
Synthesis of Embedded Software Using Free-Choice Petri Nets

Marco Sgroiy, Luciano Lavagnoz,

Yosinori Watanabez and Alberto Sangiovanni-Vincentelliy

y University of California, Berkeley, CA
z Cadence Design Systems

Abstract

Software synthesis from a concurrent functional specification is a
key problem in the design of embedded systems. A concurrent
specification is well-suited for medium-grained partitioning. How-
ever, in order to be implemented in software, concurrent tasks need
to be scheduled on a shared resource (the processor). The choice
of the scheduling policy mainly depends on the specification of the
system. For pure dataflow specifications, it is possible to apply a
fully static scheduling technique, while for algorithms containing
data-dependent control structures, like the if-then-else or while-do
constructs, the dynamic behaviour of the system cannot be com-
pletely predicted at compile time and some scheduling decisions
are to be made at run-time. For such applications we propose a
Quasi-static scheduling (QSS) algorithm that generates a sched-
ule in which run-time decisions are made only for data-dependent
control structures. We use Free Choice Petri Nets (FCPNs), as un-
derlying model, and define quasi-static schedulability for FCPNs.
The proposed algorithm is complete, in that it can solve QSS for any
FCPN that is quasi-statically schedulable. Finally, we show how
to synthesize from a quasi-static schedule a C code implementation
that consists of a set of concurrent tasks.

1 Introduction

Software development and its integration with the hardware is one
of the main sources of cost in embedded systems design. For
this reason, modern design flows allow the designer to start with
a functional and implementation-independent specification of the
overall system, and map it onto a heterogeneous architecture. Even
in cases when software development is carried out directly in a
high-level language such as C, it is often convenient to initially
decompose the specification into concurrent modules. However, an
implementation on a shared resource, such as a processor, requires
one to solve a scheduling problem in order to sequencethe operation
of the concurrent modules while simultaneously (1) satisfying real-
time constraints and (2) using the processor and memory resources
as efficiently as possible

Embedded systems specifications usually contain both data
computations and control structures. Control structures can be of
two types: (1) data-dependent controls, like if-then-else or while-

do loops, determine the next operation to be executed by testing
the value of some data, and (2) real-time controls, like preemption
and suspension, trigger actions after the occurrence of external or
internal events. For specifications containing only data computa-
tions the schedule can be completely computed at compile time, and
therefore is called static. A static schedule, usually implemented
as a single task, is predictable and can be executed with almost
no run-time overhead. However, when specifications include also
some control, it is not possible to compute the entire schedule at
compile time. If the specification contains only data-dependent
type of control in addition to data computation, the order in which
operations are executed depends on the value of some data, which
is known at run-time. In this case, quasi-static scheduling tech-
niques compute most of the schedule at compile time, leaving at
run-time only the solution of data-dependent decisions. Quasi-static
scheduling should also partition the functionality of the specifica-
tion into tasks, i.e. functional blocks having the same execution
rate. Finding a partition with minimum number of tasks, which is
a problem usually solved by hand by experienced designers, allows
to significantly reduce the run-time overhead and improve perfor-
mances in single processor implementations. Furthermore, if the
specification allows communication via queues of unbounded size
(e.g., in SDL or Dataflow networks), quasi-static scheduling can
bound the maximum size of those queues and ensure correct ex-
ecution on an embedded system with a finite amount of physical
memory. For specifications containing also real-time controls, the
run-time behaviour heavily depends on the occurrence of external
events. In this case, classical Real-Time scheduling techniques can
be used to decide at run-time which tasks should be executed in re-
action to such events. This type of schedule is called dynamic. For
these reasons, an ideal scheduling technique should combine the
best aspects of the scheduling techniques we described above. In
particular it should use: (1) static scheduling to exploit fixed depen-
dencies between blocks of operations, (2) quasi-static scheduling
to identify data-dependentoperations with the same rate and sched-
ule them, (3) dynamic scheduling to determine which tasks, among
those identified at the previous step, should be executed. Static and
quasi-static scheduling generates sequential code and can statically
allocate communication buffers. Hence, it is often called “software
synthesis” in the literature, as opposed to the term “scheduling”,
that is often reserved to dynamic real-time scheduling. An effective
software synthesis technique should: (1) check if the specification
can be scheduled in finite memory, and thus be implemented on
an embedded processor, and (2) allow one to evaluate tradeoffs
between memory size and execution speed of the final implemen-
tation.

