
Scheduling Hardware/Software Systems Using Symbolic Techniques

Karsten Strehl and Lothar Thiele

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)

Zurich, Switzerland

Dirk Ziegenbein and Rolf Ernst

Institute of Computer Engineering (IDA)
Technical University of Braunschweig

Braunschweig, Germany

Jürgen Teich

Computer Engineering Lab (DATE)
University of Paderborn

Paderborn, Germany

Abstract

In this paper, a scheduling method for heterogeneous embedded sys-
tems is developed. At first, an internal representation model called
FunState is presented which enables the explicit representation of non-
determinism and scheduling using a combination of functions and state
machines. The new scheduling method is able to deal with mixed
data/control flow specifications and takes into account different mecha-
nisms of non-determinism as occurring in the design of embedded sys-
tems. Constraints imposed by other already implemented components
are respected. The scheduling approach avoids the explicit enumera-
tion of execution paths by using symbolic techniques and guarantees
to find a deadlock-free and bounded schedule if one exists. The gen-
erated schedule consists of statically scheduled basic blocks which are
dynamically called at run time.

1 Introduction

One of the major sources of complexity in the design of embedded sys-
tems is related to their heterogeneity. On the one hand, the specifica-
tion of the functional and timing behavior necessitates a mix of differ-
ent basic models of computation and communication which come from
transformative or reactive domains. In addition, we are faced with an
increasing heterogeneity in the implementation. This not only concerns
the functional units which may be implemented in form of dedicated
or programmable hardware, microcontrollers, domain specific or even
general purpose processors. In addition, these units communicate with
each other via different media, e.g., busses, memories, networks, and
by using many different synchronization mechanisms.

This heterogeneity caused a broad range of scheduling policies in
hardware and software implementations. Two extreme possibilities are
static schedules like those developed for synchronous dataflow (SDF)
models [9], and EDF (earliest deadline first) schedules developed for
dynamically changing task structures. Many intermediate possibilities
have been developed over the years.

Recently, a methodology has been defined to deal with the modeling
problem of complex embedded systems for the purpose of scheduling
[16, 17]. The model SPI (system property intervals) as defined here is
a formal design representation internal to a design system. It combines
the representation of communicating processes with correlated opera-
tion modes, the representation of non-determinate behavior, different
communication mechanisms such as queues and registers, and schedul-
ing constraints.

The present paper is concerned with a scheduling procedure adapted
to this kind of internal representation. Problems which are typical
for the design of complex embedded systems are, e.g., different kinds
of non-determinism such as partially unknown specification (to be re-
solved at design time), data-dependent control flow (to be resolved at
run time), or unknown scheduling policy (to be resolved at compile
time), and dependencies between design decisions for different system
components. These properties necessitate new scheduling approaches
as the number of execution paths to be considered grows exponentially

with increasing degrees of non-determinism. Moreover, the complexity
of the models of computation and communication greatly increases the
danger of system deadlocks or queue overflows, see, e.g., [10].

Results are available which partly deal with above problems. To
overcome drawbacks of either purely static or dynamic scheduling ap-
proaches and to combine their advantages, Lee proposed a technique
called quasi-static scheduling [8]. Similarly to static scheduling, most
of the scheduling decisions are made during the design process, provid-
ing only few run-time overhead and partial predictability. Only data-
dependent choices—depending on the value of the data or resulting
from a reactive, control-oriented behavior—have to be postponed until
run time. Techniques related to quasi-static scheduling have been devel-
oped using, e.g., constraint graphs [7, 4], dynamic dataflow graphs [2],
actors with data-dependent execution times [5], and free-choice Petri
nets [12].

The approach taken in this paper is based on symbolic techniques
which use a combination of efficient representations of state spaces and
transition models and symbolic model checking principles in order to
avoid the explicit enumeration of execution paths. Besides binary deci-
sion diagrams (BDDs) [1] and their derivatives, interval diagram tech-
niques—using interval decision diagrams (IDDs) and interval mapping
diagrams (IMDs)—have shown to be convenient for efficient formal
verification of, e.g., process networks like the above-mentioned SPI
model [13], Petri nets [14], or timed automata. There exist some ap-
proaches to apply symbolic methods to control/data path scheduling for
high-level synthesis. BDDs are used to describe scheduling constraints
and solution sets either directly [11] or encapsulated in finite state ma-
chine (FSM) descriptions [3, 6].

