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Abstract

This paper presents a complete method for automati-
cally translating VHDL-AMS behavioral-specifications of
analog systems into op amp level net-lists of library com-
ponents. We discuss the three fundamental aspects, that
pertain to any behavioral synthesis environment: the spec-
ification language, the rules for compiling language con-
structs into a technology-independent, intermediate repre-
sentation, and the synthesis (mapping) of representations to
net-lists (topologies) of library components, so that perfor-
mance constraints are satisfied. We motivate the effective-
ness of the method by presenting our synthesis results for 5
examples.

1. Introduction

Any automated synthesis tool addresses two distinct, but
related, facets of a design: functionality (behavior) and per-
formance constraints. Recent research on circuit synthe-
sis [13] [19] [10] exclusively concentrates on using per-
formance attributes for guiding the synthesis task. They
assume a known circuit-topology, and search for the transis-
tor dimensions, that optimize performance attributes. This
approach is reasonable because usually circuit functionality
is overwhelmingly simple, as it corresponds to the com-
plexity of a single operation, i.e. addition, integration, etc.
As opposed to circuit synthesis, behavioral system-synthesis
also considers functionality, while optimizing performance
criteria [5]. System functionality is described with a spec-
ification language as equation sets, transfer functions, or
algorithmic representations. For conducting the traditional
synthesis activities, a behavioral specification must be first
translated into a structural net-list of analog circuits. This
step is not a trivial task, as it is not a one-to-one mapping of
the specification constructs onto circuit net-lists.
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Figure 1. Design flow of the VASE synthesis
environment

This paper proposes a method for translating behavioral,
system-level specifications with VHDL-AMS (Very High
Speed Integrated Circuits Description Language for Ana-
log Mixed Systems) [1] into a structural net-list of compo-
nents, that is used for the subsequent synthesis steps. We
focus on the three fundamental problems, that are specific
to any behavioral synthesis environment: the specification
language, the translation of language constructs into their
intermediate representations, and the mapping of representa-
tions onto structural net-lists of electronic components. Our
synthesis-oriented VHDL-AMS subset is minimal,however,
it includes all language constructs, so that the description
power of VHDL-AMS is preserved. Besides, for synthe-
sizing more effective hardware structures, we indicate some
meaningful language restrictions/annotations. We suggest
translation (compiling) rules for all VHDL-AMS constructs
present in the subset. They convert a specification into a set
of interconnected signal-flow graphs, and a control part for
configuring the flow of signals through the net. Finally, we
discuss our mapping algorithm, that synthesizes the signal-
flow representation to an op amp level net-list of library
circuits [7]. We designed a branch-and-bound [9] based
mapping algorithm, that looks for the net-list, that satis-
fies all imposed performance constraints, and minimizes the



overall ASIC area. The algorithm uses Analog Performance
Estimation Tools [17] [4] for ranking the visited solutions
with respect to their performance attributes. As our experi-
ence showed, having a technology-independent (compiling)
and a technology-dependent (mapping) step exposes the en-
tire design to more optimization opportunities.

Figure 1 outlines the overall design-flow of the VASE
(VHDL-AMS Synthesis Environment) behavioral synthe-
sis tool. The design aspects addressed by this paper, are
depicted as shadowed boxes. VASE accepts VHDL-AMS
input specifications, that are first compiled into a structural
signal-flow representation. The representation is used for
exploring alternative implementation solutions by perform-
ing three tasks: synthesis of architecture maps the represen-
tation into a structure of components at the op amp level,
component selection picks from a component library [7] real
circuit topologies for the op amps, and finally, transistor siz-
ing decides the physical dimensions for all transistors of
a design. The three synthesis tasks are guided by Analog
Performance Estimation Tools [17] [4], that compute ap-
proximate values for performance measures of a system. By
combining our existing performance-estimation tools with
the design-space exploration algorithms discussed in this
paper, a complete environment for automated, behavioral-
synthesis of systems was obtained.