Several techniques for software synthesis from a concurrent
functional specification, along the lines discussed above, have been
proposed. Buck and Lee [5] have introduced the Boolean Data

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Flow (BDF) networks model and proposed an algorithm to com-
pute a quasi-static schedule. However, the problem of scheduling
BDF with bounded memory is undecidable, i.e. any algorithm may
fail to find a schedule even if the BDF is schedulable. Hence, the al-
gorithm proposed by Buck can find a solution only in special cases.
Thoen et al. [3] proposed a technique to exploit static information
in the specification and extract from a constraint graph description
of the system statically schedulable clusters of threads. The limit
of this approach is that it does not rely on a formal model and does
not address the problem of checking whether a given specification
is schedulable. Lin [6] proposed an algorithm that generates a soft-
ware program from a concurrent process specification through an
intermediate Petri-Nets representation. This approach is based on
the strong assumption that the Petri Net is safe, i.e. buffers can
store at most one data unit. This on one side guarantees termi-
nation of the algorithm, on the other side it makes impossible to
handle multirate specifications, like FFT computations and down-
sampling. Safeness implies that the model is always schedulable
and therefore also Lin’s method does not address the problem of
verifying schedulability of the specification. Moreover, safeness
excludes the possibility to use Petri Nets where source and sink
transitions model the interaction with the environment. This makes
impossible to specify inputs with independent rate 1.

In this paper we propose a new approach to software synthesis.
Our algorithm takes as input a Petri Nets (PN) model of the system
and produces as output a software implementation consisting of
a set of software tasks that are invoked at run-time by the Real-
Time Operating System (RTOS). Here, we address the problem
of identifying tasks and synthesizing the code for each of them,
while RTOS issues like dynamic scheduling of tasks are out of the
scope of this work. To identify tasks and synthesize the code for
each task we consider only the part of the specification including
data computation and data-dependent control and we compute a
quasi-static schedule.

We have chosen PNs as underlying formal model, because
they allow to express concurrency, non-deterministic choice, syn-
chronization and causality and because most properties, including
schedulability, are decidable for PNs. We represent data compu-
tations using a type of nodes (transitions) and non-FIFO channels
between computation units using another type of nodes (places).
Data-dependent control is modeled by places, called choices, with
multiple output transitions, one for each possible resolution of the
control. Data are modeled as tokens passed by transitions through
places. In particular, we use a sub-class of PNs called Free-Choice
(FCPNs), because they exhibit clear distinction between the notions
of concurrency and choice. Hence they are appropriate to model
computations in which the outcome of a choice depends on the
value rather than on the arrival time of a token.

In this paper we introduce the notion of schedulability for
FCPNs. Informally, a FCPN is quasi-statically schedulable if for
every possible resolution of the control at the choice places, there
exists a cyclic finite sequence that returns the tokens of the net to
their initial places. The existence of cyclic sequences is required
because it ensures that the number of data tokens that accumulate
in any place is bounded even for infinite execution. We present
an algorithm that first checks schedulability of the net to verify the
correctness of the specification. If the net is not schedulable, the
designer is notified that there exists no implementation that can be
executed forever with bounded memory. If the net is schedulable,
the algorithm computes a quasi-static schedule by decomposing
the net into statically schedulable components. Then, it derives a
software implementation by traversing the schedule and replacing
transitions with the corresponding code.

1Two inputs have independent rate if their rates are not rationally related. An
example of inputs with independent rate are the input keys from a keyboard. Instead,
two streams of PCM samples for stereo audio are inputs with dependent rate.

The paper is organized as follows. In Section 2 we shortly
describe the PN model and the notion of cyclic schedules. In
Section 3 we define the QSS problem for FCPNs and present an
algorithm to find a solution, if there exists one. Then, we describe
how to generate a C program in Section 4. Section 5 presents an
application (ATM Server) and experimental results.

