
1. ABSTRACT
Vertical benchmarks are complex system
designs represented at multiple levels of
abstraction. More effective than component-
based CAD benchmarks, vertical benchmarks
enable quantitative comparison of CAD tech-
niques within or across design flows. This work
describes the notion of vertical benchmarks
and presents our benchmark, which is based on
a commercial DSP, by comparing two alterna-
tive design flows.

2. INTRODUCTION
Quality benchmarks are essential to the continuing progress
of electronic design automation because they provide the
only way to qualitatively judge the effectiveness of CAD
techniques. Benchmarks should, therefore, be representative
of the size and diversity of designs encountered in industry.
They should also provide for the evaluation of the effects of a
particular CAD technique on the entire design flow. For
example, if a logic synthesis technique reduces gate counts
but makes a design harder to place and route, it may not be
worthwhile. Finally, benchmarks should include some
standard testing methodology, to provide some level of
assurance CAD techniques construct functionally correct
designs.

Table 1 lists some the popular CAD benchmark suites, and
compares some of their characteristics. All of these suites are
compilations of small, difficult or esoteric modules
encountered in industry and academia. Within a suite, all
benchmarks are specified at the same level of abstraction.
Only the PREP benchmark suite offers any testing or
functional verification capability. Clearly, these benchmarks
suites do not meet the expectations outlined above; a fact
long recognized [3].

This paper proposes the concept of a vertical benchmark and
describes an example of a vertical benchmark, the CMU-
DSP, which is being made available to the CAD community
via the World-Wide Web. A vertical benchmark is a system-
level design that includes multiple representations of the
design at different levels of abstraction, as illustrated in
Figure 1. A vertical benchmark should also include a
complete design flow that can be used to create each of the
lower-level design representations from a higher-level
representation as well as a testing methodology for each of
the design representations. As shown in Table 1, the CMU-
DSP is the only benchmark that includes multiple levels of
design representation. Furthermore, in terms of gate count,
the CMU-DSP is 4.6 times larger than the average design in
the listed benchmarks.

Vertical benchmarks satisfy all the expectations previously
enumerated, and address many of the shortcomings of
current CAD benchmarks. Because they are complete
system-level designs, vertical benchmarks represent the size
and diversity of components in commercial ASIC design.
Using a vertical benchmark, the impact of CAD techniques
can be quantified in terms of system-level performance and

1. Presently with Motorola, Austin, TX.
2. Presently with Cognex, Cambridge, MA.

Figure 1. Vertical benchmarks

Behavioral

Structural

Gate

Behavioral Synthesis

Logic Synthesis

Performance Analysis
Simulation

Physical DesignVertical Benchmark

Vertical Benchmarks for CAD
Christopher Inacio, Herman Schmit, David Nagle, Andrew Ryan, Donald E. Thomas,

Yingfai Tong1, Ben Klass2

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213, USA

{inacio, herman, dnagle, ar39, thomas}@ece.cmu.edu

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

area, rather than abstract notions of gate count and sub-
system clock rate. Vertical benchmarks also allow for the
evaluation of a CAD technique’s effect on downstream tool
performance, ensuring that a reduction in gate count, for
instance, is not offset by bad routing performance.

Because vertical benchmarks include multiple levels of
representation, they can be used to evaluate many different
types of CAD techniques. In the CMU-DSP, the design is
presented in behavioral, structural and gate-level
representations. For the purposes of this paper, a behavioral
representation is one in which some of the scheduling or
allocation decisions have not yet been made. Structural
descriptions are fully scheduled and allocated, but include
abstract definitions of the contents of the functional blocks.
For example, a structural description might have a
multiplier, but there is no specification of whether that
multiplier is implemented using a Wallace tree or an array.
A gate level specification is one in which the architecture of
all components is specified at a low level, typically in terms
of members of a standard cell library. The CMU-DSP is
therefore particularly useful to CAD researchers in the fields
of synthesis (behavioral and logic), physical design, module
generation, timing analysis, and circuit simulation. It could
also be used to evaluate test synthesis and simulation
techniques. Finally, because our benchmark is based on a
DSP core, it may prove useful to evaluate techniques in IP-
oriented and systems-on-a-chip CAD.