The organization of the paper is as follows. Section 2
provides some related work on analog synthesis. Next, we
discuss our VHDL-AMS subset for synthesis, and Section
4 describes the translation of the main subset constructs
into their signal-flow representations. Section 5 presents the
algorithm for architectural synthesis. Section 6 shows the
effectiveness of our behavioral synthesis flow for some real-
life examples. Finally, we provide our concluding remarks.

2. Related Work

Most of the recent analog-circuit synthesis tools are based
on optimization methodologies [15]. They assume a known
circuit-topology, and search for the physical design param-
eters (transistor dimensions), that optimize the performance
attributes. These tools start by building the circuit per-
formance model, that relates performance attributes to de-
sign parameters. Various methods are suggested for this
task. Simplified symbolic equations are calculated for per-
formance parameters in [13]. [10] includes, as terms, the
Kirchhoff’s laws into the cost function for the optimization
algorithm, and [16] relies on the square-law equations of the
CMOS op amps. Next, the performance model is used by an
optimization algorithm, i.e. simulated annealing, geometric
programming, etc., to find values for the physical design pa-
rameters. Finally, the quality of a solution point is evaluated
through different simulation methods, i.e. symbolic simu-
lation [13], general-purpose simulators (i.e.SPICE) [19], or
approximate simulation [10].

As opposed to circuit synthesis, behavioral system-
synthesis also considers functionality as a design dimension
for the synthesis task. [5] translates system-level specifica-
tions into input representations for the ARCHGEN synthesis
tool. However, their method targets only filters, described
using a specialized C++ library. In [6], mixed-signal sys-
tems are represented with a limited subset of VHDL-AMS.
Specifications are mapped to KIR, their representation for
synthesis. Nevertheless, the authors do not address the issue
of translating VHDL-AMS programs into KIR-graphs.

In this paper, we present a well-defined VHDL-AMS
subset for specification of analog systems. Besides, we
introduce a two-step methodology for converting such spec-
ifications into a net-list of hardware components. First,
a compiler translates a specification into a technology-
independent structural representation. Then, the represen-
tation is mapped onto a net-list of components at the level
of op amps. Having the two translation steps increases the
effectiveness of the synthesized structure, as now, the design
is exposed to more optimization opportunities.

3. VASS: a VHDL-AMS Subset for Behavioral
Synthesis of Analog Systems

Based on our experience with a large set of real-life ex-
amples [3], we suggest that an analog system can be modeled
behaviorally as two interacting sub-components: one with
continuous-time functionality, and the second with event-
driven behavior. The first performs continuous-time pro-
cessing of analog input signals. It can have multiple modes
of behavior, that are described as sets of differential and al-
gebraic equations (DAE), transfer functions or algorithmic
descriptions. Depending on specific functioning conditions
(events), the event-driven part generates control signals for
selecting among the distinct modes of continuous-time func-
tioning. Events originate in the continuous-time part, or the
external environment. The main advantage for synthesis is
that this model differentiates the essentially distinct parts
of a system (with respect to their functionality and perfor-
mance characteristics), that go through distinct design steps,
in our synthesis environment. At this point, its worthwhile
to stress that, in the context of our work, by event-driven
part we also mean analog sub-components having this kind
of functionality. The behavior of analog circuits [12] i.e.
voltage comparators, zero-cross detectors, Schmitt triggers,
is a typical event-driven one. Although ultimately, an event-
driven behavior can also be expressed in continuous-time,
we prefer the first style, as it reduces simulation time and
simplifies synthesis.