2 Preliminaries

Petri Nets A Petri Net is a triple (P;T; F), where P is a non-
empty finite set of places,T a non-empty finite set of transitions and
F : (T � P) [(P � T) ! IN the weighted flow relation between
transitions and places. A Petri Net graph is a representation of a
Petri Net as a bipartite weighted directed graph. If F (x;y) > 0,
there is an arc with weight F (x; y) from node x to node y. [9]
Given a nodex, either a place or a transition, its preset is defined as
�x = fyj(y; x) 2 Fg and its postset as x� = fyj(x;y) 2 Fg. For
a node y, Pre[X;y] is a vector whose i-th component is equal to
F (xi; y). A transition (place) whose preset is empty is called source
transition (place), a transition (place) whose postset is empty is
called sink transition (place). A placep such that jp�j > 1 is called
choice or conflict. If j�pj > 1, p is called merge. Two transitions
t and t0 of a net N are said to be in Equal Conflict Relation if
Pre[P; t] = Pre[P; t0] 6= 0 [4]. A marking � is an n-vector
� = (�1; �2; :::;�n) where n = jP j and �i is the non-negative
number of tokens in place pi. A transition t such that each input
place pi is marked with at least F (pi; t) tokens is enabled and may
fire. When transition t fires, F (pi; t) tokens are removed from each
input placepi andF (t; pj) tokens are produced in each output place
pj . The following properties, that are decidable for any Petri Net
(PN), are relevant in our discussion [9]. Reachability: a marking
�0 is reachable from a marking � if there exists a firing sequence
� starting at marking � and finishing at �0. Boundedness: a PN
is said to be k-bounded if the number of tokens in every place of a
reachable marking does not exceed a finite number k. A safe PN is
one that is 1-bounded. Deadlock-freedom: a PN is deadlock-free
if, no matter what marking has been reached, it is possible to fire at
least one transition of the net. Liveness: a PN is live if for every
reachable marking and every transition t it is possible to reach a
marking that enables t.

The following are some of the most common subclassesof PNs.
Marked Graph: a PN such that each place p has at most one
input transition and one output transition. Conflict Free Net: a
PN such that each place p has at most one output transition. Free
Choice Net: a PN such that every arc from a place is either a unique
outgoing arc or a unique incoming arc to a transition.

Marked Graphs can represent concurrency and synchronization
but not conflict. Free Choice Nets allow one to model both conflict
and synchronization, under the condition that every transition that
is successor of a choice has exactly one predecessor place. This
implies that whenever an output transition of a place is enabled, all
the output transitions of that place are enabled (figure 1a)). There-
fore, Free Choice Nets model data-dependentcontrol by abstracting
if-then-else control decisions as non-deterministic choices, but they
can not model external conditions or multiple rendezvous. The PN
shown in figure 1b) is not a Free Choice Net, because there exists a
marking in which transition t3 is enabled and transition t2 is not.

Cyclic schedules SynchronousDataflow (SDF) [1] networks are
a special case of Petri Nets, since they can be mapped into Marked
Graphs where actors are transitions and arcs places. The approach
proposed by Lee [1] to find a static schedule for an SDF graph is
based on the notion of finite complete cycle. Given a Marked Graph
and an initial marking, or equivalently a SDF graph and an initial
configuration of tokens, a finite complete cycle is a sequence of
transition firings that returns the net to its initial marking. If such

a)

t1

t2
b)

t1

t2t1

t3

Figure 1: Free Choice Net(a), not Free Choice Net(b)

t1 t2 t3p2p1

2 2

(0 , 0)
t1t1t1t1t2t2t3σ =

(0 , 0)
t1t1t1t1t2t2t3σ =

(0 , 0) ...

σf () = (4 , 2 , 1)T

Figure 2: Cyclic schedule

a finite complete cycle exists the number of tokens that can accu-
mulate in any place of the net during the execution is bounded and
the net can be executed forever with bounded memory by repeating
infinitely many times this sequence of transition firings (figure 2).
Therefore, in [1] a static schedule is a periodic sequence of transi-
tions and the period is a finite complete cycle.

To find a finite complete cycle �, one must first solve the
state equations [9] f(�)T � D = 0. A solution f(�), called T-
invariant [9], is a vector whose i-th componentfi(�) is the number
of times that transition ti appears in sequence�.

