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Abstract
The complexity of large-scale multiprocessors has burdened the
design and verification process making complexity-effective func-
tional verification an elusive goal. We propose a solution to the
verification of complex systems by introducing an abstracted veri-
fication environment called Raven. We show how Raven uses stan-
dard C/C++ to extend the capability of contemporary discrete-
event logic simulators. We introduce new data types and a diagnos-
tic programming interface (DPI) that provide the basis for Raven.
Finally, we show results from an interconnect router ASIC used in
a large-scale multiprocessor.

1 Introduction
Modern scalable multiprocessors may have tens of millions of

gates in a single node (Figure 1). Consequently, a minimal sys-
tem simulation consisting of several nodes yields a very bloated
and unmanageable verification environment. Historically we have
used a special-purpose testbench constructed in a hardware design
language (HDL) and simulated along with the original design to
provide stimulus for the design under test (DUT). Unfortunately,
this method creates a heavyweight logic simulation and, moreover,
the size and complexity of the testbench can rival the logic design
being verified.

The increasing complexity, and sheer enormity, of large-scale
multiprocessors is impeding the design and verification process. In
the past we sought innovative solutions to manage this complex-
ity, including special-purpose cycle-based logic simulators. More
recently, we have turned to new technologies such as formal verifi-
cation (both model checking and equivalence) to mitigate this com-
plexity. However, to be successful we need to exploit more tradi-
tional logic simulators in conjunction with other methods, such as
formal analysis and verification techniques.

To address future verification challenges we propose using
Ravenas a verification environment suitable for verifying large-
scale multiprocessors. We developed Raven to provide an extensi-
ble, abstract verification framework that augments traditional logic
simulators, and is built upon standard C/C++ and a uniform diag-
nostic programming interface (DPI).

Related Prior Work

Managing complexity in the verification process is not a new
idea in the hardware design community. Contemporary multipro-
cessors such as the SGI Origin2000 [1] have encountered design
challenges, and addressed these obstacles with innovative method-
ologies [2] that include formal verification and traditional simula-
tion. The verification demands of the Origin2000 project inspired
the Keen-Michelson Language (KML) [3] which was developed to
address the verification problem of a scalable node controller. How-
ever, KML is a special-purpose language requiring a large effort to
adapt the verification environment to other design projects.

Several commercial tools available from Verisity Design and
System Science Inc. extend the capability of current logic simu-
lators to address the ASIC/IC verification problem. Verisity’sSpec-
man[4] provides an automated functional test generation environ-
ment from rules embodied in the design specification. System Sci-
ence’sVERA[5] hardware verification language (HVL) provides
an abstract test development environment that replaces the tradi-
tional HDL-based testbenches with a special-purpose language to
describe self-checking diagnostics.

Prior large-scale projects, such as the Cray T3E and SN1 (the
follow-on to SGI Origin2000) involved constructing very complex
testbenches around logic modules, typically single chips. For ex-
ample the SN1 router chip testbench was written using an HDL (a
combination of behavioral, RTL, and structural) with additional C
code to support self-checking diagnostics. Directed and random
diagnostics were written using this testbench; however, this hetero-
geneous verification environment, although effective, was unneces-
sarily complex and cumbersome.

Jones and Privitera use a formal specification to automatically
generate functional test vectors for Rambus designs [6]. The for-
mal specification completely describes the correct behavior of the
device, from which they generate random and directed diagnostics
using the RS language. The RS description expresses an abstracted
operational interface of the design as opposed to the logical struc-
ture of the device. Since the RS specification is not suitable for
simulation it must be transformed into Verilog and simulated with
a netlist of the device. Although this approach proved valuable for
verifying Rambus DRAMs it is not likely to be effective for more
general-purpose designs that don’t exhibit a high degree of regular-
ity.



Figure 1: A typical node organization of a distributed shared memory multiprocessor, consisting of one or more processors, memory
and directory (MD) interface, network interface (NI), and input/output (IO) interface.
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2 Motivation
The verification problem is rooted in the exponential growth of

IC technology. As design complexity and integration increase, the
verification challenges are compounded. In the logic design pro-
cess we use various types ofabstractionto manage this complexity,
for example hierarchical design methods. In much the same way,
we want to employ abstraction to effectively mask complexity and
implementation details during the verification phase.