In [15], a common representation called FunState is presented
which unifies many different well-known models of computation, sup-
ports stepwise refinement and hierarchy, and is suited to represent
many different synchronization, communication, and scheduling poli-
cies. Based on this model, we present an approach to symbolic schedul-
ing using interval diagrams techniques. In particular, the following new
results are described in the paper:

� A refinement of the SPI model of computation [16, 17] called
FunState is presented which enables the explicit representation of
different mechanisms of non-determinism and scheduling using
a mixture of functional programming and state machines.

� A scheduling method for heterogeneous embedded systems is de-
veloped which takes into account these different kinds of non-
determinism and constraints imposed by other already imple-
mented components and which deals with mixed data/control
flow specifications.

� The resulting scheduling automaton is optimized with respect to
the length of static blocks and the number of states.

� The approach is illustrated using a hardware/software implemen-
tation of a fast molecular dynamics simulation engine.

2 FunState and Scheduling

Mainly in the fields of embedded systems and communication electron-
ics, common forms of representation for mixed control/data-oriented
systems have gained in importance. Therefore, the FunState formal-
ism has been developed which combines dataflow properties with finite
state machine behavior [15]. It refines the SPI model of computation
[16, 17] by introducing internal states, e.g., for modeling scheduling
policies. FunState can be used as an internal representation in the de-
sign phase.

2.1 The Model of Computation

In this paper, only the aspects of FunState related to scheduling are de-
scribed. The reader is referred to [15] for a formal introduction. In Fig-
ure 1, a simple example FunState model is shown. It consists of three
components; each of them has two parts: an upper, data-oriented part—
depicting dataflow by functional units (rectangles) and FIFO queues
(circles)—and a lower, control-oriented part—described by a finite state
machine.

/f1

/f2

f5

2 2

/f5

q2�2

q1�3/f3
/f4

A

f1

B f3q1
3

C

f6
2

2
q3

2

f4f2 2 q2

f7
q4

2

q3�2/f6

q4�0

q4�0/f7

�

HW HWSW

��

Figure 1: Example FunState model.

The queues in the data-oriented part store data items depicted by to-
kens, while the functional units perform computations on the data. The
functions have consumption and production rates for each connected
edge which are depicted only for values different from 1. The execution
of the functions of each component is controlled by the corresponding
state machine described in a statechart-like manner.

The labels of the state machine transitions indicate combinations
of a condition and an action (e.g., “q1 � 3= f3”), meaning that the re-
spective transition, and thereby the action, may be executed only if the
condition is satisfied (i.e., if the queue labeled with q1 contains at least
three data items). If the above transition is taken, function f3 is executed
and consumes three tokens from queue q1 and produces one token for
queue q3.

In the scope of this paper, we use only a simple subset of FunState
suitable for scheduling. While the transition predicates in general may
be also on values of data items, we allow only predicates on queue
contents—the numbers of tokens in queues. We ignore explicit timing
properties (execution times, timing constraints, etc.). The concurrent
execution of state machines of different components is asynchronous
and interleaved.

2.2 The Problem

Consider a constellation of components mapped onto different imple-
mentational units and communicating via queues in a distributed, par-
allel setting. The components have both data and control flow proper-
ties. Non-determinisms may exist resulting from incomplete specifica-
tions or data dependencies resolved only at run time. In this paper, we
deal with the problem of finding a feasible schedule for the components
mapped onto one implementational unit respecting constraints given by
other components. In this context, feasible means that the schedule is
deadlock-free and guarantees bounded queue contents.

To precise this, we consider a simple example. Assume that com-
ponent B of the example FunState model of Figure 1 represents a pro-
cessor transforming data streams between the components A and C. Let
A and C be components mapped onto hardware such as an input or out-
put device, respectively, or an interface to a sensor, an actor, or another
processor.

Let the behaviors of A and C be specified by the respective state
machine. Not considering these additional constraints may lead to less

efficient or even incorrect schedules. The state machine of A describes
that its functions always are executed in the order f1 f2 f1 f2 : : : Hence, it
is guaranteed that after each firing of f1, f2 is executed and vice versa.