Definition 2.1 A Petri Net is consistent iff 9f(�) > 0 s.t. f(�)T �
D = 0.

The existence of a T-invariant is a necessary, but not sufficient
condition for a finite complete cycle to exist: deadlock can still
occur if there are not enough tokens to fire any transition. There-
fore, once a T-invariant f(�) is obtained, it is necessary to verify
by simulation that there exists a sequence�i that contains transition
tj as many times as fj(�) and such that the net does not deadlock
during execution. Such a sequence �i, if it exists, is a finite com-
plete cycle. Lee [1] has shown that it is sufficient to simulate the
firing sequences corresponding to the minimal vector in the one-
dimensional T-invariant space. This approach is not adequate for
larger classes of Petri Nets that contain non-deterministic choices
[8]. The rest of this paper is devoted to the solution of the scheduling
problem for Free Choice Nets.

3 Quasi-static Scheduling of FCPN

De�nition of schedulability Let Σ = f�1; �2:::g be a non-
empty finite set of finite firing sequences such that for all �i 2 Σ,
�i is a finite complete cycle and contains at least one occurrence
of each source transition of the net. Let �ji be the j-th transition in
sequence �i = (�1

i�
2
i :::�

j�1
i �

j

i�
j+1
i :::�

Ni

i) and Θ be the charac-
teristic function of the Equal Conflict Relation, i.e. Θ(t; t0) = 1 iff
t and t0 are in Equal Conflict Relation.

Definition 3.1 The set Σ is a valid schedule if 8�i 2 Σ; 8�ji 2 �i

s.t. �ji 6= �hi 8h < j, 8tk 2 T s.t. tk 6= �
j

i and Θ(tk; �
j

i) = 1,
9�l 2 Σ s.t.

(1) �ml = �mi ; 8m � j � 1
(2) �ml = tk , m=j

This definition informally means that for each sequence�i that
includes a conflict transition �

j

i , for each transition tk that is in
Equal Conflict Relation with �

j

i , there exists another sequence �l

t1 p1

p2

p3t3

t2 t4

t5

a , b = 0 , 1 , 2 ...

b)a)

t1 p1

p2

p3t3

t4
t2

f(s) = a(1,1,0,1,0) + b(1,0,1,0,1)
f(s) = (2,1,1,1)

f(s) = (2,2,0,1)

f(s) = (2,0,2,1) unbounded

unbounded

valid

Figure 3: Schedulable (a) and not schedulable (b) FCPNs

s.t. �i and �l are identical up to the (j-1)th transition and have
respectively �ji and tk at the j-th position in the sequence.

Definition 3.2 Given an FCPN N and an initial marking �0, the
pair (N,�0) is (quasi-statically) schedulable, if there exists a valid
schedule.

This definition of schedulability extends to non-static Data Flow
networks the concept of SDF scheduling given in Section 2. If the
net contains non-deterministic choices that model data dependent
structures like if-then-else or while-do, a valid schedule is a set of
finite complete cycles, one for every resolution of non-deterministic
choices. A valid schedule must contain a finite complete cycle for
every possible outcome of a choice because the value of the control
tokens is unknown at compile time when the valid schedule is
computed.

Schedulability implies the existence of at least one valid sched-
ule that ensures that there is no unbounded accumulation of tokens
in any place. This property is different from k-boundedness, that
implies that for all the reachable markings, the number of tokens in
any place does not exceed a certain number k.

We can also consider the scheduling problem as a game played
against an adversary who can arbitrarily choose among conflicting
transitions and has the goal of accumulating infinitely many tokens
in any place of the net. Then, our objective is to find a non-
terminating bounded memory execution by matching his choices
with a cyclic schedule that returns the net to the initial marking.

Given the net in figure 3a, Σ = f(t1t2t4); (t1t3t5)g is a valid
schedule because for every solution of the conflict between transi-
tions t2 and t3, it is possible to complete a cycle that returns the
net to the initial marking by firing t4 after t2 or t5 after t3. Instead,
the net shown in figure 3b is not schedulable because there exists
no finite complete cycle if the conflict is always solved choosing t2

(t3). In fact, if the token values in p1 are such that t2 (t3) is always
fired, unbounded accumulation of tokens occurs in place p2 (p3).

