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Abstract

This paper addresses the problem of device-level placement
for analog layout. Di�erent from most of the existent ap-
proaches employing basically simulated annealing optimiza-
tion algorithms operating on at Gellat-Jepsen spatial repre-
sentations [2], we are using a more recent topological repre-
sentation called sequence-pair [7], which has the advantage
of not being restricted to slicing oorplan topologies. In
this paper, we are explaining how speci�c features essential
to analog placement, as the ability to deal with symmetry
and device matching constraints, can be easily handled by
employing the sequence-pair representation. Several ana-
log examples substantiate the e�ectiveness of our placement
tool, which is already in use in an industrial environment.

1 Introduction

In order to automatically produce analog device-level lay-
outs matching in density and performance the high-quality
manual layouts, a placement tool must not only provide a
good rectangle packing functionality (which must be com-
mon to any placement method) but, additionally, it must
include also analog-speci�c capabilities. Such speci�c fea-
tures are, for instance, (1) the ability to deal with topolog-
ical constraints for symmetry and device matching; (2) the
ability to arrange devices such that critical structures are
shared in common (also known as device merging) in order
to reduce both layout density and induced parasitics; (3)
the existence of a (built-in) library of prede�ned module gen-
erators and the ability to exploit their reshaping capabilities
during the placement process.

1.1 Brief overview of placement methods

The constructive placement techniques, which consist in evolv-
ing gradually the placement solution by selecting one module
at a time and positioning it in the "best" available location,
were among the �rst developed for VLSI layout. Several
systems for analog placement employ constructive methods:
Kayal et al. developed an expert knowledge base to guide
the placement [3]; Mehranfar suggested a schematic-driven
approach, using a constructive scheme based on connectivity
and relative positioning in the input schematic [8]. Although

these methods are fast, scaling well with the problem size,
the results can be poor due to the order dependence, lacking
of global view in dealing with a variety of interacting quality
measures.

Branch-and-bound placement techniques use a controlled
enumeration of all possible layout con�gurations in the search
space, where a lower bound of the chosen cost function is
used to prune the search. The branch-and-bound algorithms
eventually �nd the optimal solution as they explore exhaus-
tively the search space. However, they are e�ective only
for problems of very small size (the manageable number
of blocks in [9] is 6), as the number of visited con�gura-
tions grows exponentially with the size of the problem. The
related ILP placement models [13] su�er the same scaling
drawback (see also Section 6), as most ILP packages are
based on branch-and-bound approaches. Even if the place-
ment problems are tackled hierarchically, the branch-and-
bound methods are less attractive for analog device place-
ment due to usually a much larger search space than digital
problems of similar size (for instance, due to the presence
of "soft" capacitors which can be implemented in a large
number of versions).

For the time being, the simulated annealing (e.g., [2]) and
genetic algorithms are the most e�ective choice for solving
industrial analog placement problems. These algorithms use
stochastically controlled hill-climbing to avoid local minima
during the optimization process. In addition, they do not
impose severe constraints on the size of the problems or on
the mathematical properties of the cost function. While ef-
�ciently trading-o� between a variety of layout factors as
area, total net length, aspect ratio, maximum chip width
and/or height, cell orientation, "soft" cell shape, etc., they
are very exible { supporting incremental addition of new
functionality, and they are relatively easy to implement (al-
though good tunning needs more time). This is why sim-
ulated annealing, the most mature of the stochastic tech-
niques, provided the engine for e�ective tools both in digital
(TimberWolfSC v7.0 [12]) and analog design: ILAC [11],
KOAN/ANAGRAM II [1], LAYLA [4], PUPPY-A [6].

1.2 Motivation of the research

A simulated annealing algorithm can equally operate with
two distinct spatial representations of placement con�gura-
tions. The �rst is the so-called at representation intro-
duced by Jepsen and Gellat [2], where the cells are spec-
i�ed in terms of absolute coordinates on a gridless plane.
The moves are simple coordinate shifts or changes in cell
orientation. Cells are allowed to overlap in possibly illegal



ways1, as no restriction is made referring to the relative po-
sition of a cell with respect to another cell. A (weighted)
penalty cost term is associated with infeasible overlaps, and
this penalty must be driven to zero in the optimization pro-
cess. The at representation is well-suited to handle device
matching and symmetry constraints, typical to analog lay-
out; it also allows to explore the bene�cial device overlaps.
For these reasons, the at representation was the choice for
KOAN/ANAGRAM II [1], LAYLA [4], and PUPPPY-A [6]
systems.