The state machine of B shown in Figure 1 describes a specification
of possible schedules for B. This specification should be used to find
a feasible schedule which respects the additional information concern-
ing other components. All transitions starting in a dark-shaded state
represent design alternatives which may be chosen during schedule de-
velopment. In contrast to this, a light-shaded state contains a conflict
concerning its outgoing transitions. The conflict can be resolved only
at run time, hence, no design decision is possible. Conflicts occur, for
instance, when decisions depending on the value of data or environmen-
tal circumstances have to be taken. White states in the FunState model
are states which either have only one outgoing transition or of which
all transitions have disjoint predicates. Thus, the transition behavior of
these states is determinate. Note that in component C the state with two
outgoing transitions is determinate for this reason.

Suppose that B and C execute sufficiently often (they are “faster”
than the preceding component) such that there are no unbounded num-
bers of tokens simultaneously in q1 and q2 or in q3 and q4, respectively.
An important issue of schedule development are feasibility and correct-
ness of the resulting schedule. A possible schedule of B described by
the specification is (f4j f5)(f4j f5) : : : , where f4 and f5 are executed al-
ternatively and iteratively—thus ignoring f3. But this schedule is not
feasible as the queue contents of q1 and q4 are not bounded. If we
had chosen f3(f4j f5) f3(f4j f5) : : :— f3 is executed, then f4 or f5 is exe-
cuted, etc.—, this would result in an incorrect behavior of C as f6 could
attempt to read too much tokens from q4 after some time.

In contrast to this, the schedule (f4j f5) f3(f4j f5) f3 : : : is valid with
respect to specification and component C, and it is feasible. An im-
plementation of this schedule can profit from the fact that f3 may be
executed only if f4 has been executed immediately before. From the
behavior of A follows that for the execution of f3 no condition is neces-
sary as q1 always contains enough tokens. Thus, the resulting schedule
may be implemented more efficiently by considering only necessary
conditions as less queue contents have to be determined.

Using the symbolic scheduling techniques proposed below, the
above issues are taken into account. Intuitively, the scheduling is per-
formed by replacing dark-shaded states by white states—taking deci-
sions and thus removing design alternatives. In this paper, we consider
only software scheduling using a uniprocessor. Extensions for hard-
ware scheduling under resource constraints or scheduling for several
processors are easily possible.

2.3 FunState and Symbolic Methods

With regard to formal verification, the techniques for symbolic model
checking of process networks based on interval diagram techniques as
described in [13] are directly applicable to FunState as the transition
behavior of FunState is very similar to that of the considered mod-
els of computation. Thus, using FunState to model a mixed hard-
ware/software system enables its formal verification comprising the
whole well-known area of symbolic model checking concerning the de-
tection of errors in specification, implementation, or scheduling. Prop-
erties as the correctness of a schedule may be affirmed by proving the
boundedness of the required memory and the absence of artificial dead-
locks. In the scope of this paper, symbolic methods based on interval
diagram techniques are used not only to analyze but even to develop
scheduling policies for FunState models.

3 Interval Diagram Techniques

For formal verification of, e.g., process networks [13], Petri nets [14],
or timed automata, interval diagram techniques—using interval deci-
sion diagrams (IDDs) and interval mapping diagrams (IMDs)—have
shown to be a favorable alternative to BDD techniques. This results
from the fact that for this kind of models of computation, the transi-
tion relation has a very regular structure that IMDs can conveniently

represent. While BDDs have to represent explicitly all possible state
variable value pairs before and after a certain transition, IMDs store
only the state distance—the difference between the state variable val-
ues before and after the transition. In this paper, we only give a brief,
informal summary of structure and properties of IDDs and IMDs and
the methods required for scheduling.

3.1 Interval Decision Diagrams

IDDs are a generalization of BDDs and MDDs—multi-valued decision
diagrams—allowing diagram variables to be integers and child nodes to
be associated with intervals rather than single values. In Figure 2a), an
example IDD is shown. It represents the Boolean function s(u;v;w) =
(u � 3)^ (v � 6)_ (u � 4)^ (w � 7) with u;v;w 2 [0;∞).

u

0

v

w

1

[4,�)[0,3]

[0,5]
[6,�)

S

[0,7]

[8,�)

a)

u

v

1

�[2,2]

�[1,1] �[0,1]

T

ww

v

[2,�)/

�[3,4]

�[1,2] �[1,4]

[4,�)/ [0,�)/

[0,�)/ [2,�)/

[0,6]/

�[0,0]
[0,5]/

b)

Figure 2: Interval decision diagram and interval mapping diagram.