The net shown in figure 4 is schedulable and
Σ = f(t1t2t1t2t4)(t1t3t5t5)g is a valid schedule. The weight two
on the input arc of transition t4 implies that t2 has to fire twice
before transition t4 is enabled. However, there is no guarantee that
this happens within a cycle because it is not possible to know a
priori which transition among t2 and t3 fires. So, if transitions
t1t2t1t3t5t5 fire in this order, one token remains in place p2 and the
net does not return to the initial marking. The net is considered
schedulable because repeated executions of this sequence do not
result in unbounded accumulation of tokens (as soon as there are
two tokens in place p2, transition t4 is fired and the tokens are
consumed).

This shows that a valid schedule does not necessarily include all
the possible cyclic firing sequences, some even of infinite length,
that can occur depending on the resolution of the non-deterministic
choices (in this case the set would beft1t3t5t5; t1t2(t1t3t5t5)

nt1t2t4;
8n 2 IN [f1g). A valid schedule should be intended only as a
complete set of cyclic firing sequences that ensure bounded mem-
ory execution of the net. The set is complete in the sense that it is

t1 p1

p2

p3t3

t2 t4

t5

2

2

Figure 4: Schedulable Petri Net with weighted arcs

2
p1

t2 p2
2

t4 p4 t6

t8 t9

2

2

t1
t3 p3 t5

p5

p6

t7

t1

p7

p7
t9t8

p4 t6

p1

t1

p1

t2

t3

p2

p3

t4

t5

p4

p5

p6

t6

t7

a)

2 2

2

2

b)

R1

t8 t9

R2

A1={t1,t2,t4,t5,t6,t7,t8,t9}

p7

A2={t1,t3,t4,t5,t6,t7,t8,t9}

Figure 5: T-allocations and T-reductions

possible to derive from it a C-code implementation of the sched-
ule including all the sequences that can occur, as we discuss in
Section 4.

How to �nd a valid schedule To find a valid set of finite com-
plete cycles the net is first decomposed into as many Conflict Free
(CF) components as the number of possible solutions for the non-
deterministic choices. Then, each component is statically sched-
uled. If every component is schedulable, a valid schedule is a set of
finite complete cycles, one for each CF component. If at least one
of the CF components is not schedulable, the net itself is said to be
not schedulable.

A similar approach, called MG decomposition, has been used
by Hack [7] to check liveness and safenessof strongly connected or-
dinary FCPNs. More recently, Teruel [4] has extended to weighted
nets a theorem that is used to check whether a given strongly con-
nected net is bounded. However, in the domain of embedded re-
active systems most applications usually have lots of interactions
with the environment, that are naturally modeled as source and sink
transitions. As a result, nets modeling embedded systems are not
strongly connected. Moreover, as we outlined in the previous sec-
tion, boundedness is a too restrictive property for our objective. For
this reason we modify Hack’s MG decomposition algorithm and
apply it to the class of FCPNs that have source and sink transitions.

Step 1. Decompose the net into Conflict Free (CF) components

Definition 3.3 A T-allocation over a FCPN N is a function � :
P ! T that chooses exactly one among the successors of each
place (8p 2 P�(p) 2 p�).

Definition 3.4 The T-reduction associated with a T-allocation is

a set of subnets generated from the image of the T-allocation using
the Reduction Algorithm.

Intuitively, T-allocations can be interpreted as control functions
that choose which transition fires among several conflicting ones
and therefore which component of the net is active (executed) at
every cycle. If we consider the net shown in figure 5a), there exist
two T-allocations, A1 containing t2 and A2 containing t3. During
a cycle where t2 is fired, only transitions t1, t4 and t6 can be fired,
while the rest of the net is not executed (figure 5b)). A T-reduction
is the subnet obtained from N by removing the part that is inactive
when the conflicting transitions included in the corresponding T-
allocation are chosen. A T-reduction is by construction a Conflict
Free net. More precisely, a T-reduction is a set of disjoint CF
subnets, as shown in figure 5. The first step of the algorithm
consists of computing all the T-reductions of the net. Given a
net N and a T-allocation �i, the corresponding T-reduction Ri =
(TRi

; PRi
; FRi

) is derived by applying the following Reduction
Algorithm (modified from [7]; for further details see [8]).

