
A Methodology for Accurate Performance Evaluation in Architecture Exploration

George Hadjiyiannis
ghi@caa.lcs.mit.edu

Pietro Russo
pietro@caa.lcs.mit.edu

Srinivas Devadas
devadas@caa.lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139, USA

Abstract

We present a system that automatically generates a cycle-accurate
and bit-true Instruction Level Simulator (ILS) and a hardware im-
plementation model given a description of a target processor. An
ILS can be used to obtain a cycle count for a given program run-
ning on the target architecture, while the cycle length, die size, and
power consumption can be obtained from the hardware implemen-
tation model. These figures allow us to accurately and rapidly eval-
uate target architectures within an architecture exploration method-
ology for system-level synthesis.

In an architecture exploration scheme, both the ILS and the hard-
ware model must be generated automatically, else a substantial pro-
gramming and hardware design effort has to be expended in each
design iteration. Our system uses the ISDL machine description lan-
guage to support the automatic generation of the ILS and the hard-
ware synthesis model, as well as other related tools.

1 Introduction

Embedded systems typically require low cost and low power con-
sumption. To reduce manufacturing cost and power consumption,
it is important to match the architecture of the processing engine to
the application at hand. A simple way of designing such a process-
ing engine is architecture exploration by iterative improvement (see
Figure 1). In this approach, the application code is analyzed, and
an initial target architecture is generated and described in a machine
description language. The application code is then compiled for this
target architecture and executed on an Instruction Level Simulator
(ILS) where performance measurements and utilization statistics are
gathered. A hardware model of the target architecture is used to de-
rive the length of the cycle and the physical costs (such as die size
and power consumption). These measurements allow one to eval-
uate the architecture and make improvements. A new architecture
is generated based on these improvements and the process repeated
until no further improvements can be made.

Such a synthesis scheme can only be effective if the design eval-
uation tools (compiler, ILS, hardware model, assembler and disas-
sembler) can be automatically generated from the machine descrip-
tion. Automatic generation of the design evaluation tools allows
rapid evaluation of candidate architectures, increasing the coverage
of the design space while shortening the design time and, thus, the
time-to-market. The machine description language forms the most
important part of the system. Ideally, it should support the auto-

Architecture Synthesis
 System

Retargetable
 Compiler

Retargetable
 Assembler

Machine Description
 (ISDL)

 Evaluation
 Statistics &
Mesurements

BIN ASM

Application
 Code

 Hardware
 Model

ILS

Figure 1: Architecture Exploration by Iterative Improvement

matic generation of all the design tools rather than being optimized
for just one or two. It should also support a wide variety of architec-
tures. We are developing a system such as the one illustrated in Fig-
ure 1 based on the ISDL machine description language[1]. ISDL is
specifically designed to support the automatic generation of all the
tools including a retargetable compiler. It is also designed to cover
as wide a range of architectures as possible, and in particular Very
Long Instruction Word (VLIW) architectures. In this paper we fo-
cus on the methodology which allows us to generate two of the tools
from ISDL: the ILS and the hardware implementation model (cor-
responding to the shaded boxes in Figure 1). The design of the re-
targetable compiler is covered in [2]. The design of the assembler
generator is briefly described in [3].

1.1 Organization of this paper

Section 2 presents a brief overview of the ISDL machine description
language, with emphasis on the features that make simulator gener-
ation and hardware synthesis possible. Section 3 presents the GEN-
SIM simulator generation system. Section 4 presents the methodol-
ogy we use to synthesize hardware from an ISDL description. Sec-
tion 5 presents some previous work in simulator generation and hard-
ware synthesis from machine description languages, and compares
these systems to our own, ISDL-based approach. Section 6 presents
preliminary experimental results using our system.

2 The Instruction Set Description Language (ISDL)

The key component in an architecture exploration system is the ma-
chine description language used to describe the candidate architec-
ture to the retargetable design evaluation tools. Our methodology
uses ISDL[1][3][4], a machine description language that was specif-
ically designed for this task. ISDL is a behavioral language that ex-
plicitly lists the instruction set of the target architecture. It is based

on an attributed grammar in which production rules are used to ab-
stract common patterns in operation definitions. ISDL attempts to
cover a wide range of architectures, and places special emphasis on
Very Long Instruction Word (VLIW) architectures.