The rest of this section describes VASS, which is an ab-
breviation for VHDL-AMS Subset for Synthesis. When
defining the subset, we targeted two distinct objectives: de-
scription power and synthesizability. First, the subset must
include all required language constructs for expressing the



ELSE

END USE;
rvar == r1c + r2c;

rvar == r1c;
(2) IF (c1=’1’) USE

BEGIN
PROCESS (line’ABOVE(Vth)) IS

END PROCESS;
END IF;

IF (line’ABOVE(Vth) = TRUE)

c1 <= ’1’;

c1 <= ’0’;
ELSE

THEN

END ARCHITECTURE;

PORT (
QUANTITY line: IN real; -- IS voltage
QUANTITY local: IN real; -- IS voltage
QUANTITY earph: OUT real;

-- IS voltage
-- limited
-- drives 270 O at 285 mV peak

END ENTITY;

SIGNAL c1: bit;
QUANTITY rvar: real;

ARCHITECTURE behavioral OF telephone IS

BEGIN

ENTITY telephone IS

)

(1) earph == (Aline * line + Alocal * local) * rvar;

Figure 2. Behavioral specification of the re-
ceiver module

functional aspects of an analog system. According to our
behavioral model, VASS can describe continuous-time and
event-driven behavior, and their interactions. Second, all
constructs in VASS should be realizable in hardware. Be-
cause it is oriented towards simulation, VHDL-AMS must
be partially "adjusted", so that it can be effectively syn-
thesized. The adaption involves both restricting some of
the language constructs, and augmenting the language with
missing synthesis-oriented constructs. A for-loop inside a
procedural statement [1] exemplifies the need for restric-
tions. Its semantics is defined in terms of a discrete counter,
but which is difficult to be realized in a continuous signal-
flow structure. Instead, we impose that the number of it-
erations is statically known for each for-loop, so that its
body can be unrolled. Second, it is common, that a system
terminal must have a low output impedance because of its
external connections. This requirement can be achieved by
synthesizing a specific output stage, that can not be inferred,
unless it is accordingly indicated in the specification (i.e.
through annotations).

The overall structure of a VASS program consists of entity
declarations, architecture bodies, package declarations, and
package bodies, with the following remarks:
� VASS accepts signal 1 , quantity, and terminal ports.

Terminal ports describe the structural interconnection
of a system with its external environment. Still, we
impose that, for each terminal port, only one of its
through (current) or across (voltage) quantities is used
in a specification. This accommodates the rest of a
behavioral description, in which only one of the facets
(current/voltage) of an analog signal is utilized.

� Quantities define signals with a continuous-time behav-
ior, and signals those with an event-driven behavior.
VASS admits only quantities of nature type (floating-
point or a composite type with elements of nature type),
as they naturally represent analog signals. Signals are
of nature or bit-vector types.

� Continuous-time behavior can be implicitly formulated
by describing DAEs as simple simultaneous and simul-
taneous if/case statements.

1To distinguish VHDL-AMS signals from physical signals, we will
indicate the first in italics.

� Procedural statements explicitly describe continuous-
time behavior as a sequence of assignments, branches,
loops, and function calls. The simulation semantics
of while-loops can be preserved after synthesis, only
if constraints are defined, so that the loop denotes a
sampling functionality. We impose that signals referred
inside a while-loop are constant while the loop body
executes, and it is sufficient if signals assigned inside
the loop are produced at time intervals equal to the loop
delay. Constraints are required as the simulation cycle
assumes that a loop is always executed in zero time
steps, while in reality, a non-zero delay can occur.

� VASS includes process statements for specifying event-
driven behavior. However, the peculiarities of our
design problem can be exploited for restricting pro-
cess definitions, so that they result in more effec-
tive structural descriptions. Synchronization and inter-
process communications are common for discrete-time
systems, but can hardly be accommodated with a
continuous-time behavior. Thus, it is realistic to con-
sider a simplified model of process interactions, so that
the simulation cycle has not to be explicitly imple-
mented in hardware. We assume that processes re-
act to events, and after resuming, they execute their
entire body (calculate control signals), and then sus-
pend. Process definitions do not include wait state-
ments. Events originate either in the continuous-time
part (events on signal ’above’), or the external environ-
ment (events on ports).