1. Ri = N (TRi
= T , PRi

= P , FRi
= F).

2. For all tk 2 TRi
and tk =2 �i

(a) Remove tk .

(b) 8s 2 t�k , remove place s unless one of the following
conditions holds:

i. s has a predecessor transition different from tk
(9t 2� s s.t. t 2 TRi

).
ii. the successor transition of s has a predecessor

place that is different from s and is not a source
place (9t 2� (�(s�)) s.t. t 2 TRi

).

(c) If si is a removed place, 8tj 2 s�i , remove tj if one of
the following conditions holds:

i. tj has no predecessor place (j�tjj = 0).
ii. all predecessors of tj are source places. In this

case remove every s 2� tj .

(d) Apply the previous two steps until they cannot be applied
any longer.

Step 2. Check if every CF component is statically schedulable

Definition 3.5 A T-reduction Ri is schedulable if (1)it is consis-
tent, (2)for each source transition ts in N , it has a T-invariant
containing ts, (3)there exists a firing sequence that returns Ri to
the initial marking without any deadlock when its execution is sim-
ulated (generalization of [1]).

A T-reduction Ri is a schedulable CF component if it has a
finite complete cycle that contains at least one occurrence of every
source transition of the net and returns Ri to the initial marking.
Conflict Free nets do not contain any non-deterministic choice and
therefore, to check if there exists a static schedule, it is possible to
apply the standard techniques for SDF described in Section 2.

Step 3. Derive a valid schedule, if there exists one

The following theorem states that schedulability of each T-
reduction is a necessaryand sufficient condition for the existence of
a valid set of finite complete cycles. A net is schedulable if for all its
T-reductions, each of them corresponding to a sequence of choices,
there exist a firing sequence containing at least one occurrence of
every transition of the reduction. This means that a schedulable
net, if there is no deadlock during execution of the cyclic schedules,
can be executed forever with bounded memory, because for every
resolution of the choices there is always the possibility to complete

t1

p1

t2 p2 t4 p4 t6
2 2

t8 t9p7

t1

p1

t2 p2 t4 p4

p5

p6

t6

t7

t1

p1

t2 p2 t4 p4 t6

t7

2 2 22

t8 p7 t9 t8 p7 t9

t2 p2 t4
2 2

t1

p1

p3 t5

p4

p5

p6

t6

t7

t1

p1

t2 p2 t4

t5

p4

p5

p6

t6

t7

2 2

2

2

2

2

t8 p7 t9t8 t9p7

Step 3) Remove t5 Step 4) Remove p5, p6

Step 5) Remove t7

Step 2) Remove p3Step 1) Remove t3 (unallocated)

Figure 6: How to obtain T-reduction R1 from the net shown in
figure5

successfully a finite cycle of firings that returns the net to the initial
marking 2.

Theorem 3.1 Given a FCPN, there exists a valid schedule iff every
T-reduction is schedulable.

The proof can be found in [8].
The FCPN shown in figure 7 is not schedulable. Both T-

reductionsR1 andR2 are inconsistent because they contain a source
place that corresponds to finite execution; in R1 for example, if se-
quence � = (t1t2t4t6) is fired infinitely often, there is unbounded
accumulation of tokens in place p4 since p3 cannotprovide infinitely
many tokens. Therefore, the net is not schedulable.

The FCPN shown in figure 5 is schedulable. To find a valid
set of finite complete cycles we solve the state equations for each
T-reduction: the T-invariants of R1 are (1; 1; 0;2; 0; 4; 0;0; 0) and
(0; 0; 0;0; 0; 1; 0;1; 1). A finite complete cycle is derived from the
T-invariants only after simulation checks that there is no deadlock
in the corresponding T-reduction. The same procedure is repeated
for each T-reduction and a valid set of finite complete cycles for this
PN is f(t1t2t4t4t6t6t6t6t8t9t6); (t1t3t5t7t7t8t9t6)g.

In terms of complexity, the number of T-reduction is exponential
in the number of conflicting transitions, while the cost of statically
scheduling each T-reduction is polynomial [1]. The C code gener-
ation algorithm that we present in the next Section generates code
that is linear in the size of the PN.