There have been a number of efforts to develop synthetic
circuit benchmarks, primarily to assist design of FPGAs.[2]
The disadvantage of these tools is that they provide no
system context, because the circuits themselves do not
perform a meaningful function. In addition, the CIRC and
GEN tools [4] characterize real benchmark circuits and then
create random circuits of approximately the same size with
similar characteristics. Designs such as the CMU-DSP can
serve as seeds for generating these designs.

Full applications have been used for a number of years to
measure computer systems performance. The SPEC
benchmark suites [7] use portable source code to measure
combined compiler and computer performance. These
benchmarks are not “vertical” in the sense that they do not
consist of multiple levels of representation. Indeed, common
lower-level representation of applications would not even be
possible across different computer systems.

The remainder of this paper is structured as follows:
Section 3 describes the architecture of the CMU-DSP.
Section 4 describes the default commercial design flow and
testing methodology used to construct the design. Section 5
describes two possible variations on this design flow and the
results of using each flow in a system context. Section 6
describes the structure of the benchmark distribution and
instructions on how to obtain the design. Finally, Section 7
concludes with a discussion of future work and other
vertical benchmarks which are in development at Carnegie
Mellon.

3. CMU-DSP CORE
The CMU-DSP is a 24-bit digital signal processor. Its core
is modeled after the Motorola 56002 processor, although it
is not binary compatible. The CMU-DSP, like the 56002,
has a Harvard architecture, and can access two data
memories and one program memory per cycle. As shown in
Figure 2, the core of the CMU-DSP has four functional
units: an address generator unit, a data arithmetic unit, a
program control unit, and a bus switch. For further
architectural reference see the Motorola manual [5].

Outside of the core there are significant differences between
the commercial DSP and CMU-DSP. The memory and
external interface of the CMU-DSP is primarily intended to
make testing of the core as easy as possible. It does not
support most of the functionality provided by the 56002.
The memory can operate in two modes: an upload/download

Table 1: CAD Benchmark Comparisons

PREP[6] ISCAS[1] LGSynth[8] HLSynth[3] CMU-DSP

Behavioral YES NO NO YES YES

Structural NO NO NO NO YES

Gate NO YES YES NO YES

Testing Inconsistenta

a. The PREP benchmark is composed of submissions from various sources. Each source for a benchmark develops
their own test for their submitted circuit.

None Test vector Hand crafted Multi-level
functional

of Benchmarks 13 31 202 9 1

Avg. Gatesb

b. The average number of gates was obtained by compiling the source files for the benchmark with default options in
Synopsys DesignCompiler version 1997.08 to the Duet HP14B cell library and reporting the number of cells.

112 (of 8)c

c. Of the PREP benchmarks, we were only able to compile 8 of the 13 Verilog tests using Synopsys DesignCompiler.

3149 1055 N/A 14,550

mode, where package pins have exclusive access to the
memory, and an execution mode, where the core has
exclusive access to the memory. The CMU-DSP does not
support interrupts. These two major simplifications make
the core impractical for purposes other than research and
testing. Furthermore, not all of the instructions supported by
the Motorola core have equivalents in the CMU-DSP. All
atomic bus instructions were discarded, along with some
other general instructions. CMU-DSP does, however,
contain the bulk of the arithmetic instructions along with a
large degree of the addressing modes supporting those
instructions. We can successfully run many common DSP
application kernels such as FIR, LMS and FFT.

4. DESIGN AND TESTING FLOW
In the past, the largest impediment to creating vertical
benchmarks has been the lack of standardization of CAD
flows. Thanks to the university programs of many
commercial CAD vendors, defacto standard design flows
currently exist at most locations performing CAD research.
While it is not strictly necessary that users of vertical
benchmarks have the same commercial tools that were used
to create our benchmark, it will ease the design process. At
all levels of abstraction, Verilog is used to describe the
design. The particular dialect of Verilog used at each level is
the only tools-specific aspect of the benchmark.