We successfully specified in VASS a set of 11 real-life ex-
amples [3]. Figure 2 depicts a simplified version of our spec-
ification for the receiver module of a telephone set [14]. The
main functionality of the receiver is to provide an audible
signal to the earphone of the telephone set. It amplifies, with
different gains, incoming signals transmitted from the call-
ing part, and those produced locally by its own microphone
amplifier and transmitter module. Besides, it automatically
compensates losses introduced by different telephone line
lengths. The output has a signal limiting capability, and is
capable of driving a 270 Ω load at 285 mV peak ampli-
tude. The VASS specification of this example is depicted
in Figure 2. The output voltage earph is a weighted sum
of the input voltages line and local. The resultant value is
multiplied with a variable value rvar, that models the vari-
able compensation resistance. The compensation algorithm
is represented by a process statement, which, depending
on the comparison between quantity line and a threshold
voltage Vth, selects the corresponding compensation value.

As opposed to VHDL-AMS, our subset includes a declar-
ative mechanism for describing properties of quantities and
ports. Such a mechanism is required for synthesis, as the
behavior is strongly heterogeneous with respect to signal
types and characteristics. In Figure 2 all port quantities are
annotated to indicate their kind (voltage), and output earph



is also augmented with information about its limiting and
driving characteristics. Besides, a declarative description
style can be complementary to traditional description meth-
ods. Typically, the behavior of filters is expressed as transfer
functions [12]. Nevertheless, if the transfer function is pro-
vided, then also the filter type, and its structure are decided.
Instead, we could describe signal properties along the signal
path, i.e. frequency ranges, and let the synthesis tool infer
an appropriate filter type. Currently, VASS accepts annota-
tions, that describe signal properties such as kind (voltage,
current), value and frequency ranges, and impedances at
terminal ports.

We have implemented a compiler, that translates a speci-
fication in VASS, into a structural signal-flow representation
for the continuous-time part, and a Finite State Machine
(FSM) for the event-driven part. The translation rules em-
bedded in our compiler are discussed next.

4. Compiling VASS specifications for synthesis

VHIF (VASE Hierarchical Intermediate Format) [2] is a
representation for structural description of analog systems.
It can express both continuous-time and event-driven be-
havior, and their interactions. Besides, at the time we de-
signed VHIF, we assured that all blocks in the representation
are implementable with electronic circuits from a library
[7]. Continuous-time behavior is denoted as signal-flow
graphs, that include exact knowledge about flows and pro-
cessing (operations) of signals. Event-driven behavior (in-
cluding event-driven analog functionality) is traditionally
represented by a Finite State Machine (FSM). Each state
denotes a set of concurrent operations, and states are in-
terconnected through arcs for showing the execution flow.
Also, arcs can be controlled by conditions (i.e. the arc be-
tween state 3 and 4), so that conditional behavior is achieved.
Operations pertaining to a state are described as a data-path
structure. Figure 3a depicts an example in VASS, and Figure
3b presents its corresponding VHIF representation. Because
it explicitly captures the flow of signals among operational
blocks, we use VHIF as the internal representation for our
synthesis environment. The remaining part of this section
discusses the main translation rules for converting VASS
programs into VHIF.

Except for cases where input and output signals are ex-
plicitly known or can be inferred, simple simultaneous state-
ments can not be mapped into a unique signal-flow structure.
Each structure represents a distinct "solver" for the DAE set.
Our synthesis tool considers all VHIF topologies that "solve"
a DAE set, while searching for the best implementation.

Procedural statements are translated into a pure func-
tional block. The block computes analog outputs depending
on its input signals (analog or digital), and without relying
on any state (memory) information. This interpretation ac-
commodates the rule that no information is saved between
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(1)    d := expression;

END PROCEDURAL;
(3)    a := c + b’integ;
(2)    c := d * b;

QUANTITY a, b, c: real;
PROCEDURAL IS

BEGIN
VARIABLE d: real;

(4) m := u AND v;

END PROCESS;
END IF;

u <= m;
AND a’ABOVE(th1) = TRUE) THEN

IF (a’ABOVE(th1)’event 
(6) v <= n;
(5) n  := NOT u;

SIGNAL u, v: bit;
PROCESS (a’ABOVE(th1), b’ABOVE(th2)) IS

VARIABLE m, n: bit;
BEGIN

Figure 3. Structural representation of a systems

consecutive invoices of a procedural [1]. The two most
interesting language aspects pertaining to procedurals cor-
respond to instruction sequencing, and while-loops.