4 C-code generation

The ultimate goal is the synthesis of a software implementation that
satisfies functional correctness and minimizes a cost function of la-
tency and memory size. In general, such implementation consists of
a set of software tasks that are enabled by the occurrence of external
events and are invoked by the Real Time Operating System either

2If the net presents certain strongly connected PN fragments, it is possible that
tokens accumulate in various T-invariants causing the net to deadlock even when each
T-invariant by itself does not. In this case it is necessary to check the executability of
the net using a technique described in [8]

R2
t1

p1

t3 p3 t5

p4

p5

p6

t6

t7

t1

p1

t2 p2 t4 p4

p5

t6

R1

t1

p1

t2

t3

p2

p3

t4

t5

p4

p5

p6

t6

t7

a)

b)

Figure 7: Non-schedulable FCPN

by interrupt or polling. Our software synthesis technique derives
an implementation directly from a valid schedule, that should be
intended as an intermediate description, containing in explicit form
a set of rules, such as number and order of firing of transitions, that
any implementation should follow to guarantee bounded memory
execution.

In this Section we show how to generate from a valid schedule
an implementation that consists of as many fragments of C code
(tasks) as the number of source transitions with independent firing
rate. Generating one task for every input with independent firing rate
identifies a lower bound in the number of tasks, because transitions
with independent firing rate cannot be quasi-statically scheduled
together and therefore cannot be included in the same task. A
task is composed only of transitions with dependent firing rates,
i.e. transitions belonging to the same T-invariant. The algorithm is
as follows (EOS means End of Sequence and EOT means End of
T-Invariant).

Schedule (Σ)
while (ti 6= EOS) f Task(Σ,i); i = i+ 1; g

Task (Σ,i)
while (ti 6= EOT) f

if (ti is already visited) f insert goto label ti g
elsef

if (ti is a conflicting transition) f insert if..then..else g
if (f(ti) < f(ti�1)) f insert counting var and if test g
if (f(ti) > f(ti�1)) f insert counting var and while test g
if (f(ti) = f(ti�1)) f insert ti g g g

The routine Schedule visits all the transitions in the valid sched-
ule Σ, by calling the routine Task every time a new T-invariant is
visited. Task checks if a transition has already been visited and,
if so, inserts a label and a goto to avoid repetition of code. This
corresponds to the presence of a merge place in the PN model that
yields code patterns which are common either to the branches of an
if-then-else or are shared by different tasks. Instead, if the transi-
tion currently visited is a conflicting one, an if-then-else structure
is generated and the code in the two branches is synthesized by
traversing the two finite complete cycles of Σ containing the con-
flicting transitions. In case of multirate nets, a variable counting
the number of tokens and a test are used to determine whether an
operation should be executed. Here is an example of C program

generated for the net shown in figure 4 and whose valid schedule is
Σ = f(t1t2t1t2t4)(t1t3t5t5)g.
while (true) f
t1;
if (p1) f
t2; count(p2)++;
if (count(p2) == 2) f
t4; count(p2)-=2; g

g else f
t3; count(p3)+=2;
while (count(p3) � 1) f
t5; count(p3)- -; g g g

5 Experimental Results

We applied our algorithm to synthesize a software implementation
of a real life embedded system: an ATM Server for Virtual Pri-
vate Networks [2]. The main functionalities of the Server are (1)
a message discarding technique (MSD) that avoids node conges-
tion and (2) a bandwidth control policy based on a Weighted Fair
Queueing (WFQ) scheduling discipline. Figure 8 gives a high-level
description of the algorithm. The inputs of the system are Cell, an
interrupt that occurs at irregular times when a non-empty cell enters
the Server and Tick, an event that periodically triggers the process of
forwarding the next outgoing cell to the output port. Therefore, Cell
and Tick are inputs with independent firing rate. The module MSD
decides whether an incoming cell must be accepted and the module
CELL EXTRACT selects, every cell slot, which cell must be emit-
ted among those stored in the internal buffer. WFQ SCHEDULING
may be activated either by MSD or by CELL EXTRACT and com-
putes the cell emission time. We have chosen this example because
it implements a data-dominated algorithm containing several data-
dependent control structures. We modeled the algorithm using a
FCPN containing 49 transitions and 41 places, of which 11 non-
deterministic choices [8]. From the FCPN model we could derive
a valid schedule containing 120 finite complete cycles, one for each
different T-reduction, and from the valid schedule we obtained a
software implementation composed of two tasks, one for each input
with independent firing rate. In table I we compare two software