2.1 Structure and Syntax of ISDL

ISDL views the processor as a set of state elements (collectively re-
ferred to as the state) and a set of operations that transform the state.
This section provides only a brief description of ISDL. For a com-
plete description of ISDL including some examples refer to [4].

Each ISDL description consists of six sections: format, global
definitions, storage, instruction set, constraints, and optional archi-
tectural information. Below are detailed explanations of the func-
tion of the relevant sections.

2.1.1 Global Definitions Section

The global definitions section defines a set of abstractions that are
used in later sections of the ISDL description. The two main types
of abstractions are tokens and non-terminals:

1. Tokens represent the syntactic elements of the assembly lan-
guage of the architecture. They can also group together syn-
tactically related entities (such as the register names in a reg-
ister file). Tokens are provided with a return value that iden-
tifies the different options.

2. Non-Terminals abstract common patterns in operation defini-
tions (e.g., addressing modes). Each non-terminal definition
consists of the non-terminal name and a list of options. Each
option consists of the same six parts that make up an opera-
tion definition (see section 2.1.3) .

2.1.2 Storage Section

The storage section of a description explicitly lists all visible stor-
age elements in an architecture. These elements collectively make
up the state of the processor. Each storage definition consists of the
storage name, the type, and the size. ISDL recognizes the follow-
ing types: instruction memory, data memory, register file, register,
control register, memory-mapped I/O, program counter, and stack.
Sizes consist of a width in bits and, for addressed types, a depth in
locations. ISDL also allows the definition of aliases. These are al-
ternative names for arbitrary sub-parts of the processor state.

2.1.3 Instruction Set Section

ISDL places special emphasis on VLIW architectures. An instruc-
tion in a VLIW architecture consists of a combination of operations,
one for each functional unit. To model this, the instruction set of an
architecture is described as a list of fields, each of which is a list
of operation definitions. A field roughly corresponds to the set of
operations that can be performed on a single functional unit. Thus,
operations within a field are mutually exclusive and cannot be used
in parallel (since they all map to the same functional unit). To form
a VLIW instruction, operations are selected (one from each field)
and grouped together.

The instruction set section of an ISDL description consists of a
list of fields, each of which consists of a field name and a list of the
operations within that field. An operation definition consists of six
parts:

The only differences between a non-terminal option and an operation is that non-
terminal options do not have names, and non-terminals have a return value associated
with them that behaves like a binary instruction of varying width.

Note that these correspond to the six parts of the definition of a non-terminal option
because non-terminals abstract common patterns in operation definitions.

1. Operation Syntax: The operation name and a list of parame-
ters (token or non-terminal names) separated by commas.

2. Bitfield Assignments: Assignments which set the instruction
word bits to the appropriate values.

3. Operation Action: A set of RTL-type statements that describe
the effect of the operation on the processor state.

4. Operation Side Effects: RTL-type statements that describe the
side-effects of the operation (such as setting a carry bit).

5. Operation Costs: These describe the performance and size
implications of each operation. ISDL pre-defines three costs:

(a) Cycle: the number of cycles the operation takes on
hardware in the absence of stalls.

(b) Stall: the number of additional cycles that may be
necessary during a pipeline stall.

(c) Size: the number of instruction words required for
the operation.

6. Operation Timing: These are a set of assignments that define
the timing of the operation effects. ISDL pre-defines two tim-
ing parameters:

(a) Latency: This describes when the results of the op-
eration become available.

(b) Usage: This describes when the functional unit be-
comes available.

2.1.4 Constraints Section

In ISDL an instruction is formed by grouping together operations,
one from each field. Not all such combinations are valid. The con-
straints section describes the valid combinations by listing a set of
constraints which must all be satisfied by each instruction in order
for the instruction to be considered valid. If a single constraint is
violated then the instruction is invalid.

Constraints allow all operation definitions to be treated as or-
thogonal throughout the description resulting in much more concise
and intuitive descriptions. Constraints can also provide informa-
tion about the underlying implementation of the instruction set, thus
helping to generate efficient hardware.

3 The GENSIM Simulator Generator

In order to be able to evaluate the suitability of a candidate archi-
tecture for a particular application, it is necessary to be able to sim-
ulate the program on the candidate architecture. This makes it pos-
sible to verify performance, determine the utilization of individual
architecture features and functional units, and suggest possible im-
provements to the architecture.