Equivalent to BDDs, IDDs have a reduced and ordered form, pro-
viding a canonical representation of a class of Boolean functions—
which is important with respect to efficient fixpoint computations often
necessary for formal verification, and also for the symbolic scheduling
techniques considered here. IDDs are used to represent state sets during
scheduling.

3.2 Interval Mapping Diagrams

IMDs represent valid state transitions, for instance, the execution of
functions depending on predicates on queue contents. IMDs are repre-
sented by graphs similar to IDDs. Their edges are labeled with func-
tions mapping intervals onto intervals. The graph contains only one
terminal node. Figure 2b) shows an example IMD. With regard to tran-
sition relations, IMDs work as follows. Each edge is labeled with a
condition—the predicate interval—on its source node variable and the
kind and amount of change—the action operator and the action inter-
val—the variable is to undergo. Each path represents a possible state
transition which is executable if all edges along the path are enabled.

3.3 Image Computation

Similarly to formal verification like symbolic model checking, an oper-
ation named image computation is fundamental for symbolic schedul-
ing techniques. The image Im(S;T) of a set S of system states with
respect to transition relation T represents the set of all states that may
be reached after exactly one valid transition from a state in set S. In
[13], an efficient algorithm is described to perform forward or back-
ward image computation using an IDD S for the state set and a IMD T
for the transition relation, resulting in an IDD S0 representing the image
state set.

4 Symbolic Scheduling

Symbolic methods for control-dependent scheduling have shown to be
effective techniques to perform control/data path scheduling, e.g., [6].

They often outperform both ILP and heuristic methods while yielding
exact results. Furthermore, all possible solutions to a given scheduling
problem are computed simultaneously such that additional constraints
may be applied to find optimal schedules. In this paper, we present a
symbolic approach to the scheduling of systems represented as FunState
models. The approach based on interval diagram techniques avoids the
explicit enumeration of execution paths by using these symbolic tech-
niques.

4.1 Conict-Dependent Scheduling

As mentioned in Section 1, quasi-static and related scheduling ap-
proaches, e.g., [8, 4], try to combine the advantages of static and dy-
namic scheduling methods. To achieve this, the resolution of data or
environment dependent control is done at run time whereas the tasks
that need to be executed as a consequence of a run-time decision are
scheduled statically. The aim is to make most of the scheduling deci-
sions at compile time, leaving at run time only choices that, e.g., depend
on the value of data. As mentioned in Section 2.2, we call this lat-
ter kind of run time choices conflicts and the corresponding scheduling
techniques conflict-dependent. The former design decisions at compile
time are named alternatives. As we ignore explicit timing properties in
the scope of this paper, the resulting schedule—similarly to scheduling
of, e.g., marked graphs—consists of sequences of function executions.

Initially, the given FunState model contains a schedule specification
automaton which extends the FSM part such that all possible schedule
behaviors are modeled. This FunState model represents a totally dy-
namic scheduling behavior and is used to perform the symbolic schedul-
ing procedure as described below. The result of this procedure is the
schedule controller automaton which restricts the scheduling behavior
to be only conflict-dependent. This automaton may replace the spec-
ification automaton of the original FunState model, e.g., for analysis
purposes such as verification. Finally, the controller automaton may be
transformed into program code to implement the controller.

4.2 Conicts and Alternatives

A conflict in our understanding is a non-determinism in the specification
which may not be resolved as a design decision, but of which all possi-
ble execution traces have to be taken into account during the schedule.
Thus, the multi-reader queue q4 in Figure 1 does not represent a con-
flict as both following functions may read all tokens of q4 independent
of their value or possible external circumstances.

In contrast to that, the queue q1 in Figure 3a) is a multi-reader queue
that may contain tokens which only one of the queue’s readers f2 and
f3 consumes (depending, e.g., on the token data) but the other one does
not. Besides such data-dependent conflicts, conflicts depending on en-
vironmental circumstances may occur.