4.1 Design Flow
Building the CMU-DSP requires using a number of tools
throughout the design flow to accomplish different tasks.
Currently, the core is represented as a combination of

structural and behavioral level Verilog code. There also
exists a behavioral instruction set architecture (ISA)
representation of the core, but at present it is not completely
compatible with the structural version and a behavioral
compiler flow is not fully realized. In the future we will
include a behavioral ISA version of the core which can be
compiled into a structural representation that can flow
through the rest of the design flow.

The CMU-DSP Verilog source can be divided into two sets
of files; the datapath components which represent the
multiplier, adders, registers, etc. within the computational
core of the CMU-DSP and the control logic components
which mostly represent control points for the datapath and
instruction decode. The control logic is written in
synthesizable behavioral Verilog which is compiled with
Synopsys DesignCompiler version 1997.08. Design-
Compiler maps the behavioral Verilog into structural
Verilog based on the Duet HP14B version 4.0 cell library.
The resulting structural Verilog is a standard cell based
implementation of the control logic. The datapath
components are then compiled using Duet Epoch version
4.0 and its module generators. The compiled control logic
and datapath files are then placed and routed using Duet
Epoch to generate a gate-level representation. Epoch can
model the gate-level representation in various file formats
useful for testing, simulation, or manufacturing.

4.2 Alternative Design Flow
Using the vertical structure of our CMU-DSP design, it is
possible to explore different design flows and evaluate their
merits. Our demonstration changes the method in which the
datapath portion of the CMU-DSP is generated. In
Section 4.1 we discussed the default design flow. We have
developed an alternative in which the Epoch module
generators for the datapath elements are replaced with using
Synopsys tools and standard cells. The results of the tool
replacement can be seen in Section 5. The flexibility of
CMU-DSP to be adapted to new and different CAD tools
and the new design flow, such as various datapath
compilation methods is of enormous benefit to the CAD
research community.

We developed the datapath Verilog files to be portable
between various design flows. Currently, using a
preprocessor we developed for the purpose, the same
Verilog source files can be used with Synopsys DesignWare
Foundation Libraries version 1997.08 with the Duet HP14B
version 4.0 cell library to compile the datapath with using
only standard cells instead of using Epoch module
generators. The only change in this alternative flow is in the
compilation of the datapath. See Figure 3 for a diagram of
the design flows.

4.3 Software Test and Development
Previously, CAD benchmarks did not include the most
robust test environments. Previous benchmarks often were
built using a static array of test vectors hand-crafted to test
the design at a specific level of abstraction. Most CAD
benchmarks did not include more than a set of stuck-at test

Figure 2. CMU-DSP Core Architecture

Address
Generation

Unit

Internal
Data

Bus
Switch

Program Control Unit

Data ALU

YDB

XDB

PDB

GDB

YAB

XAB

PAB

Program
RAM
ROM

X Mem
RAM
ROM

Y Mem
RAM
ROM

Program
Decode
Controller

Program
Address
Generator

External Bus/Memory Interface

vectors for each circuit. Vertically integrated benchmarks
increase the value of time invested in test development since
we propose fewer benchmarks used for more purposes. The
CMU-DSP test environment is designed to be very
extensible. The model is based on running programs on a
simulator used as the reference, in our case the Motorola
DSP simulator, and comparing the memory results from
running the design on another simulator, typically Cadence
Verilog-XL version 2.2.1. This testing model provides for
efficient functional testing, but without complete validation.
There is ongoing research on CMU-DSP using IBM’s
TestBench software and formal verification testing. A large
part of the improved test framework is the ability to use high
level languages and tools to develop test vectors and
expected outputs for the CMU-DSP. This allows users to
create their own specific tests with relative ease to increase
the value of the CMU-DSP benchmark as a research
vehicle. Some users, however, may have no interest in
developing their own tests, and to this end, four tests are
included with CMU-DSP. The following paragraphs discuss
in more detail the test development flow and the four tests
included with the suite.