We present a tool called the GENSIM system, that automatically
generates an Instruction Level Simulator given an ISDL description
of a candidate architecture. This simulator (called an XSIM simu-
lator) can then be used to execute a program in order to measure
performance, verify correctness and evaluate the suitability of the
architecture.

3.1 Simulator Features

The XSIM simulators are cycle-accurate and bit-true by construc-
tion. They also provide fast execution times and perform disassem-
bly off-line to improve speed. They provide both a graphical user
interface and a command-line interface with full batch-file support.
They also provide full debugging support (e.g., breakpoints, state

Scheduler

Disassembler

Processing Core

Monitors

State

Examine/Set Run/Step

PC

PC/IM

Attached
Commands

User Interface & File I/O

Common Code Architecture Dependent Code

Figure 2: Internal Structure of the XSIM Simulators

monitors and attached commands). Finally, they can create an exe-
cution address trace which is either written into a file or directly to
a processing program.

These features make it possible to use the XSIM simulators for
detailed evaluation of candidate architectures. At the same time,
they make the simulators easy to use both manually as well as au-
tomatically.

3.2 Simulator Structure

Figure 2 shows the structure of an XSIM simulator. The simu-
lator consists of six parts:

1. User Interface and File I/O: This part implements both the
command line interface as well as the graphical interface. It
also implements the interfaces to the operating system and the
file-system of the underlying platform.

2. Scheduler: The scheduler is responsible for sequencing the
instructions during execution, managing breakpoints, dump-
ing the execution traces to a file or processing program, and
dispatching attached commands back to the user interface for
processing.

3. State Monitors: These provide a set of hooks that can detect
whenever any user-defined portion of the state changes, and
print a diagnostic message to that effect.

4. State: This is a set of data structures that emulate the state of
the target architecture.

5. Disassembler: The program to be simulated must be disas-
sembled in order to determine which operations correspond
to each input instruction. The simulator contains a built-in
disassembler which disassembles the program off-line at load
time.

6. Processing Core: Each operation and ISDL non-terminal op-
tion have an RTL action (and an RTL side-effect) associated
with them. These get translated to a set of routines that emu-
late those actions. The processing core consists of the collec-
tion of these routines.

3.3 Simulator Generation

All of the simulator code is written in C, with the exception of the
graphical user interface which is written in Tcl/Tk. The user inter-
face, state monitors, and scheduler code is common to all architec-

Field 1

op1 a, b

op2

op3 c, a

xx

xxx

111

0

0

1

xxxxxxxxxxx

00 x

xxx

I 0I 1I 2I 3I 4I 5I 6I 7I 8I 9I 10I 11I 12I 13I 14I 15I 16I 17I 18I 19

a’
0a’

1a’
2a’

3a’
4a’

5a’
6a’

7

a’
0a’

1a’
2a’

3a’
4a’

5a’
6a’

7

’
7c ’

6c ’
5c ’

4c ’
3c ’

2c 1
’c ’

0c

’
0b1

’b’
2b’

3b’
4b’

5b’
6b’

7b

Figure 3: Operation Signatures

tures and is implemented as a library. The state data structures, dis-
assembler, and processing core routines are specific to each archi-
tecture and are generated as C source code from the ISDL descrip-
tion. The C source can then be compiled and linked with the com-
mon library to create an executable program for the simulator. This
executable is specific to an architecture but can load different pro-
grams for the same architecture (unlike compiled code simulators).

The following three sections describe how we generate the state,
disassembler and processing core of an XSIM simulator.

3.3.1 State Generation

Generating the state data structures is a simple matter of allocating
sufficient memory for each storage element defined in the ISDL de-
scription, and copying the rest of the information in the definition
(such as the width, depth, and type) to the data structure. All ac-
cesses to state are automatically routed through the monitors code.

3.3.2 Disassembler Generation Algorithm

The ISDL bitfield assignments provide the assembly function. This
is a function that, for a given operation (or non-terminal option) and
a given set of parameters, provides the values of the relevant bits of
the instruction word. In order to generate a disassembler we need to
reverse this function (i.e., given the values of the bits in the instruc-
tion word we must first identify the operation and then provide the
values of the parameters).