To providecomplexity-effective functional verificationwe need
to leverage current discrete event logic simulators, without burden-
ing the verification engineer who is writing the diagnostic. To ac-
complish this we established several goals for a verification envi-
ronment.

scalability must allow verification at various levels, including:
sub-chip level, single-chip, and multi-chip system simula-
tions. As the logic design matures, the verification environ-
ment must grow also. It is unproductive to create “disposable
testbenches” at each phase of the logic design.

standard language must provide for a familiar and contempo-
rary high-level language for diagnostic development, such as
C/C++. These programming skills are commonplace in most
engineering teams.

decoupled diagnostic/simulator the diagnostic should not be
bound to the simulator. By this we mean diagnostics can be
quickly re-compiled without rebuilding the simulator.

uniform diagnostic programming interface the diagnostic must
interact with the device under test (DUT) through a well-
defined Diagnostic Programming Interface (DPI) to enhance
diagnostic portability and ease-of-use.

automatic verification the verification environment must provide
automatic validation of functional and temporal properties.
That is, stimuli are injected into the logic design and the re-
sponse is automatically validated against some expected re-
sults. An error condition causes the diagnostic to immediately
terminate.

A hardware verification environment that encompasses the
above attributes will provide a better framework for validating the
correctness of future large-scale multiprocessors.

3 Design and Operation
The Raven verification environment consists of two major parts:

a hardware simulator, and a diagnostic (test). The two parts are

independent processes which can execute concurrently on a multi-
processor or time-share on a uniprocessor system, with synchro-
nization and communication via sockets (Figure 2). By decou-
pling the diagnostic and the logic simulator we essentially create
a client-server relationship between the diagnostic and simulator,
where the interprocess communication (IPC) mechanism (sockets)
delivers the stimulus and returns the results from the hardware sim-
ulator.

3.1 Architecture
The Raven verification environment (Figure 3) is designed upon

several layers of abstraction to mask the complexity and details of
the logic design. This use of abstraction is analogous to an appli-
cation program being abstracted from the actual physical hardware
by several layers of operating system (API, user and system level
calls, device drivers), or similarly a network application abstracted
from the communication media by a communication protocol stack
(e.g. layers of the OSI networking model). The logic design (usu-
ally RTL or gate-level HDL) of the DUT is the nucleus of the Raven
environment. Thewrapperconsists of a shell around the logic that
serves as an interface to the Raven kernel. The logic and wrapper
are compiled into an object file, which is linked with the Raven
kernel routines to create an executable logic simulator. The inter-
process communication (IPC) layer provides the client-server inter-
face between thediagnostic programand the logic simulator. The
Raven kernel consists of adiagnostic kerneland asimulation kernel
that lie on either side of the IPC layer. The Raven kernel provides
very generic, low-level operations that are leveraged by the upper
layers. The diagnostic programming interface (DPI) layer uses the
kernel routines to provide a very well-defined and uniform interface
to the diagnostic (test) developer. Diagnostic programs are written
in C/C++ using the DPI.

The primary data object used by Raven is anevent. An event is
a very generic term used to describe two types of activities: signal
transition (wiggle), and a sequence of signal transitions (bundle). A
wiggle corresponds to a singular signal transition, whereas a bundle
refers to an aggregate of transitions.

3.2 Raven Data Types
Raven extends the ANSI C/C++ basic data types (char , int ,

long , float , double ) with data types needed to support hard-
ware designs with two-state and four-state values that are common
in most HDLs. In addition, several compiler macros are used to
make the new types platform independent.



Figure 2: A diagnostic and logic simulator running under the
Raven verification environment.
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Portable integers
Heterogenous computing environments are very common re-

sources, unfortunately the standard C++ integer typesint , short ,
and long can vary from one compiler and hardware platform to
the next. On most workstation or server-class machines, ashort
is 16-bits and anint and long are 32 and 64-bits wide, respec-
tively. Similarly, on SGI machines using a 64-bit compiler ashort
is 16-bits and anint is 32-bits long. However, on Cray machines
a short , int andlong are all 64-bits. To prevent any compati-
bility problems Raven introduces abig data type which is defined
as a 64-bit integer that is independent of the hardware platform.