However, this representation has also a drawback re-
vealed, for instance, in [12]. Due to the complexity of the
cost function, the total (infeasible) overlap in the �nal place-
ment solution is not necessarily equal to zero: a �nal step
eliminating the gaps and overlaps must be performed, de-
grading the computation time and the solution optimality
(in terms of the cost function). Moreover, the weight of the
overlap term must be carefully chosen: if it is too small, the
cells may have the tendency to collapse; if it is too large, the
search ability of the annealer for a good placement (in terms
of area, total net length, etc.) may be impeded. To combat
this e�ect, an earlier version of the TimberWolf system [12]
used a sophisticated negative control scheme to determine
the optimum values of the cost term weights.

The second placement representation uses a topological
or a graph-based model. The most popular is the slicing
model, �rst introduced by Otten [10]. In contrast to the at
representation, cell positions are speci�ed relatively, based
on the topological relations between them. The cells are
organized in a set of slices which recursively bisect the lay-
out horizontally and vertically. The direction and nesting
of the slices is recorded in a slicing tree or, equivalently,
in a normalized Polish expression [14]. The annealing al-
gorithm does not move the cells explicitly: it rather alters
their relative positions, modifying the slicing tree or Pol-
ish expression. In this representation, cells cannot overlap,
which may lead to an improved e�ciency in the placement
optimization.

However, the slicing representation limits the set of reach-
able layout topologies. This can degrade layout density,
especially when cells may be very di�erent in size, which
is often the case in analog layout. Furthermore, symme-
try and matching constraints are di�cult to maintain: for
instance, slicing style placement tools have to implement
symmetry constraints in the cost function through the use
of virtual symmetry axes [5], which is a less e�cient solu-
tion. Although the ILAC system [11] employs this model, it
is widely acknowledged that slicing placement is not a good
choice for high-performance analog design.

More recently, a novel topological representation { called
sequence-pair { has been proposed by Murata et al. [7]. This
representation is not restricted to slicing oorplan topolo-
gies. The goal of our paper is to show that the sequence-
pair representation is adequate for high-performance analog
layout, as symmetry and device matching constraints can
be easily handled. In this way, the superior e�ciency of the
topological representations is combined with the complete-
ness of the search space of placement con�gurations and
the ability to handle typical analog constraints. The results
obtained so far with our placement tool, already active in
an industrial environment, will substantiate the validity of
these claims.

This paper is organized as follows. Section 2 will briey
describe the sequence-pair representation. Section 3 will
explain the nature of the symmetry constraints in analog
design, while Section 4 will thoroughly analyze the sym-

1In analog layout, cells can overlap not only in legal but also ben-

e�cial ways ("device merging" or "geometry sharing" [1]).
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Figure 1: Placement con�guration encoded by the sequence-
pair (CDAFBGE;DCBGAFE)

metry handling during simulated annealing, when this op-
timization operates on sequence-pair representations. Sec-
tion 5 briey reviews the device-matching constraints and
Section 6 proves the e�ectiveness of our analog placement
solution. Then, Section 7 concludes with �nal remarks.

2 The sequence-pair representation

The basic idea of the sequence-pair representation, briey
described below for the sake of consistency, is to encode
any rectangle packing as an ordered pair of cell sequences
(�; �) . In [7] a method of deriving such an encoding is
informally described2. In particular, there exists at least a
sequence-pair encoding corresponding to (one of) the opti-
mal rectangle packing3. In addition, all the encodings are
feasible in the sense that a placement con�guration can be
derived from any encoding; moreover, the solution is optimal
in terms of area and it can be constructed in O(m2) time,
where m is the number of placeable cells. As the total num-
ber of encodings is �nite although large4, the solution space
can be e�ectively explored employing simulated annealing
or genetic algorithms.

Denoting by �i the cell occupying the position i in se-
quence �, and by ��1A the position of the cell A in the

sequence5, the topological relations between two cells A and
B are given by: if ��1A < ��1B and ��1A < ��1B then cell

A is to the left of cell B; if ��1A < ��1B and ��1B < ��1A

then cell A is above cell B.
Example The sequence-pair encoding of the 7 cell place-

ment con�guration in Fig. 1 is (�; �) = (CDAFBGE;

DCBGAFE) (see Section 4). As ��1F < ��1B and

��1B < ��1F (4 < 5 and 3 < 6), it follows that cell F is
positioned above cell B.