Sw implementation QSS Functional task partitioning
Number of tasks 2 5
Lines of C code 1664 2187
Clock cycles 197526 249726

Table I

implementations: the first, named QSS, was obtained using our
Quasi-Static Scheduling technique presented in this paper and con-
sists of two tasks, the second, named functional task partitioning,
consists of five tasks and was obtained by synthesizing separately
one tasks for each of the five modules shown in figure 8. The results,
obtained using a testbench of 50 ATM cells, show that the number
of clock cycles and the code size are significantly smaller for the
QSS implementation that is composed of a smaller number of tasks
and therefore has a smaller overhead due to tasks activation.

6 Conclusions

In this paperwe have proposed a software synthesis technique based
on quasi-static scheduling of Free Choice Petri Nets. The input of
our tool is a FCPN model of the system to be designed, the output is
a software implementation in C code composedof a number of tasks
that are invoked at runtime by the RTOS. The C code implemen-
tation of each task is synthesized directly from a valid schedule of

BUFFER

MSD

CELL

EXTRACT

CELL

WFQ

SCHEDULING
ARBITER

Emit_cell

COUNTERTICK

Cell_emission_time

Cell_emission

Cell_to_buffer

Figure 8: ATM Server example

the FCPN. We have presented an algorithm that first checks schedu-
lability of the net and then, if the net is schedulable, computes a
valid schedule, composed of as many cyclic firing sequences as
the number of possible resolution of the non-deterministic choices.
In the future it could also allow one to explore different sched-
ules, evaluating tradeoffs between code and buffer size. Finally,
we have described the application of our technique to a real case
study and presented experimental results that clearly show that per-
formances can be improved using our approach. The advantages of
using our technique can be shortly outlined as follows. (1) Quasi-
Static Scheduling, if compared to dynamic scheduling, minimizes
the execution runtime overhead since it maximizes the amount of
work done at compile time. (2) The model of computation is
FCPNs, where schedulability is decidable. Differently from other
algorithms applied to models (like BDF) that are undecidable, our
algorithm is complete, in that it can solve the scheduling problem
for any PN that is quasi-statically schedulable. (3) Schedulability
of the specification is checked before the code is synthesized, dif-
ferently from most existing approaches that assume schedulability
a priori. (4) System functions with the same execution rate are au-
tomatically partitioned into a minimum number of concurrent tasks
that are invoked at runtime by the RTOS.

References

[1] E.A.Lee and D.G.Messerschmitt. Static scheduling of syn-
chronous dataflow programs for digital signal processing. IEEE
Transactions on computers, January 1987.

[2] E.Filippi et al. Intellectual property re-use in embedded system
co-design: an industrial casestudy. In InternationalSymposium
System Synthesis, December 1998.

[3] F. Thoen et al. Real-time multi-tasking in software synthe-
sis for information processing systems. In Proceedings of the
International System Synthesis Symposium, 1995.

[4] E.Teruel. Structure theory of Weighted Place/Transition Net
systems. The Equal Conflict hiatus. Ph.D dissertation. Univer-
sidad de Zaragoza, 1994.

[5] J.Buck. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. Ph.D dissertation. UC
Berkeley, 1993.

[6] B. Lin. Software synthesis of process-based concurrent pro-
grams. In Proceedings of the Design Automation Conference,
June 1998.

[7] M.Hack. Analysis of Production Schemata by Petri Nets.Master
thesis. MIT, 1972.

[8] M. Sgroi. Quasi-static scheduling of embedded software using
free-choice petri nets. Technical Report Memo No. UCB/ERL
M98/, M.S. dissertation. UC Berkeley, May 1998.

[9] T.Murata. Petri nets: properties, analysis and applications. In
Proceedings of the IEEE, April 1989.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