To derive the disassembly function from the bitfield assignments
of a description we use the following model (see figure 3):

We associate with each operation in every field a signature. This
is an image of the instruction word with symbols entered into each
bit. The following symbols are used:

“Don’t care” entries (represented by an “x”) imply that the
assembly function for this operation does not set the corre-
sponding word bit.

The constant “0” or “1” implies that the assembly function for
this operation sets the corresponding bit to the given constant.

A parameter symbol (such as “ ”) implies that the assem-
bly function for the operation sets the corresponding bit to a
function of the value of one of the parameters.

Our methodology is based on the following axiom :

Axiom 1 Each parameter symbol in a signature is a function of a
single parameter only.

Given the signature of each operation in a field and the axiom
above we can reverse the assembly function as follows:

We attempt to match the constant part of the signature for each
operation against the current instruction word. The match is guaran-
teed to be unique for a decodeable assembly function . We can then

For brevity, we will not attempt to describe here why this axiom holds. Suffice to
say that is is true for every architecture we have come across.

Note that the number of matches that need to be performed is at most the number
of operations in the instruction field. Therefore the number of matches grows linearly
with respect to the size of the original ISDL description and can never be too large.

Generate signatures for each operation in each field
Generate signatures for each option in each non-terminal

disassemble()
for each in description

disassemble field(,)
end

disassemble field(,)
for each operation in

if signature of matches
for each parameter in

case ()
token: reverse to get token value
non-terminal: reverse to get return value

disassemble ntl(,)
end

return OK
end
return ILLEGAL INSTRUCTION

disassemble ntl(,)
for each option in

if signature of matches
for each parameter in

case ()
token: reverse to get token value
non-terminal : reverse to get return value

disassemble ntl(,)
end

return OK
end
return ILLEGAL INSTRUCTION

Figure 4: Disassembly Algorithm

reverse the encoding of each parameter symbol bit in the instruction
word to obtain the original parameter value. The axiom above guar-
antees that the encoding is reversible. Most of the time the encoding
can be reversed symbolically (i.e., dealing with multiple bits at the
same time). Figure 4 shows this algorithm in pseudo-code.

Note that neither the assembly nor the disassembly function are
complete (valid for all inputs). However, the constraints describe
invalid inputs to the assembly function, while invalid inputs to the
disassembly function are allowed to result in undefined behavior
since they should never occur in a valid program.

3.3.3 Processing Core Generation

The processing core is merely a collection of routines that corre-
spond to the RTL statements in the description. These RTL state-
ments are translated to C functions that carry out the actions de-
scribed in the RTL. These functions are then compiled into the pro-
cessing core as a collection of routines, and get called by the sched-
uler when the instruction gets executed. However, there is a certain
amount of book-keeping that needs to be done in order to guarantee
bit-true, cycle-accurate results. First of all, we must ensure that all
RTL statements read their input values before any RTL statement
writes its results. This is achieved by dividing the cycle into two
distinct phases. During the first phase, all RTL statements read their
values from the state and write their results into temporary storage.
During the second phase, the temporary storage is written back to
state. Furthermore, we must ensure that write-backs to state are de-
layed by the right number of cycles (determined by the Latency
parameter of ISDL). Also, the RTL for side-effects conceptually
takes place after the RTL for actions (while still in the same cycle).
To achieve this we divide the evaluation phase into an action eval-

uation phase and a side-effects evaluation phase. Finally, to ensure
cycle accuracy, we need to take into account the stall cycles. Since
there is no explicit model of a pipeline in ISDL, there is no model
of the pipeline in the simulator either. Instead, stall cycles are com-
puted from the static instruction stream and are added to the normal
cycle count as needed.

4 The HGEN Hardware Synthesis System

In order to fully evaluate an architecture we need to obtain an es-
timate of its physical costs (e.g., silicon area or power consump-
tion). At the same time, while the ILS provides performance mea-
surements in terms of cycles, the length of the cycle is still neces-
sary to obtain an accurate measure of performance. Both the cycle
length and the physical costs can be determined by synthesizing a
hardware model for the architecture. We consider a description of
the architecture in synthesizable Verilog to be a sufficient hardware
model. This description can then be used to map to any kind of un-
derlying technology using modern CAD tools (silicon compilers).