T

[0,0]/
�[1,1]

1

c

q1 q1 q1

q2q2

[1,1]/
�[0,0]

/�[1,1]

/�[1,2]

[0,0]/

/
/�[1,1]

[1,)/�

[2, /�)
�[2,2]

b)a)

f1

q1 q2

f2

f3

2

2

f4

/f1
/f2

/f3

q2�2/f4

q1�1

c�0

c�1

Figure 3: FunState model of conflict and transition relation IMD.

The states of the FSM part of FunState models are divided into three
types. According to Section 2.2, light-shaded states are called conflict

states, dark-shaded states are alternative state, and determinate states
are white. While the property of a state to be determinate is derived
directly from its transition predicates, the non-determinate states have
to be divided explicitly into conflict states and alternative states as both
are semantical properties. All transitions leaving an alternative state
represent design choices which may be made during the schedule de-
velopment. In contrast to that, all transitions leaving a conflict state
represent decisions which may not be taken at compile time, but which
keep their non-determinate character until run time.

Determinate states with only one outgoing transition are called
static as there exists only one possibility to quit them. Determinate
states with more than one transition, alternative states, and conflict
states are named dynamic because they represent a dynamic execution
behavior with several traces depending, e.g., on queue contents or data.

4.3 Schedule Speci�cation Automaton

To model the above-mentioned conflicts, a schedule specification au-
tomaton is built which represents all possible conflict behaviors and
thus specifies all valid schedules. The lower part of Figure 3 a) shows
the specification automaton used to describe the above-mentioned con-
flict behavior concerning f2 and f3 with regard to q1. When one of the
functions is enabled—q1 contains at least one token—, the automaton
can make a transition from the initial alternative state to the conflict
state. Then, after executing either f2 or f3 it returns to the alternative
state.

Besides the variables for the queue contents, a state variable c for
the FSM states has been introduced. Figure 3 b) shows the interval
mapping diagram representing the transition relation of the FunState
model of Figure 3 a). This IMD is used for symbolic state traversal as
explained below.

4.4 Performing Symbolic Scheduling

The aim of the described scheduling process is to sequentialize func-
tions specified as concurrent while preserving all given conflict alterna-
tives. The resulting schedule has to be deadlock-free and bounded as
mentioned in Section 2.2.

Figure 4, shows the regular state transition graph of the FunState
model in Figure 3. It represents all valid state transitions of the Fun-
State model with regard to the total state space consisting of the queue
contents of the dataflow part and the discrete system states of the FSM
part. At each coordinate pair of (q1;q2), both possible states of the FSM
part are shown.

q2

q1

c�0
c�1

Figure 4: Regular state transition graph with schedule.

Using interval diagram techniques, the regular state transition graph
is traversed symbolically without constructing it explicitly. This is
achieved by iterative image computations as explained in Section 3. An
interval mapping diagram such as shown in Figure 3 b) represents the
transition relation, while interval decision diagrams are used to store in-
termediary state sets. The efficiency of these techniques has been shown
in [13].

In the following, the scheduling procedure in its simplest form is
explained with this graph. First, a symbolic breadth-first search is per-
formed to find the shortest paths from the initial state to itself or any

state already visited during the search. One of these (possibly multiple)
shortest paths—representing or at least containing a cycle—is selected
as the basis of the following scheduling procedure.

All states of the selected path corresponding to conflict states need
further investigation as no conflict decision may be taken during the
schedule design. Hence, beginning with the successor states of the con-
flict states again a breadth-first search is performed until reaching any
state visited yet. Additional conflict states visited during this search are
also treated as described above.

The schedule is complete when each successor state of each vis-
ited conflict state has been considered. Thus, it is guaranteed that any
conflict alternative during run time may be treated by providing a static
schedule until the next conflict to be resolved. The resulting schedule is
marked by bold arcs in Figure 4.

If no schedule has been found while traversing one of the conflict
paths, another shortest path is selected to repeat the scheduling proce-
dure. If all shortest paths have been checked without finding a complete
schedule, longer paths are selected. By introducing a bounding box on
the state space, the search space may be restricted. Thus, the termina-
tion of the algorithm is guaranteed. Furthermore, if a deadlock-free and
bounded schedule exists, the above procedure will find it.

