simulation. In G. De Micheli and M. Sami (eds.), Proc. of the NATO/ASI Workshop
on Hardware/Software Co-design, pages 187–212, Tremezzo, Italy, 1995. Kluwer
Academic Publihers, 1995.

[7] F. Commoner and A.W. Holt. Marked directed graphs. Journal of Computer and
System Sciences, 5:511–523, 1971.

[8] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software synthesis for real-
time information processing systems. In P. Marwedel and G. Goossens, editors,
Code Generation for Embedded Processors, pages 260–279. Kluwer Academic
Publishers, 1995.

[9] G. De Micheli, D. Ku, F. Mailhot, and T. Truong. The olympus synthesis system.
In IEEE Design and Test of Computers, 1990.

[10] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of conditional
process graphs for the synthesis of embedded systems. In Proceedings of the
Design, Automation and Test in Europe Conference (DATE98), pages 132–138,
1998.

[11] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete. Cyclo-Static Data Flow:
Model and implementation. In Proc. 28th Asilomar Conf. on Signals, Systems, and
Computers, pages 503–507, Pacific Grove, CA, 1994.

[12] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for microcon-
trollers. IEEE Design & Test of Computers, pages 64–75, December 1993.

[13] A. Girault, B. Lee, and E. A. Lee. A preliminary study of hierarchical finite
state machines with multiple concurrency models. Technical Report UCB/ERL
M97/57, Electronics Research Laboratory, College of Engineering, Univ. of Cal.
at Berkeley, 1997.

[14] T. Grötker, R. Schoenen, and H. Meyr. Pcc: A modeling technique for mixed
control/data flow systems. In Proc. of the European Design and Test Conference
(ED&TC 97), 1997.

[15] S. Ha and E.A. Lee. Compile-time scheduling of dynamic constructs in dataflow
program graphs. IEEE Transactions on Computers, 46(7):768–778, July 1997.

[16] D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8, 1987.

[17] D. Harel and A. Naamad. The STATEMATE semantics of Statecharts. ACM
Trans. Soft. Eng. Method, 5(4), October 1996.

[18] K. Jensen. Colored Petri Nets: A high level language for system design and analy-
sis. In Advances in Petri Nets 1990, G. Rozenberg (ed), Lecture Notes in Computer
Science, Springer, LNCS 483, 1990.

[19] S. R. Kosaraju and G. F. Sullivan. Detecting cycles in dynamic graphs in polyno-
mial time (preliminary version). In 20th Annual ACM Symposium on Theory of
Computing, pages 398–406, 1988.

[20] D. C. Ku and G. De Micheli. Relative scheduling under timing constraints: algo-
rithms for high-level synthesis of digital circuits. IEEE Transactions on Computer-
Aided Design, 11(6):696–718, June 1992.

[21] E. A. Lee. Recurrences, iteration, and conditionals in statically scheduled block
diagram languages. In R. W. Brodersen and H. S. Moscovitz, editors, VLSI Signal
Processing III, pages 330–340. IEEE Press, New York, 1988.

[22] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–799, 1995.

[23] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on CAD, 17(12):1217–1229, 1998.

[24] E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on Computers, C-
36(1):24–35, 1987.

[25] E.A. Lee and D.G. Messerschmitt. Synchronous dataflow. Proceedings of the
IEEE, 75(9):1235–1245, 1987.

[26] F. Maraninchi. Argonaute: graphical description, semantics, and verification of
reactive systems by using a process algebra. In Proc. Int. Workshop on Automatic
Verification Methods for Finite State Systems, Lecture Notes in Computer Science,
Springer, LNCS 407, 1989.

[27] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[28] J. Orlin. Some problems in dynamic and periodic graphs. In W.R. Pulleyblank,
editor, Progress in Combinatorial Optimization, pages 215–225. Academic Press,
Orlando, Florida, 1984.

[29] M. Pankert, O. Mauss, S.Ritz, and H. Meyr. Dynamic data flow and control flow
in high level dsp code synthesis. In Proc. 1994 IEEE Int. Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 449–452, April 1994.

[30] K. Richter, D. Ziegenbein, R. Ernst, J. Teich, and L. Thiele. Representation of
function variants for embedded system optimization and synthesis. In Proceedings
of the 36th Design Automation Conference (DAC ’99), New Orleans, June 1999.

[31] R. Saracco, J. R. W. Smith, and R. Reed. Telecommunications systems engineering
using SDL. North-Holland, Elsevier, Amsterdam, 1989.

[32] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Quasi-static
scheduling of embedded software using free-choice Petri nets. In Proceedings of
the Workshop on Hardware Design and Petri Nets (HPWN ’98), 1998.

[33] K. Strehl and L. Thiele. Symbolic model checking of process networks using
interval diagram techniques. In Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD-98), pages 686–692, San Jose, Cali-
fornia, November 8–12, 1998.

[34] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich. Scheduling hard-
ware/software systems using symbolic techniques. In Proceedings of the 7th In-
ternational Workshop on Hardware/Software Codesign (CODES’99), Rome, Italy,
May 1999.

[35] L. Thiele, J., M. Naedele, K. Strehl, and D. Ziegenbein. FunState—functions
driven by state machines. Technical Report TIK-33, Computer Engineering and
Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Glori-
astrasse 35, CH-8092 Zurich, January 1998.

[36] F. Vahid, S. Narayan, and D.D. Gajski. SpecCharts: a VHDL frontend for embed-
ded systems. IEEE Transactions on CAD for Integrated Systems, 14(6):694–706,
1995.

[37] M. von der Beeck. A comparison of statecharts variants. In Proc. Formal Tech-
niques in Real Time and Fault Tolerant Systems, pages 128–148, Lecture Notes in
Computer Science, Springer, LNCS 863, 1994.

[38] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Combining mul-
tiple models of computation for scheduling and allocation. In Proceedings of
the 6th International Workshop on Hardware/Software Codesign (Codes/CASHE
’98), pages 9–13, Seattle, Washington, March 1998.

[39] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele. Representation of pro-
cess mode correlation for scheduling. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD-98), San Jose, California,
November 8–12, 1998.

	Main
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index