4.1 Hardware Synthesis from ISDL

In our methodology, the architecture synthesis system produces in-
struction sets instead of architectures . The output of the architec-
ture synthesis system is an ISDL description, possibly with some
implementation-specific details (such as timing information) miss-
ing. This ISDL description is used to drive both the ISDL-based eval-
uation tools, and an ISDL-to-hardware compiler (called HGEN). The
output of the HGEN compiler is synthesizable Verilog which can
then be used to create a hardware implementation in any kind of
underlying technology. If any implementation-specific information
was missing from the original ISDL description, the HGEN compiler
will provide it at this time.

The above methodology only uses a single description avoiding
consistency issues. Also, the granularity at which changes can be
made is much finer than methodologies based on parameterized ar-
chitectures, which makes architecture exploration much more effec-
tive. Finally, the design of the instruction set is decoupled from the
design of the hardware implementation providing an additional de-
gree of freedom in finding good solutions. The main disadvantage
of this approach is that it is subject to the resource sharing problem
which is described in section 4.1.1.

We feel that direct synthesis from ISDL has compelling advan-
tages, including the fact that it will benefit more from improvements
in other CAD tools (such as silicon compilers). Also, the resource
sharing problem can be solved using a combinatorial optimization
strategy.

4.1.1 The Resource Sharing Problem

The scope of each ISDL operation definition is independent of the
scope of any other operation definition. This makes it non-trivial to
deduce when hardware resources may be shared by multiple opera-
tions.

Consider amove operation that is implemented using a bus, and
load and store operations that are mutually exclusive with the
move. Additionally, the move operation resides in a different field
than the load and store operations. A naive scheme would gen-
erate additional data-paths to handle the load and store opera-
tions even though it is possible to implement these with the same
bus that implements the move.

Architectures can be thought of as implementations of the instruction set.
Individual changes are made at the level of an RTL operation.

Label each operation in RTL with an integer

for each from to
for each from to

if and not in same operation
if and functionally equivalent

if and in operations in same field
or constraint between and

end
end

Generate maximal cliques for
Generate hardware for maximal cliques

Figure 5: Resource Sharing Algorithm

4.1.2 Identifying Shared Resources

We have formulated a way of solving the resource sharing problem
to allow ISDL-based hardware synthesis to be used efficiently. First
we break up the RTL expressions for all operation definitions into
a number of nodes, each of which can be mapped to a circuit. This
collective set of nodes (let us say nodes in total) is numbered with
unique numbers from 1 to . Then we create an matrix ,
with entries that are or . is if the nodes can be shared (i.e.,
they would never operate at the same time), and if they cannot
(because they have to operate in parallel). To determine the entries
in the matrix we can use the following set of criteria:

1. Nodes in the same RTL statement cannot be shared.

2. Nodes performing different tasks (e.g., a shift and an AND
operation) cannot be shared. Pairs where one node is a sub-
set of another (e.g., an add is a subset of a subtract) can be
shared assuming that the rest of the rules do not prevent it.

3. Nodes belonging to operations in the same field (or to options
in the same non-terminal) will never be active at the same
time so they can be shared.

4. Nodes that belong to operations in different fields will prob-
ably have to operate in parallel so they cannot be shared.

In addition to the above, constraints may be able to determine
even more nodes that cannot operate in parallel (from Rule 4 above),
so more sharing may be available if we take constraints into account.

Once we have the entries in the matrix, we can simply create
maximal cliques of the nodes that can be shared. These maximal
cliques are then synthesized into circuits and the routing and glue
logic is generated to complete the implementation. Figure 5 shows
this algorithm in pseudo-code.

4.1.3 Obtaining Structural Information from ISDL

Although ISDL is a behavioral language and it contains no explicit
structural information, a substantial amount of information about
the structure of the underlying architecture can be extracted from
various parts of the description. In particular, the costs and timing
information exposes the underlying data-path pipelines to the in-
struction set. For example, an operation with a Cycle cost of 1,

A clique is a set of nodes such that for any pair of nodes and in the clique,
. A maximal clique is a clique such that if any node is added to the clique,

the resulting set of nodes is no longer a clique.

a Stall cost of 3, and a Latency of 1 implies a 4-stage data-
path pipeline for the functional unit. Additionally, it implies no by-
pass logic for this particular operation. Similarly, an operation with
a Cycle cost of 1, a Stall cost of 0, and a Latency of 1 implies
a similar pipeline with full bypass logic. Similarly, the constraints
express hardware restrictions and can therefore be used to deduce
the structure of the underlying hardware. Consider the example de-
scribed in 4.1.1. In this example we can connect the memory to the
same bus as the move operation and avoid creating a new set of data
paths for the load and store operations.