Two-state Variables
Often in hardware designs we come across signals that are larger

than the standard integer types. Raven simplifies the use of large
data values by providing an arbitrarily largenum type that closely
follows the rules of the standardint type except that none of
the standard modifiers likeunsigned , signed , const , and
volatile can be used in conjunction with anum. Raven pro-
vides theNUMmacro for specifyingnum literals. A variable of type
num is declared as follows:

numa ;
numb = 1 ;
numc = NUM(0xdeadbeef) ;

Four-state Variables
The reg data type provides a portable (machine independent)

256-bit four-state value with acomparison mask. Thereg type is
the standard type for holding simulation values. Thereg type also
has aREGmacro that takes a four-stateliteral. The literal uses the
standard format prefixes of either C++ (0x for hexadecimal,O for
octal), or Verilog HDL (’h for hexadecimal,’o for octal, ’d for
decimal,’b for binary). The literal can be composed of valid digits
for the base, along with unknowns (x or X) and high-impedance
(z or Z) values. For clarity, the underscore () character can be

Figure 3: The Raven verification environment.
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included in the literal as a separator. A variable of typereg is
declared as follows:

reg a ;
reg b = “ ’b1111 0000 xxxx zzzz ” ;
reg c = REG(0x123456789abcdef) ;

All the arithmetic, logical, bit-wise, and relational operators work
the same onreg types as they do on standard integers. For in-
stance, it is perfectly legal to perform (given the above variable
declarations):a = b + c ;. Some operations, however, may not
make sense on four-state variables, such as greater-than and less-
than relational operators. If either variable containsx ’s or z ’s, the
result would be undefined. In such cases we followed the conven-
tion of producing the same results as Verilog would.

Eachreg also has amaskfield to identify significant bits used
when applying stimulus or validating results. The mask field is
logically and-ed with the data before being applied or verified, ef-
fectively ignoring the non-significant portions. The user must set
this mask accordingly to preventfalse error detection; that is, a di-
agnostic fails because we are comparing bits of a register that are
uninteresting. By default, all of the 256-bits of areg value are con-
sidered significant, unless instructed otherwise by an assignment to
themask field of areg type variable.

Signal Transition Events
Thewiggle data type contains information to describe a signal

transition. Thewiggle type is the atomic unit for building more
abstract types and is defined as follows:

class wiggle : public reg f

public :
big delay ;
big time ;

g;

The semantics of thedelayfield depend on whether the signal is an
input or an output of the simulator. If the signal is being applied
as stimulus, then the delay field contains the minimum number of
clock periods the signal will be delayed before being applied to the
simulation. Otherwise, for a simulator output signal, the delay field
is the number of clock periods that passed since the last output from
the simulator. Thetimefield is assigned by the Raven kernel as a
time-stamp of the simulation time when the event is applied to or
captured from the simulator.

Message Events
Thebundle data type is an aggregate ofwiggle s, and encap-

sulates all the necessary information to describe amessage. The
bundle abstraction can be thought of as a dynamically sized array
of wiggle s. A message then, is a sequence of wiggles occurring
on some communication channel.

Packet Events
The packet type is an abstraction of thebundle type, and

can be viewed as a logical sequence of flow control units (flits) on
a communication channel. For instance, we can define a packet,P

as:
P = fhead; body�g

wherehead is a flit describing the start of a packetP , body is zero
or more flits of payload for the packet. The packet format is gov-
erned by a communication protocol which the user defines.



3.3 Diagnostic Programming Interface
The diagnostic programming interface (DPI) provides the veri-

fication engineer with a high-level abstraction of the hardware de-
sign. The DPI makes extensive use of events as either arguments or
return values of DPI primitives.

We formally define aneventusing the 5-tuple:

E = (node; location; name; event-id; type)

wherenode is the node-id of a node in a multi-node system simu-
lation (defaults to node 0 for unit-level or chip-level simulations),
the location specifies the interface in the simulation at which the
event is associated,nameis a string to identify the event,event-id
is a unique event number which is assigned by the Raven kernel to
identify an event, andtypeis eitherwiggle, bundle, or packet.

Generating Stimulus
Theapply primitive is used to create an event for delivery to

the simulation. Theapply primitive will submit an event to the
Raven kernel for simulation. The basic form forapply is:

event-id= apply( event) ;

whereeventis the event to be applied as stimulus to the simulator,
andevent-idis a unique numeric identifier of the event. Theapply
operation is non-blocking, so diagnostic execution continues with
the next sequential instruction in the diagnostic program.

Validating Simulation Results
Theverify primitive is used as theapply counterpart to val-

idate results from the logic simulator. Theverify operation will
attempt to match theexpectedevent with theactualevent received
from the simulation. If a mismatch is detected during automatic
verification, the diagnostic will display the error trace and termi-
nate. The general form forverify is:

event-id= verify( event) ;
The verify operation returns a unique numeric identifier of the
expected event, which can subsequently be used for event synchro-
nization (verify , like theapply primitive, is a non-blocking op-
eration).