Murata et al. have conceived the sequence-pair represen-
tation as a general rectangle packing method [7]. In order
to aply this topological representation to analog placement,
handling symmetry is an essential requirement. Section 4
will show how to handle the symmetry constraints within
the sequence-pair topological representation.

2A procedure which builds the encoding (�; �) from the con�gu-
ration of m placeable cells in O(m2) time is also given in Section 4.

3This property is not valid for the normalized Polish expressions
[14] encoding the slicing structures, as the optimal (in terms of area)
packing may not have a slicing topology.

4The search space for m �xed-oriented "hard" cells has the size
(m!)2. If the cells can be rotated, or rotated and mirrored, the size
is (m!)24m or (m!)28m, respectively.

5� and � are one-to-one mappings and, therefore, the inverse map-
pings are well-de�ned.



3 Symmetry constraints in analog layout

In high-performance analog circuits it is often required that
groups of devices are placed symmetrically with respect to
one or several (vertical) axes. The main reason of symmet-
ric placement and routing is to match the layout-induced
parasitics in the two halves of a group of devices. Failure
to match these parasitics in, for instance, di�erential ana-
log circuits can lead to higher o�set voltages and degraded
power-supply rejection ratio [1]. Placement symmetry can
also be used to reduce the circuit sensitivity to thermal gra-
dients. Failure to adequately balance thermal couplings in
a di�erential circuit can even introduce unwanted oscilla-
tions. In order to combat potentially-induced mismatches,
the thermally-sensitive device couples should be placed sym-
metrically relative to the thermally-radiating devices.

Usually, the analog circuits have a mix of symmetric and
asymmetric components. The typical forms of symmetry
which should be handled by an analog placement tool are
[1]: (1) mirror symmetry { which consists in placing a sym-
metry group of cells about a common axis such that the cells
in every pair have identical geometry and mirror-symmetric
orientation; (2) perfect symmetry { which di�ers from the
previous by the identical (rather than mirror-symmetric)
orientations of the paired devices; (3) self-symmetry { char-
acteristic for devices presenting a geometrical symmetry and
sharing the same axis with other pairs of symmetric devices.

4 Handling symmetry constraints with the sequence-pair
representation

Assuming that a given subset of the placeable cells must con-
stitute a symmetry group, not all the sequence-pair codes
are feasible any more. For instance, suppose the cell couple
(C;D) in the Section 2 example should be symmetric relative
to a vertical axis: the encoding (�; �) = (CDAFBGE;
DCBGAFE) is not feasible as it leads to a placement con-
�guration where cell C lays above D.

At a �rst glance, one would be tempted to perform mi-
nor changes to the search space exploration: if the current
encoding proves to be consistent with the symmetry con-
straints then the cost of the placement con�guration is eval-
uated and the annealing algorithm operates normally; other-
wise, the current encoding is infeasible (in symmetry point
of view) and, therefore, disregarded. Unfortunately, such
a simple solution is not e�ective: taking into account that
the size of the search space without symmetry constraints is
(m!)2 (the total number of sequence-pairs), the size of the
solution space becomes signi�cantly smaller if the placement
con�guration must contain a symmetry group. Indeed, the
size of this new search space is given by the formula (which,
due to lack of space, will be proven elsewhere):

�
C
m�2p�s
m (m� 2p� s)!

�2
�Np;s (1)

where p is the number of symmetric pairs, and s { the num-
ber of self-symmetric cells in the group. Np;s can be com-
puted recurrently as follows:

Np;s = 6p �Np�1;s + 2s �Np;s�1

where Np;0 = 6pp!=3 ; p � 1 and N0;s = s! ; s � 0 .
Formula (1) shows that the size of the search space is

(m!)2=24 if (p = 2, s = 0). Therefore, when there are only
two pairs of symmetric cells more than 95.83% of the full
sequence-pair search space contains symmetric-infeasible so-
lutions. This has been con�rmed experimentally when try-
ing to place the cells in Fig. 1 such that the pairs of cells
(C;D) and (B;G) are respectively symmetric relative to a
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Figure 2: Placement con�guration with symmetry group
 = ((C;D) ; (B;G) ; A ; F )

common axis: the CPU time was several times higher and,
in addition, the �nal solution was poor because the number
of feasible codes investigated during the simulated annealing
was insu�cient (most of the codes being rejected).