A designer describes the computational flow of a system
by indicating the sequence (order) in which instructions are
performed. In a signal-flow representation (thus, without
any memory cells), this order is preserved, if and only if
the output of the structural block for an instruction is an
input of the block for a following instruction. Moreover, the
block interconnection for an instruction sequence is inferred
from the manner in which variables/quantities are assigned
and referred (their data dependencies): the output of the
block for a variable/quantity assignment is connected as
input to the block for an instruction, that refers the same
variable/quantity. The correct ordering of instruction 1 and
instruction 2, in Figure 3a, is achieved by interconnecting
their blocks as in Figure 3b.

While-loops are correctly translated into VHIF, if the con-
straints, presented in Section 3, for input and output signals
are satisfied. These constraints allow to compile a while-
loop into a block structure, that has a sampling functionality.
Compiling a while statement is also difficult, because of the
"behavior" of its conditional expression. Before entering
the loop, a conditional uses signal values calculated out-
side the loop, but after the loop is entered, the conditional
refers to values computed by the loop body itself. If the
conditional expression were implemented as a single block-
structure, then its inputs have to be multiplexed. To avoid
the laborious synthesis of multiplexing signals, we decided
to transform a while loop into a semantically equivalent
construction, but having two distinct blocks for evaluating
the conditional. Figure 4a shows the transformed construc-
tion, and its corresponding block-structure is depicted in
Figure 4b. The filled block evaluates the conditional, that



IF (condition) THEN
DO

sequence of statements
WHILE (condition);

END IF;

block for
condit.expr.

icontr

contr
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sw3
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when loop
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block for
condit.expr.
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Figure 4. Translation of a while statement

decides if the while loop is entered or not. If signal icontr
is true, inputs are routed to the block, that implements the
loop body. As long as the conditional is true, signal contr
keeps the switch sw2 open, and the sample-and-hold circuit
[12] S/H1 trails the output of the loop body. The closed
switch sw3 avoids that S/H2 gets erroneous inputs during
the execution of the loop body. If the conditional is false,
switch sw3 opens, and the output of S/H1 is saved by the
sample-and-hold circuit S/H2. S/H2 preserves the outputs
constant, while the loop body executes.

The effectiveness of the synthezised structure for a pro-
cess statement can be increased, if translation rules contem-
plate the following two aspects. First, the structure should
be fast enough to accommodate the continuous-time behav-
ior. Accordingly, we decided to translate a process into a
structure with a high concurrency. Second, memory mod-
ules are expensive hardware resources (area, manufactur-
ing), hence, whenever possible, our method reduces their
use in the structural representation. In general, VHDL-
AMS signals require memory cells for their drivers, apart
from those for their current value. We restrict signals, so
that each is realized as one memory block. We impose that a
signal can not be referenced, after being assigned a value. It
is worth being mentioned, that reducing the number of mem-
ory modules is also harmonious with the simplified model
for process interactions.

We refer to Figure 3 for outlining our translation rules for
process statements. Figure 3a shows the VASS code for a
process, that is resumed by events on signals a’ABOVE(th1)
and b’ABOVE(th2) (thus, it has the two signals in its sen-
sitivity list). Figure 3b depicts the VHIF representation for
the process. It has a start state to indicate the suspended
status of the process. Resuming the process by an event is
denoted by the transition from start to state 1. The tran-
sition is controlled by a logical OR between events on the
two signals in the sensitivity list. As we assumed that only
one event occurs at a time, no special arbitration of events
is required.

VHIF states denote a set of operations that can execute
concurrently. As we want to produce a process structure
with a high concurrency, we group two or more successive
instructions into the same state, if they can run concurrently,
hence, there are no data-dependencies between them. If
the current statement has a data-dependency with one of the
statements of the current state, then a new state is created and
the statement is associated to it. In Figure 3a, assignments
4 and 5 are associated to state 1. Assignment 6 is data-
dependent on assignment 5, due to the variable n, and is
linked to state 2.