Note, an unexpected event (one for which there is no outstanding
verify ) is also treated as an error condition. Raven also provides
a user-definabletimeoutvalue to detect errors caused by indefinite
postponement.

Explicit Synchronization
Often a hardware design will behave according to some protocol

or interface that is reasonably well defined. For instance, consider
a bus interface unit (BIU) of a microprocessor (Figure 4). The BIU
is responsible for implementing the bus-level interface to a micro-
processor. This interface requires some handshaking protocol for
devices that wish to use the bus. To request the bus a device will

Figure 4: A diagnostic and logic simulator for a bus interface
unit (BIU) of a microprocessor.
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issue abus request(BREQ), and wait for abus grant(BGRANT)
response from the microprocessor. After receiving a BGRANT, the
device will issue abus grant acknowledge(BGACK) to inform the
microprocessor that it successfully received control of the bus. A
simple Raven diagnostic to validate this behavior is given below.

apply( BREQ) ;
verify( BGRANT) ;
await( BGRANT) ;
apply( BGACK) ;

Each of the events in this simple example would be a signal transi-
tion event (wiggle). Sinceapply andverify primitives are non-
blocking it is necessary for the user to specify explicit synchroniza-
tion points to resolve any dependencies among events. Theawait
operation provides a barrier-like synchronization among events. In
our example, it is necessary for the diagnostic toawait the arrival
of the BGRANT event prior toapply ing a BGACK. The await
primitive is a blocking operation that causes diagnostic the thread
of execution to halt until the event of interest has occurred.

Handling Spurious Events
During verification it is often essential to capturespeculative

events that may occur during the course of the simulation. These
spurious events can be very difficult to detect using traditional sim-
ulation techniques. However, Raven provides a very flexible mech-
anism for handling these occurrences. Thetrap operation allows
a user to define ahandler routinewhich is invoked if an exception
occurs. For example, after reset is performed by a chip it is undesir-
able for another reset to occur unexpectedly. The following Raven
diagnostic will detect this anomaly.

/* preamble */
� � �
apply( TOGGLE RESET) ;
verify( RESET COMPLETED) ;
await( RESET COMPLETED) ;
trap( RESET ASSERTED, reset error() ) ;
� � �
/* continue with diagnostic */

In this simple example, theTOGGLE RESET event will cause the
appropriate reset input pins to be asserted. Then we validate the
reset operation actually occurs, byverify ing andawait ing the
RESET COMPLETED event. Finally, we use thetrap operation to
catch an unexpected reset and invoke the user’sreset error routine
if detected.

It is important to note that the diagnostic doesn’t terminate when
an event triggers thetrap primitive. Raven merely notifies the di-
agnostic of the occurrence, similar to how the Unix operating sys-
tem notifies a user process usingsignals.

Thread-level Parallelism
Instances ofidentical replicated componentsare common in

modern hardware designs, for example, a communication switch
with four identical input/output ports. Then, it is desirable to write
a single diagnostic routine and apply it to each of the component
instances in parallel. Moreover, the ability to concurrently apply
stimuli to multiple components accurately models real-world appli-
cations.



The Verilog HDL [7] providesfork and join operations to
create the appearance of parallel threads of execution within the
simulation. However, using these operations to write modestly
complex diagnostics is non-trivial. POSIX threads (pthreads) [8]
offer another method of parallel execution. Unfortunately, pthreads
are limited to a relatively small number of child processes. More-
over, use of pthreads would make a logic simulation environment
non-reproducible. That is, if we did discover an error in the design
using a pthreads approach it would be difficult, if not impossible, to
recreate the circumstances that exposed the error.

Raven provides a novel approach to diagnostic thread-level par-
allelism usingparallel and merge primitives. The general
form for theparallel andmerge operations is as follows:

parallel( user routine, args) ;
merge() ;

The parallel operation creates a new diagnostic thread begin-
ning execution with the first line of code in theuser routine. Any
number of threads may execute concurrently. The Raven kernel
manages the execution of all diagnostic threads providingcoopera-
tive multitaskingamong the parallel diagnostic threads. Themerge
operation blocks execution of theparentdiagnostic thread until all
its child parallel threads have completed. For example, consider a
four port communication switch and the following diagnostic.

void send msg(int port num)
f

for(i=0; i < NUM MESSAGESTO SEND; i++)
f
� � �
MESSAGE.location = port num ;
apply( MESSAGE) ;
verify( MESSAGE COMPLETE) ;
await( MESSAGE COMPLETE) ;
� � �

g
return 0 ;
g /* end of send msg routine */

/* parent diagnostic */
parallel( send msg, port0) ;
parallel( send msg, port1) ;
parallel( send msg, port2) ;
parallel( send msg, port3) ;
merge() ;
/* wait for all threads to complete */

The above diagnostic will create four identical diagnostic
threads, one for each communication port. Thesend msg routine
will send a predetermined number of messages to a specific port.
Themerge operator in the parent diagnostic blocks execution until
all parallel diagnostic threads have completed.