A better strategy is to explore only those sequence-pairs
which comply with the symmetry constraints. This section
will show (a) how to recognize such sequence-pairs, and (b)
how to e�ciently restrict the annealer exploration only to
their subspace.

Let (�; �) be the sequence-pair of a placement con�g-
uration containing a symmetry group  composed of sev-
eral pairs of (mirrored/perfect) symmetric cells and self-
symmetric cells relative to a common vertical axis6. We
denote by sym(x) the symmetric of cell x, and we consider
by convention that sym(x) � x when x is a self-symmetric
cell. The sequence-pair (�; �) is called symmetric-feasible
if for any distinct cells x; y in  :

(S) ��1x < ��1y () ��1sym(y) < ��1sym(x)

Choosing y = sym(x) and taking into account that
sym(sym(x)) = x, condition (S) shows that any symmetric
pair of cells appears in the same order in both sequences �
and �. At the same time, the cells belonging to distinct sym-
metric pairs appear in reversed order in the two sequences
of the encoding.

Example(cont'd) Assumming there is a symmetry group
 = ( (C;D) ; (B;G) ; A; F ) composed of two symmet-
ric pairs and two self-symmetric cells A and F , the encod-
ing (�; �) = (CDAFBGE;DCBGAFE) is not symmetric-
feasible: the (S) condition is not valid for any of the pairs
of cells (C;D); (C;B); (C;G); (C;A); (C;F ); (D;B); (D;G),
(D;A); (D; F ); (A;F ). On the other hand, the encoding
(�; �) = (EBAFCDG;EBCDFAG) is symmetric-feasible;
it has been derived from the placement solution in Fig. 2.

Lemma 1 Any placement con�guration containing a symme-
try group can be encoded with a symmetric-feasible sequence-
pair.

Proof: According to [7], any placement con�guration can be
encoded with a sequence-pair. In particular, this is true also
for those con�gurations containing symmetry groups. If the
encoding is done with the procedure described below, then
the resulting sequence-pair has the property (S) when ap-
plied to a placement con�guration with a symmetry group:

sequence ConstructSequenceAlpha(m non-overlapping cells)
f // a similar procedure builds sequence �
sequence � (resp., �) is initially empty (zeroed);
for k = 1 to m f // k is the crt. position in sequence

6The case of multiple symmetry groups can be similarly ap-
proached, as it will be shown further.



let j be a cell not yet in sequence � (resp., �);
for (every cell i (6= j) not in the sequence) f
if the horizontal projections of cells i and j overlap
then if cell i is above (resp., below) cell j then j = i
else if cell i is to the left of cell j then j = i;g

�k = j; (resp., �k = j)g
return sequence � (resp., �);g

It can be easily veri�ed by analyzing all the possible rel-
ative positions between two pairs of symmetric cells (e.g.,
the second pair between the cells of the �rst pair, and so
on), or two self-symmetric cells, or one symmetric pair and
one self-symmetric cell, that the encoding generated as de-
scribed above satis�es condition (S).2

Applying the encoding procedure to the illustrative place-
ment con�gurations in Fig. 1 and Fig. 2, the sequence-pairs
(�; �) = (CDAFBGE;DCBGAFE) and, respectively,
(�; �) = (EBAFCDG;EBCDFAG) are obtained. The
latter encoding is symmetric-feasible.

Lemma 2 Given a set of placeable cells containing a sym-
metry group and a symmetric-feasible sequence-pair, then
one can build in polynomial time an optimal placement con-
�guration (in terms of area) satisfying the positioning and
symmetry constraints.

Proof: Denoting xi, yi the coordinates of the left-bottom
corner of cell i (i=1,. . . ,m) of width widthi and height
heighti, and given a symmetric-feasible sequence-pair (�; �),
a construction with the properties stated in Lemma 2 is
described below.