The next section presents our algorithm for architecture
synthesis. It automatically maps a VHIF representation into
a net-list of electronic components, so that the ASIC area is
minimized and the rest of the constraints are met.

5. Architecture Generator for Analog Systems

This section presents our algorithm for architecture syn-
thesis. Its goal is to map a set of signal-flow graphs, and the
FSM of the VHIF representation for a system into a net-list of
components, so that all performance constraints are satisfied,
and the total ASIC area is minimized. We discuss only the
algorithm for mapping signal-flow graphs, as this is a more
challenging problem. For analog systems, the FSM has very
often a simple structure, that can be entirely mapped to ana-
log circuits [12], i.e. Schmitt triggers, zero-cross detectors,
sample-and-hold circuits, etc. More complex structures, in-
cluding any extensions for mixed-signal synthesis, can be
obtained using well known digital-synthesis methods [8].

A general algorithm for architecture synthesis finds a so-
lution by exploring a vast solution-space. Hence, the search
can be unpractically long, unless this space is organized and
explored in a hierarchical manner [11] [17]. In the overall
synthesis environment, our work concentrates on the top-
most level of the hierarchy, as it considers systems at the
level of op amps. Besides, having an op amp level explo-
ration step is also beneficial for design-space pruning, as un-
realistically expensive solutions are discarded very early in
the exploration process. Solutions that prove to be attractive
are further analyzed by using our performance estimation
tools at lower levels of abstraction [17] [4].

Our algorithm contemplates different op amp-level map-
pings for a VHIF representation, while trying to minimize
the overall ASIC area. The goal of area minimization is
addressed by analyzing two possibilities of hardware shar-
ing: between blocks in different signal paths, and between
blocks of the same signal-flow path. Blocks in distinct signal
paths can share the same component, if they have identical
inputs, and perform similar operations. Blocks of the same
signal-flow path can share a component, if the component
implements the overall functionality of the blocks. Any op-
timal algorithm must analyze all possible mappings, as the
two sharing options can conflict each other. Although the
problem of architecture synthesis is NP-hard [9], we decided



procedure mapping (signal-flow, cur block, opamp nr) is
3forall sub-graph 2 signal-flow, that have cur block as

output block and are mappable to one library-component;
in decreasing order of the number of blocks in sub-graph do

if sharing is possible and library component for sub-graph
exists in net-list then

make interconnections for sub-graph in net-list;
if signal-flow was completely mapped then
� call analog performance estimation Tools, and

save mapping solution, if it is best so far;
else

signal = select an input signal of sub-graph;
mapping (signal-flow, block 2 signal-flow with output
signal, opamp nr);

end if
end if

2if (opamp nr + nr of opamps in comp) * MinArea <
current best then

allocate circuit for sub-graph, and add it to net-list;
if signal-flow was completely mapped then
� call analog performance estimation tools, and

save mapping solution, if it is best so far;
else

signal = select an input signal of sub-graph;
mapping (signal-flow, block 2 signal-flow with output
signal, opamp nr + nr of opamps in sub-graph);

end if
end if

end for
end procedure

Figure 5. Algorithm for architecture synthesis

to solve it optimally by using a branch-and-boundalgorithm
[9]. VHIF representations for real-life examples tend to be
of small or medium size, so that it is practical to map them
optimally. Besides, an optimal algorithm can be used as a
reference for designing future mapping heuristics.