Validating Nondeterministic Behavior
We are accustomed to designing very deterministic, predictable,

well-behaved logic designs. However, there are occasions when
nondeterministicbehavior is preferred. Consider a four port com-
munication switch that uses adaptive routing to circumvent a con-
gested path. In such a device, a packet arrives at an input port

and the communication switch will arbitrate among several possi-
ble output ports to route the outgoing packet. This behavior is par-
ticularly difficult to validate, since we may not reallyknowwhich
output port will be chosen. All we know is thatonewill be chosen.

To validate nondeterministic behavior, Raven provides a spe-
cial form of theverify( event) andawait( event) DPI primi-
tives. When we expect the DUT to produce one out ofn possible
outcomes, weverify each of then possibilities providing the
same event nameto each of the events being verified. Then, we can
await the nondeterministic outcome from the design. Theawait
primitive will return the event that was the outcome of the nonde-
terministic behavior. This idea can be best illustrated with a simple
example. Consider a diagnostic to validate the four port communi-
cation switch with adaptive routing that we described earlier.

packet IN PACKET ;
packet OUT PACKET ;
packet CHOSEN ;

IN PACKET.location = port0 ;
apply( IN PACKET) ;
OUT PACKET.location = port1 ;
verify( “output”, OUT PACKET) ;
OUT PACKET.location = port2 ;
verify( “output”, OUT PACKET) ;
OUT PACKET.location = port3 ;
verify( “output”, OUT PACKET) ;
CHOSEN = await( “output”) ;

switch( CHOSEN.location)
f

case ’port1’: : : :

case ’port2’: : : :

case ’port3’: : : :

g
� � �

The above diagnostic will inject a packet intoport0 of the com-
munication switch. Then, it expects the output to occur on one of
the three output ports (port1 , port2 , or port3 ). We verify
each of theOUT PACKET events at each of the possible port lo-
cations. The named event “output” binds the threeOUT PACKET
events. Then, weawait the results from the design. Theawait
operation returns the event which satisfied the nondeterminism, in
this case, which output port was chosen.

Odds and Ends
Raven provides several other DPI primitives for such things as:

� setting the timeout value for a diagnostic with the scope being
the entire diagnostic, an individual event, or an interface (port)
on the design (timeout ),

� controlling the verbosity of debugging and error trace mes-
sages (debug ),

� reading and setting a value of a signal anywhere within the
logic design (sample and deposit , respectively) which
could be used for polling a bit within a register, for example,

� writing and reading the contents of a memory (fill and
extract , respectively), and

� logging output to a file (log ).



Although these miscellaneous DPI primitives are very useful, fur-
ther exposition is unwarranted since the semantics of these opera-
tions are very intuitive and common to many HDLs.

4 Summary and Conclusions
Raven is currently being used to verify several large ASICs for

next-generation multiprocessors. Our initial results are very en-
couraging. As a test case, we used Raven on a 1.1 million gate
ASIC that routes packetized messages on the interconnection net-
work of a scalable multiprocessor. Compared to an equivalent Ver-
ilog testbench, we expereinced a�10% performance penalty using
Raven. This overhead is mostly attributed to the overhead in the
interprocess communication (IPC) mechanism. However, this com-
munication latency is easily overcome when the diagnostic contains
a sufficient amount of computation that can be overlapped with the
execution time of the logic simulator.

One consequence of developing diagnostics in C/C++ is the loss
of visibility into lower-levels of the design under test. For instance,
it is not intuitively obvious what logic is being exercised by a high-
level operation such asapply( event) . To bridge this gap we use
code coverage analysis tools, like Summit Design’sHDLScore[10],
to get a more in-depth look at how the design is being exercised by
a diagnostic suite. The use of code coverage analysis tools in hard-
ware design verification is analagous to the use of profiling tools
used in software development.
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