Developing new tests for the DSP is done using Motorola’s
DSP 56K development tools. A test program is written in
either assembly language or C language and compiled using
either the assembler or C compiler into a Motorola DSP
COFF file. This COFF file can then be simulated using the
Motorola simulator to generate expected results, and
converted into an input stimulus using the binary translator
included with CMU-DSP. The CMU-DSP is then simulated
using the test program as a stimulus and its memory is
captured after simulation. The contents of the memories in
the simulated CMU-DSP are compared with the memory
contents from the Motorola DSP simulator. The advantage
of comparing memory states in this way is that the test can
be run using various simulators at different levels of
representation of CMU-DSP. This multi-level testing ability
lets the user see the effect of a change on any level of the
design flow. The full test flow is shown in Figure 4.

For users who do not want to develop any tests for the
CMU-DSP, we have developed a set of four tests. These
tests include a 4-tap finite impulse response (FIR) filter, a
64-tap FIR filter, a least mean squares adaptive FIR filter,
and a discrete fast Fourier transform (FFT). Harnessing the
included tests is simplified by the included script run-
test . The run-test script will use the included input
memory files, run the Cadence Verilog-XL simulator and
compare the memory output results telling the user if the
system passed or failed. The 4-tap FIR test is not a
representative example of a real application, but does
exercise the core using a standard digital signal processing
algorithm and can be run relatively quickly. The other three
tests all take substantially longer to run, but do represent
more typical DSP applications.

5. RESULTS
In Section 4 we have described two possible flows using the
Synopsys and Duet tools. One flow uses Synopsys
DesignWare components, and the second uses Duet data
path module generators. Both use the Duet standard cell
libraries, although when using the Duet module generators
data path components are also used. Using Synopsys
DesignWare components and Duet Epoch for placement and
routing, the size of the core measures 11 mm2 and runs at
approximately 22 MHz. Using Duet Epoch for both
structural compiling, placement and routing, and Synopsys
DesignCompiler for the synthesis of control logic, the size
of the core measures 20 mm2 and runs at approximately 30
MHz. These two designs dissipate approximately 280 mW
and 500 mW respectively. The results demonstrate that an
interesting trade-off in size, speed, and power can be
measured and quantitatively analyzed by adapting a portion
of the vertical benchmark to a slightly varied design flow.
The physical designs of both implementations are shown in
Figure 5 and Figure 6.

Behavioral ISA

Behavioral
compiler

Structural
Verilog

SynopsysEpoch or

Epoch Placement and Routing

Gate-level
representation

Figure 3. Design flow for CMU-DSP

DesignWare
Module Gen

DesignCompiler

Control LogicDatapath

6. AVAILABILITY AND STATISTICS

6.1 Web Site Availability
These core designs are available over the World-Wide Web
at http://www.ece.cmu.edu/~ceda. The DSP core package

includes the Verilog source files, CMU-built additional
programs, and scripts necessary to automate building and
testing. Further, more detailed documentation on the design
and construction of the DSP core is available from the web
site. The documentation includes the source file layout and
information on adding your own tests to the currently
available test suite.

6.2 Source Repository
The source code for the CMU-DSP core is kept in a
structural level description that can easily be mapped to
transistor cells from an appropriate library to build the DSP
core. The control logic source Verilog is at the behavioral

Figure 4. Functional Testing Flow

Assembly source file(s) C source files

Motorola 56002 Assembler Motorola DSP GCC compiler

56002 COFF file

Binary translator

Motorola DSP simulator

Input memory state

Output memory state

CMU-DSP
Verilog
model

CMU-DSP
Spice
model

Verilog
simulator

Spice
simulator

Output memory state = ?

Figure 5. CMU-DSP with three 24-bit 1024 word RAMs using
Duet Epoch design flow

Figure 6. CMU-DSP (core-only, no RAM) using the Synopsys
DesignWare Generators and Duet Epoch Cell Library

level, but we keep, and will distribute, the compiled versions
of the synthesizable descriptions in the repository. The
synthesizable descriptions are compiled with Synopsys’s
DesignCompiler and the results are kept in the repository.
The advantage of this policy is that it allows us to keep a
uniform compiled version of the synthesizable modules
which everyone can use, we simply can copy and compile
the DSP core, and it allows us to fix any errors generated
from the DesignCompiler.