First, the x coordinates of the cells are computed such
that the positioning constraints (compatible with the given
sequence-pair) are satis�ed:

initialize xi = 0 (i = 1; m) and symAxis = 0;
for i = 1 to m f
j = �i; // choose cell j having position i in seq. �
for l = i+ 1 to m f
k = �l; // for cells k positioned after j in seq. �

if ��1j < ��1k // if k is positioned after j also in �

then xk = xk max (xj + widthj)
g // then k is to the right of cell j

if cell j has a symmetric cell k such that ��1k � i
// thus cell k is to the left of j, or j is self-symmetric

then symAxis = symAxis max
(xk+widthk)+xj

2
;

g

This part of the algorithm determines in O(m2) time the
x coordinates of the cells such that the horizontal positioning
constraints resulting from the sequence-pair (�; �) are satis-
�ed. In the absence of a symmetry group, the computation
of the x coordinates is over; otherwise, the x coordinates
must be trimmed in order to satisfy also the conditions of
symmetry. This is done in two steps: �rst, a "sweep to the
right" which �nds the �nal x positions of the cells to the
right of the symmetry axis, and also of the self-symmetric
ones; second, a "sweep to the left" which determines the x
positions of the cells to the left of the symmetry axis.

for i = 1 to m f // the sweep to the right
j = �i; // choose cell j having position i in seq. �

if cell j has a symmetric cell k such that ��1k � i then
f // if cell k is to the left of j, or j is self-symmetric
d = 2 � symAxis � (xk + widthk) � xj ;
if k = j then d = d=2; // if j is self-symmetric
if d > 0 then f
xj = xj + d; // push cell j to the right
for l = i+ 1 to m f
k = �l; // all cells k to the right of j ...

if ��1j < ��1k then xk = xk + d;

g // ... are equally pushed to the right
g

g
g

The "sweep to the left" works according to a similar
scheme. It must be noticed that the symmetric-feasibility
condition is su�cient in order to ensure the correct x-posi-
tioning after only two sweeps { one to the right and one
to the left. If the sequence-pair (�; �) does not satisfy the
(S) condition, it could happen that two pairs of symmetric
cells (x ; sym(x)) and (y ; sym(y)) may prevent each
other from being simultaneously symmetric about the axis
if, for instance, x is pushing y to the right when achieving the
symmetry of the �rst pair, and afterwards sym(y) is pushing
sym(x) to the left achieving the symmetry of (y ; sym(y))
but destroying again the symmetry of (x ; sym(x)). More-
over, the complexity of the algorithm is still O(m2), the
same as in the absence of any symmetry constraint.

Finally, the y coordinates of the cells are computed in
the inverse order of sequence �, taking also into account
that symmetric couples have equal y coordinates.

A placement con�guration built as described above has a
minimum width and height while satisfying the constraints.
Indeed, employing the graphs of horizontal and vertical con-
straints introduced in [7], one can show in a similar way
that the width and height of the chip is determined by the
longest paths length between source and sink in the two
graphs which are minimal under the constraints. The only
di�erence is that the weights of the edges in the two graphs
must take into account also the constraints of symmetry.2

The two lemma's presented above show that, in order to
�nd an optimal cell packing containing a symmetry group, it
is not necessary to explore the entire space of (m!)2 sequence-
pairs; it su�ces to explore the signi�cantly smallerspace of
symmetric-feasible sequence-pairs. The annealing algorithm
can be easily adapted to explore the space of symmetric-
feasible sequence-pairs taking the following caveats:

(1) The initial sequence-pair must be symmetric-feasible.
Such a sequence-pair corresponds, for instance, to a con�g-
uration where the pairs of symmetric cells are disposed in
line, like several embedded brackets, surrounding the self-
symmetric cells which are disposed one on the top of the
other.

(2) The move-set of the annealer must be selected such
that the property of symmetric-feasibility is preserved for
all the visited sequence-pairs. The modi�cations of cell po-
sitions or cell interchanges in sequence � and/or � are valid
moves for the cells outside the symmetry group. However,
if two cells from symmetric couples are interchanged in se-
quence �, then their symmetric counterparts must be also
interchanged in sequence �.

The requirement of several symmetry groups { that is,
groups of cells having distinct symmetry axes { can be mod-
eled in a similar way: the cells within every group must com-
ply with the (S) condition; in addition, the construction of
the placement solution from a given sequence-pair must be
re�ned, along with the move-set of the annealing algorithm.

5 Handling device-matching constraints

The degree to which the electrical properties of identically
speci�ed components fail to match can often limit the cir-
cuit performance in analog design. Device mismatches are
due both to random events in the manufacturing process
{ leading to small unpredictable variations in the electri-
cal characteristics of devices { and to dissimilar geometrical
choices for matching devices during the design process.



The latter systematically-induced mismatches are han-
dled during placement. For instance, in order to reduce the
degree of electrical mismatch due to area e�ects, matching
groups of cells can be de�ned, all members being constrained
to the same orientation and device variant. The matching
groups are handled as constraints at the move-set level of
the annealer [8, 1, 4].