4.2 Generating Decode Logic

Note that there is a direct relationship between the disassembler gen-
erated for the GENSIM system and the decode logic to be used in
hardware . They both implement the same function (reversing the
assembly function). We can therefore generate a complete imple-
mentation of the decode logic using the same approach we use to
generate the disassembler for the GENSIM system. The process is
as follows:

For each operation in a field we define a decode line which will
be active if the operation is instantiated in the current instruction.
We can then derive an equation for each decode line by simply ex-
amining the constants in the operation signature. For example, the
equation for the operation op2 in Figure 3 is . This
results in an efficient two-level implementation. Similarly, logic can
be generated from the decode functions that reverse parameter en-
codings. Finally a set of multiplexers and glue logic completes the
decode circuit.

5 Related Work

5.1 Mimola

The MIMOLA[5] design system was created as a high-level design
environment for hardware, based on the MIMOLA hardware descrip-
tion language[6]. The MIMOLA system was designed for develop-
ment and evaluation of implementations at a much lower level than
ISDL. The MIMOLA language is a structural description at a rela-
tively low level, and thus results in unnecessarily long and complex
descriptions, and in slower simulators (similar to simulation models
written in Verilog). On the other hand, the low-level detail makes it
much easier to synthesize hardware from the descriptions.

5.2 nML

The nML machine description language[7] is a high-level machine
description language that can be used to support automatically gen-
erated tools. It was used in the CHESS[8] system for retargetable
code-generation as well as a variety of other tools[9]. nML is very
similar to ISDL except in the way constraints are handled. nML can
only describe valid instructions. Therefore, it must work around in-
valid combinations by using additional rules, resulting in longer and
less intuitive descriptions. It is also unclear how well suited nML
would be for hardware generation, since the constraints provide a
lot of structural information used to generate efficient hardware.

5.3 LISA

The LISA[10] language was developed as a machine description lan-
guage specifically designed to support the automatic generation of
very fast compiled-code simulators, that are cycle-accurate and bit-
true. Given the structural content in a LISA description, hardware
generation should also be possible although we are unaware of any

In fact there is a very strong relation between generating a simulator and a hard-
ware model: the synthesizable Verilog model is itself a simulator.

Model Speed (cycles/sec) Speedup
XSIM (ILS) Simulator 280000 34.4
Synthesizable Verilog 8179 1

Table 1: Simulation Speeds for XSIM vs Hardware Model

Processor Cycle Lines of Die Size Synthesis
(nsec) Verilog (grid cells) time(sec)

SPAM1 32 1042 31443 827
SPAM2 28 405 4465 100

Table 2: Hardware Synthesis Statistics

publications describing such a system. However, LISA is not well
suited for generating code-generators and assemblers. If it was used
in a system such as ours, a separate language would have to be used
for code generation, thus resulting in consistency issues as well as
making it harder to generate, describe, and evaluate architectures.

5.4 HMDES/Playdoh

HMDES[11] is a machine description language that was developed
specifically for the TRIMARAN compiler system. It is based on a
parameterizable architecture called PLAYDOH[12]. PLAYDOH rep-
resents a very general class of architectures which includes features
as complicated as predicated execution and complex instructions.
While PLAYDOH is very general and can encompass a wide variety
of architectures, it is still a parameterized architecture and thus has
a limited scope. Similarly HMDES supports a parameterizable in-
struction set and therefore has a more restrictive scope than ISDL.
Like nML, HMDES does not support constraints which may result in
longer and less intuitive descriptions. Note, however, that HMDES,
like LISA, contains a more extensive timing model than ISDL does.