The pseudo-code of our algorithm for architecture syn-
thesis is depicted in Figure 5. It maps the signal-flow graph
denoted by variable signal-flow into the minimum area net-
list indicated by variable net-list. Variable opamp nr rep-
resents the number of op amps in a partial mapping. As
branch-and-bound is a popular algorithm [9], we show only
the three elements, that are specific to our problem:
� Branching rule: marked with 3 in Figure 5, describes

how distinct mapping solutions are produced for a par-
tial solution-point. It distinguishes all VHIF block-
structures, pointed by variable sub-graph, with cur
block as their output block, and which are directly map-
pable to library components [7]. Besides, the branch-
ing rule contemplates two kinds of transformations, in
a signal-flow graph. Functional transformations re-
place a particular block structure with a distinct, but
semantically equivalent structure, i.e. for improving
bandwidth, an op amp is replaced by a chain of two
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op amps with lower gains [12], or two non-inverting
amplifiers are substituted for/by two inverting ampli-
fiers [12], etc. Transformations pertaining to circuit
interfacing introduce additional circuits, i.e. follower
circuits [12], or various input/output stages [12], etc.,
for diminishing loading/coupling effects among inter-
connected components.

� Bounding rule: marked with 2 in Figure 5, eliminates
a partial solution, if it finds that the minimum area, that
can result, is greater than the area of the best solution
found so far (variable current best). The minimum area
for a partial mapping is estimated using value MinArea,
the minimum area of an op amp (with transistors sized
to the minimum dimensions).

� Sequencing rule: is a heuristic rule, that decides the
order in which branching alternatives are traversed.
A good sequencing rule can dramatically improve the
speed of the overall algorithm, as the bounding rule be-
comes very efficient, if a high-quality solution is found
early. Our sequencing rule approximates the ASIC
area with the number of op amps in the design. Thus,
branching alternatives, that map a higher number of
blocks to one library component, are visited first in the
attempt to find early a mapping with reduced number of
op amps. Besides, the algorithm first analyzes the case,
where blocks in sub-graph share existing components
in the net-list, and then maps sub-graph to its dedicated
hardware component.

The algorithm calls (marked with � in Figure 5) two analog
performance estimation tools [17] [4], that calculate approx-
imate performance attributes (UGF, slew rate, power) and
hardware area by instantiating op amps with precise circuit
topologies, and sizing their transistors.

A signal-flow graph and a fragment of the decision tree
for its mapping are shown in Figure 6a. Each node in the



Application VASS Specification VHIF Representation Synthesis
continuous-time quantities event-driven signals nr.blocks nr.states data-path Results

Receiver 4 4 4 2 6 4 1 2 amplif.,
Module 1 zero-cross det.
Power 8 6 3 3 6 2 2 2 zero-cross det.,
Meter 2 S/H, 2 ADC

Missile 4 9 - - 13 - - 2 integ., 1 anti-log.amplif.
Solver 4 amplif., 1 log.amplif. (reduced)

Iter.Equat. 1 1 4 2 6 2 2 3 integ., 1 S/H
Solver 1 diff. amplif.

Function 2 2 4 3 4 2 1 1 integ., 1 MUX,
Generator 1 Schmitt trigger

Table 1. Behavioral synthesis results for 5 real-life applications

tree corresponds to a partial-solution point (a specific value
for variable cur block), and arcs are annotated by the corre-
sponding mapping decisions. The number of used op amps
are indicated for each complete mapping of the signal-flow
graph. The algorithm uses a library of patterns, that relate
VHIF block-structures to electronic circuits in the compo-
nent library. A block-structure (referred as comp1) and its
corresponding electronic circuit are exemplified in Figure
6b. The example uses similar patterns for a block, denoted
as comp2, that multiplies an input voltage by a constant, and
a block, named as comp3, that adds two input voltages. Its
worth mentioning that for block1 the branching rule intro-
duces an additional block comp2 (depicted as a dashed box),
when finding the mapping with only 2 op amps.

6. Examples

This section presents our experience on applying the be-
havioral synthesis flow, discussed in the paper, for a set of
5 real-life examples. We described in VASS each of the
examples, next, we compiled the specifications into VHIF
representations, and finally, we mapped the representations
to net-lists of components. We observed the correctness of
our compiling rules by checking the produced VHIF repre-
sentations. Two of the net-lists (Receiver Module and Power
Meter) were exposed to selection of circuit topologies and
transistor sizing, the design steps which are next to behav-
ioral synthesis. The produced circuits were simulated, and
their output signals were observed. The remainder of this
section presents the essence of our behavioral synthesis re-
sults, and describes, in more detail, our experiment with the
receiver module.