In addition to handling matching constraints, the shape
optimization of parametric cells with a discrete number of
possible implementations [4] and of \soft" cells { with the
aspect ratio varying continuously between given limits { is
also performed during placement.

6 Overview of the main results

The placement tool is currently implemented in Mainsail {
object-oriented language which is a trademark of Xidak, Inc.
The tool is embedded in ROSE, an in-house retargetable
object symbolic environment for layout design, which is in
use for industrial purpose and is available on HP UX and
SunOS platforms. The results presented below have been
obtained on an HP 9000/777 workstation.

The simple illustrative example in Fig. 2 has been pro-
cessed by our tool in 4 seconds. In contrast, the same exam-
ple with only 7 cells was processed in over 15 minutes by an
ILP-based placer, implementing for testing purpose the ana-
lytic model described in [13]. This result shows clearly that
the branch-and-bound and related ILP-based techniques are
ine�ective (unless the number of blocks on each hierarchical
level is at most 6 [9], which is not common).

The �nal layout of the ampli�er is presented in Fig. 3.
As already mentioned, Murata's rectangle packing algorithm
based on sequence-pair [7] cannot handle directly this exam-
ple due to the symmetry constraints. Fig. 4 shows a tele-
scopic opamp with gain-boost ampli�ers (one of which is
displayed in Fig. 3). The placement has been performed in
7.8 minutes. Although the theoretical complexity is not af-
fected, the symmetry constraints increase the computation
time as they a�ect the construction of the placement con-
�guration corresponding to a sequence-pair encoding (see
Section 4). Without any symmetry constraint, the place-
ment for the 36 cell telescopic opamp took only 3.2 minutes
and the area was about 15% smaller.

Fig. 5 shows a programmable capacitor block used in
a continuous-time �lter. This circuit with 28 cells has no
symmetric devices, but it contains 6 large \soft" capacitors
which aspect ratio can vary between given limits while pre-
serving the same area. The initial shapes of the 6 capacitors
were di�erent from the ones in Fig. 5. After the placement
tool determined the \optimal" aspect ratios of the soft ca-
pacitors, the device generator incorporated in ROSE [4] was
automatically invoked and the 6 capacitors were regenerated
with the required new shape, as shown in Fig. 5.

Table 1 displays the results obtained for several bench-
mark analog circuits. These examples are relevant due to the
fact that analog circuits usually contain no more than 100
cells per hierarchical level. The computation time is depen-
dent not only on the circuit size and on the number and type
of constraints, but also on the schedule employed during the
simulated annealing. This is why comparative time evalua-
tions with other annealing-based placement techniques are
somewhat di�cult to make. However, because of the sched-
ule similitude, we can report that our experiments indicate
a better speed performance by a factor of 1.2�1.4 compared
to the analog placement tool described in [4] which operates
on at Gellat-Jepsen spatial representations [2].

Design # cells CPU[min]

Bias current generator 85 24
Gain-boost ampli�er 17 0.8
Telescopic opamp (gain-boost amp.) 36 7.8
Programmable capacitor block 28 1.7
Ampli�er with selectable gain 79 21
Charge pump 98 42
Limiter (17 � 500 MHz) 111 58
Frequency divider (selectable ratio) 116 64

Table 1: Placement results

7 Conclusions

This paper has addressed the problem of device-level place-
ment for analog layout. Di�erent from most of the existent
tools based on a simulated annealing algorithm employing
at representations, this paper has advocated the use of
sequence-pair, a topological representation not restricted to
slicing structures. Handling of symmetry constraints, essen-
tial requirement for any analog placement method, has been
thoroughly studied in the context of the sequence-pair rep-
resentation. The e�ectiveness of our placement tool, already
operational in an industrial environment, has been demon-
strated by typical examples from analog design.

References

[1] J. Cohn, D. Garrod, R. Rutenbar, L. Carley, Analog Device-
Level Automation, Kluwer Academic Publishers, 1994.

[2] D.W. Jepsen, C.D. Gellat Jr., \Macro placement by Monte
Carlo Annealing", Proc. IEEE Int. Conf. on Comp. Design,
pp. 495-498, Nov. 1984.

[3] M. Kayal, S. Piguet, M. Declerq, B. Hochet, \SALIM: a lay-
out generation tool for analog ICs," Proc. IEEE Custom
Integrated Circuits Conf., pp. 7.5.1-4, 1988.