The Verilog source files are maintained with conditional
compilation definitions around all of the structural
components. The conditional compilation allows us define
all of the structural components for both the DesignWare
and Epoch libraries in a single source file for easing
maintenance. Unfortunately, DesignCompiler does not
understand Verilog conditional compilation statements. We
have written and include a simple Verilog preprocessor in
order to preprocess the Verilog source files for
DesignCompiler.

6.3 File Outputs
The results of building the core are representations of the
final product at various levels of representation. The testing
flow can test the design at many of these levels. The outputs
of the placement and routing tool are a Spice model, a
standard delay format (SDF) back-annotated Verilog file
containing resistor and capacitor delay information, and a
CIF/GDSII layout description. The SDF Verilog files and
the Spice model can be simulated and tested with the
appropriate tools.

6.4 Lines of Code and Gate Count
The number of lines of Verilog code used to build the CMU-
DSP along with a gate count obtained using Synopsys tools
are listed in Table 2. The numbers presented represent the
core only, applicable to both the default design flow
presented in Section 4.1 and the alternate design described
in Section 4.2. The default design flow also includes, as can
be seen by examining Figure 5 three memories, an external
memory interface, and the pad frame and pads. The
transistor count for the Epoch module generator design
flow, including memories and peripheral components is
640,815. The transistor count using the alternate design flow
is 150,514.

7. Conclusions and Future Work
CAD research needs better benchmarks in order to remain
relevant and productive. These benchmarks should have size
and diversity similar to ASICs designed in industry. Vertical
benchmarks, which include multiple levels of
representation, allows benchmarks to be used by more CAD
researchers and allow researchers at a particular level to
evaluate the effects of innovations on the entire design flow.
Finally, research into IP-based design and systems-on-a-
chip require large, well-documented vertical benchmarks.

Development of two more vertical benchmarks is currently
ongoing. These circuits are an ARM-like processor core and
an FIR filter engine ASIC from MITRE Corporation. All

designs will have a parallel structure to the CMU-DSP,
including multiple levels of representations, system level
performance metrics, and a testing methodology. All
benchmarks will be available on the WWW. We are also
developing a public domain standard cell library so that all
physical design information can be made public.

Our long-term plan is to maintain a bibliography of usage of
our design referenced in other papers. Our intention is to let
people in the EDA community have a central resource for
the use of our designs and the ability to easily find and
reference future works based on it or referenced to it. This
bibliography will also be available from the CMU web site.

8. Acknowledgments
This work was supported by DARPA under order number
A564 and National Science Foundation Grant Number
MIP90408457. The authors would like to thank Nitzan
Weinberg for his work on the CMU-DSP.

9. References
[1] F. Brglez, D. Bryan, K. Kozminski. “Combinational

Profiles of Sequential Benchmark Circuits”, ISCAS
‘89, pp. 1929-1934, 1989.

[2] J. Darnauer and W. Dai, “A Method for Generating
Random CIrcuits and Its Application to Routability
Measurement”, in 4th ACM/SIGDA Int’l Symp. on
FPGAs, pp. 66-72, Feb. 1996.

[3] N. Dutt. “Current Status of HLSW Benchmarks and
Guidelines for Benchmark Submission”, HLSynth ‘92
Benchmark, Sept. 1992.

[4] M. D. Hutton, J. P. Grossman, J. S. Rose, and D. G.
Corneil, “Characterization and Parameterized Random
Generation of Digital Circuits,” in 33rd ACM/SIGDA
Design Automation Conference (DAC), pp. 94-99, June,
1996.

[5] Motorola Corporation, DSP56000 Digital Signal Pro-
cessor Family Manual. 1995.

[6] Programmable Electronics Performance Corporation,
URL: http://www.prep.org/synth.htm.

[7] System Performance Evaluation Corporation (SPEC),
SPEC CPU95 Version 1.1, URL: http://www.spec.org,
August 21, 1995.

[8] S. Yang. “Logic Synthesis and Optimization Bench-
marks User Guide, Version 3.0”, Microelectronics Cen-
ter of North Carolina, Research Triangle Park, NC, Jan.
1991.

Table 2: Design Information

Component Lines of Verilog Number of Gates

AGU 8672 5011

ALU 4434 6395

PCU 2226 2711

Bus Switch 868 433

Total 16200 14550

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