Our set includes 5 real-life applications for analog-signal
processing. Four of them have a continuous-time part, as
well as an event-driven part. Receiver Module was already
discussed in Section 3. The acquisition part of the Power
Meter [18] samples two input signals from sensors, and con-
verts them into digital data. Iterative Solver and Missile
Solver are two distinct equation solvers [2]. Function Gen-
erator describes a ramp-signal generator [6].

Table 1 presents the main results of the synthesis experi-
ments. All examples were synthesized so that the global area
was minimized. Columns 2 to 5 introduce the characteristics
of the VASS specifications (number of lines for continuous-
time part, number of quantities, number of lines for event-

driven part, number of signals). The next 3 columns outline
the main attributes of the VHIF representations: number
of blocks in the signal-flow graphs, number of states in the
FSMs, and number of elements in the data-paths. The last
column shows the components in the synthesized net-lists.
All examples were correctly compiled and synthesized to
net-lists of electronic components.
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Figure 7. Synthesis of the receiver module

Next, we detail our synthesis experiment for the receiver
module (already described in Section 3). Our compiler trans-
lated the VASS specification in Figure 2 into the signal-flow
graph in Figure 7a. Instruction 1 in the VASS program is
translated into the sequence of blocks 1 and 2, Instruction
2 regulates the value of rvar and is converted into block
3. The process statement is compiled into the structure of
a Finite State Machine. For this example, the mapping was
quite straightforward, and the resulting circuit structure is
depicted in Figure 7b. Corresponding blocks in the VHIF
representation, and in the circuit representation are annotated
with similar names. Although the control part appears to be
quite "sophisticated", its behavior can be realized by a sim-
ple zero-cross detector [12], with a small hysteresis margin,
so that repeated switchings between states are avoided.

Its worthwhile mentioning, that block 4 was inferred
from attributes specified for the terminal port, and not from



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.002 0.004 0.006 0.008 0.01

vo
lta

ge
 (V

)

time

v(11)
v(9)
v(5)

Figure 8. Simulation of the receiver module
VHDL-AMS code. As opposed to the other blocks, block 4
does not process signals, but it adapts the system output to
the loading requirements of the external environment.

For all op amps in the design, we selected 2-stage op-
erational amplifiers, in the MOSIS SCN-2.0um technology.
The resulting design was described in SPICE, and then, sim-
ulated. Simulation plots are presented in Figure 8, and they
show that the design functions correctly. v(11) is input sig-
nal for the op amp of block1, v(5) is its output signal, and
v(9) represents signal earph. We deliberately considered an
input signal with a high amplitude, so that we could observe
the signal limiting capability of the output stage. Signal v(9)
was clipped at 1.5V.

7. Conclusions and Future Work

This paper presents a complete behavioral-synthesis
method for analog systems. The method uses system-
level specifications described with a VHDL-AMS subset
for synthesis. We indicate compiling rules for converting
a VHDL-AMS program into a set of interconnected signal-
flow graphs, and a FSM for their configuring. Finally, with
a branch-and-bound based algorithm, the signal-flow repre-
sentation is mapped to a net-list of library components, so
that ASIC area is minimized and the rest of performance con-
straints are met. Our experiments with 5 real-life examples
motivate that our method can successfully synthesize be-
havioral system-level specifications into structural net-lists
of electronic circuits.

Currently, we pursue the presented work towards two
main objectives. While conducting this research, we learned
that the quality of synthesis can be improved, if meaningful
annotations/restrictions are provided for a specification. On-
going work will explore a more systematic way of describing
synthesis-oriented annotations of VHDL-AMS programs.
Second, we are aware that because of its time-complexity,
the proposed branch-and-bound algorithm might fail for
larger designs. This shortcoming can be partially alleviated
if more effective bounding rules are found. However, ongo-
ing work attempts to replace the branch-and-bound method
by a more time-affective exploration heuristic.
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