[4] K. Lampaert, G. Gielen, W. Sansen, \A performance-driven
placement tool for analog integrated circuits," IEEE J. of
Solid-State Circ., Vol. SC-30, No. 7, pp. 773-780, July 1995.

[5] E. Malavasi, E. Charbon, G. Jusuf, A. Sangiovanni-Vincen-
telli, \Virtual symmetry axes for the layout of analog IC's,"
Proc. 2nd ICVC, pp. 195-198, Seoul, Korea, Oct. 1991.

[6] E. Malavasi, E. Charbon, E. Felt, A. Sangiovanni-Vincentelli,
\Automation of IC layout with analog constraints," IEEE
Trans. on Comp.-Aided Design of IC's and Systems, Vol.
15, No. 8, pp. 923-942, Aug. 1996.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, \VLSI
module placement based on rectangle-packing by the
sequence-pair," IEEE Trans. on Comp.-Aided Design of
IC's and Systems, Vol. 15, No. 12, pp. 1518-1524, Dec. 1996.

[8] S.W. Mehranfar, \STAT: a schematic to artwork translator
for custom analog cells," Proc. 1990 IEEE Custom Inte-
grated Circuits Conf., pp. 30.2.1-3, 1990.

[9] H. Onodera, Y. Taniguchi, K. Tamaru, \Branch-and-
bound placement for building block layout," Proc. 28th
ACM/IEEE Design Automation Conf., pp. 433-439, 1991.

[10] R. Otten, \Complexity and diversity in IC layout design,"
Proc. IEEE Intn'l Symp. Circuits and Computers, 1980.

[11] J. Rijmenants, J.B. Litsios, T.R. Schwarz, M. Degrauwe,
\ILAC: an automated layout tool for analog CMOS cir-
cuits," IEEE J. of Solid-State Circuits, Vol. SC-24, No. 2,
pp. 417-425, April 1989.

[12] W.-J. Sun, C. Sechen, \E�cient and e�ective placement for
very large circuits," IEEE Trans. on Comp.-Aided Design of
IC's and Systems, Vol. 14, No. 3, pp. 349-359, March 1995.

[13] S. Sutanthavibul, E. Shragowitz, J.B. Rosen, \An analyti-
cal approach to oorplan design and optimization," IEEE
Trans. on Comp.-Aided Design of IC's and Systems, Vol.
10, No. 6, pp. 761-769, June 1991.

[14] D.F. Wong, C.L. Liu, \A new algorithm for oorplan design,"
Proc. 23rd ACM/IEEE Design Automation Conf., pp. 101-
107, 1986.



g
s

s

s

d
d

d
U10P

gs

s

s

s

s

d

d

d

d

U4P

gs

s

s

s

s

d

d

d

d

U2P

gs

s

s

s

s

d

d

d

d

U1$0

gs

s

s

s

s

d

d

d

d

U3P

g
s

s

s

d
d

d
U11P

g s

s

s

s

s

d

d

d

d

U4

g
s

s

s

d
d

d
U5

g s

s

s

s

s

d

d

d

d

U3

g
d

d

d

d

d

d

s

s

s

s

s

s

U2

g s

s

s

s

s

d

d

d

d

U1$1

g
s

s

s

d
d

d
U10M

g s

s

s

s

s

d

d

d

d

U4M

g s

s

s

s

s

d

d

d

d

U2M

g s

s

s

s

s

d

d

d

d

U1$2

g s

s

s

s

s

d

d

d

d

U3M

g
s

s

s

d
d

d
U11M

avss

bias4bias3

bias3bias4bias1bias2

bias1bias2

inm

outp

avsub
vc

avdd

vc

avdd

avsub

outm

inp

avdd

avss

vc

avdd avdd avdd
avdd

avdd

n2

avsub

n2p

n2p

n2p

n2p

outm

outm

n3p

n3p

avdd

ntail

inp

n3p

vc

avsub

n3

n3

n2

bias1

bias2

bias2

bias1

bias1

bias3

bias4

bias2

n2m

n2m

n2m

n2m

n3m

n3m

avdd
bias1
bias1

n3

n3

inm

outp outp

outp

bias3

bias4

bias4bias3

bias3

Figure 3: Final layout of the gain-boost ampli�er

Figure 4: Placement for a telescopic opamp with gain-boost ampli�ers
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Figure 5: Placement for a programmable capacitor block from a continuous-time �lter
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