6 Conclusions and Ongoing Work

The following representative results were obtained using our method-
ology:

6.1 Results

The properties of interest in the case of the ILS simulators are
cycle-accuracy,bit-accuracy, and simulation speed. Cycle-accuracy
and bit-accuracy are guaranteed by construction. Table 1 shows the
simulation speed of the ILS simulator and the Verilog model. The
target architecture is a 4-way floating-point VLIW processor we de-
signed (SPAM1), that can do 4 operations and 3 parallel moves at
the same time. The simulations were run on a Sun Ultra 30/300 run-
ning Solaris 2.6. The Verilog model was simulated using Cadence
Verilog-XL. The speedup factor is independent of the target archi-
tecture since for complex architectures both simulators slow down
by the same factor.

For the HGEN system, the properties of interest are the die size
and the cycle-length (the length of the critical path) of the gener-
ated model. Table 2 shows these numbers for the VLIW architec-
ture above (SPAM1) as well as a simpler 3-way VLIW architecture
with a limited number of operations (SPAM2). The Verilog model
was synthesized using the Synopsys toolkit and the LSI 10K tech-
nology libraries.

6.2 Conclusions and Future Research

The results show that the XSIM simulator is substantially faster than
the corresponding behavioral Verilog simulation. This allows the
use of more realistic simulation runs and provides ample justifica-
tion for generating an additional model. Additional speedups can

be obtained by a move to compiled-code simulators. Furthermore,
the XSIM simulator provides a much more user-friendly interface
in case the tool needs to be used independently from the rest of the
system. This need will arise if a human programmer decides to op-
timize the output of the retargetable compiler by hand.

The results also show that the HGEN system can generate effi-
cient hardware even for large, complex designs. The run-time of the
tool itself is reasonable, and is dominated by the time taken by the
silicon compiler.

Future work includes a compiled-code simulator generator for
GENSIM, and pipeline optimizations for the HGEN system.

References

[1] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An In-
struction Set Description Language for Retargetability. In
Proceedings of the Design Automation Conference,
pages 299–302, June 1997.

[2] S. Hanono and S. Devadas. Instruction Selection, Resource
Allocation, and Scheduling in the AVIV Retargetable Code
Generator. In Proceedings of the Design Automation
Conference, pages 510–515, 1998.

[3] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An In-
struction Set Description Language for Retargetability. Tech-
nical report, Massachusetts Institute of Technology, 1996.
(http://www.ee.princeton.edu/spam/pubs/ISDL-TR.html).

[4] G. I. Hadjiyiannis. ISDL: Instruction Set Description Lan-
guage - Version 1.0. MIT Laboratory for Computer Sci-
ence, July 1998. (http://www.caa.lcs.mit.edu/˜ghi/PostScript/
isdl manual.ps).

[5] P. Marwedel. The MIMOLA Design System: Tools for the
Design of Digital Processors. In Proceedings of the 21th De-
sign Automation Conference, pages 587–593, 1984.

[6] G. Zimmermann. The MIMOLA Design System: A Computer
Aided Digital Processor Design Method. In Proceedingsof the
16th Design Automation Conference, pages 53–58, 1979.

[7] A. Fauth, J. Van Praet, and M. Freericks. Describing In-
struction Sets Using nML (Extended Version). Technical re-
port, Technische Universität Berlin and IMEC, Berlin (Ger-
many)/Leuven (Belgium), 1995.

[8] D. Lanneer et al. CHESS: Retargetable Code Generation for
Embedded DSP Processors. In Code Generation for Embed-
ded Processors. Kluwer Academic Publishers, 1995.

[9] M. A. Hartoog et al. Generation of Software Tools from Pro-
cessor Descriptions for Hardware/Software Codesign. In Pro-
ceedings of the Design Automation Conference, pages
303–306, 1997.

[10] V. Zivojnovic, S. Pees, and H. Meyr. LISA – Machine De-
scription Language and Generic Machine Model for HW/SW
Co-Design. In Proceedings of 1996 IEEE Workshop on VLSI
Signal Processing, 1996.

[11] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau. HMDES Version
2.0 Specification. Technical Report IMPACT-96-3, University
of Illinois, Urbana, 1996.

[12] V. Kathail, M. S. Schlansker, and B. R. Rau. HPL PlayDoh Ar-
chitecture Specification: Version 1.0. Technical Report HPL-
93-80, Hewlett-Packard Laboratories, 1994.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