4.5 Schedule Controller Generation

The resulting schedule consists of paths of the regular state transition
graph as shown in Figure 4. The corresponding subgraph in Figure 5a)
is the basis for the generation of the controller automaton. As a conse-
quence of the scheduling process, all alternative states have been been
replaced by determinate states—taking decisions and thus removing de-
sign alternatives. The predicate p identifies the run-time decision asso-
ciated to the conflict node.

�
/f1

p/f3
p q 02� 	 /f2

p q 02� � /f2

/f4

b)a)

p/f2

/f4

(1,1)0,

(0,0,1)

/f1

(1,1)1,

p/f2

(0,3)0,

p/f3

/f4

(0,0)0,

(1,0)0,

(1,0)1,

/f1

(0,2)0,

p/f3

Figure 5: State transition graph of schedule for (c;q1;q2) and resulting
controller automaton.

In order to reduce the implementation effort, this state transition
graph may be simplified. Obviously, this process can be driven by many
different objectives, for instance, minimizing the number of states in the
schedule automaton or keeping sequences of static nodes.

As an example, a procedure is described which minimizes the num-
ber of states under the condition that sequences of static nodes are not
partitioned. This way, the number of dynamic decisions (at run time)
is not increased in any execution trace. The optimization procedure is
based on well-known state minimization methods and uses the follow-
ing equivalence relation:

� Two static states are equivalent iff for any input they have identi-
cal outputs and the corresponding next states are equivalent.

� Two dynamic states are equivalent iff they are of the same type
(conflict, alternative, or determinate) and they correspond to the
same node in the non-scheduled state machine, i.e., they have the
same state name but different queue contents associated.

This definition can be used to perform the usual iterative partitioning of
the state set until only equivalence classes are obtained. The ambiguity
of the next states in the case of dynamic states is resolved by adding
predicates to the outgoing edges. Figure 5 b) shows the controller au-
tomaton as the result of this process. It may be transformed easily into
program code as shown in Table 1 as pseudo code.

a: f1;
if p then

f2;
if q2 = 0 then goto a;

else f3;
f4;
goto a;

Table 1: Controller program code.

4.6 Molecular Dynamics Simulation Example

The introduced approach has been applied to perform conflict-
dependent scheduling for a molecular dynamics simulation system.
As shown in Figure 6, the simplified fundamental algorithm has been
mapped onto a host workstation (Host) linked to a special purpose hard-
ware accelerator serving as a coprocessor (CoPro). In the figure, the
circles containing a square represent registers storing data. Therefore,
they do not introduce additional dependency constraints. The transition
labels l1; : : : ; l4 are depicted separately for reasons of space.

DF

AC

PP

100

AF S

I

AR

C CG D
SV V FV

SU

P

44

30
306

6

66

20
20

3 3 15

20

PL

U

F

100
100

100

20

15

Host CoPro

AF�3/I
/C

l
1

l
2

l
3

l
4

l
1

l
2

l
3

l
4

l
2
: CG 6/D�

l
1
: DF 15/S�

l
3
: SV 6/V�

l
4
: SU 4 FV 30/P� �� PP 100/U�

AC 20/F�

PP 0�

PP 0�

Figure 6: Molecular dynamics model with specification automaton.

The simulation mainly consists of repeated computations in the
feedback loop distributed among both processors where atom forces
(AF) are computed (F), added up (S), and integrated (I) to calculate
new atom coordinates (AC, AR). After a variable number of iterations,
the central coordinates of slowly moving sub-molecules called charge
groups (CG) are updated (C). Then, a new list of neighbors called pair
list (PL) is computed (D, V , P, U).

As the moment when to start this pair list computation is unknown
until run time, this fact represents a conflict which is modeled using a
conflict state. The major issue of the schedule specification is that there
exists no cycle in the corresponding state transition graph which does
not contain the conflict state. This is ensured by the fact that the tran-
sition executing I cannot be reached without visiting the conflict state.
The result of the symbolic scheduling process—the schedule controller
automaton—is shown in Figure 7. It replaces the FSM part of the Host
component of Figure 6. It consists of two static cycles and a conflict
state switching between them. The schedule is respecting the specifica-
tion of CoPro. Note that even the schedule of CoPro is not static as it
depends on the content of queue PP.

Host ...

/C
/D

/V

/P
/I

/I

DF 0/S�

Figure 7: Resulting controller automaton.

5 Summary and Conclusion

An approach for symbolic scheduling of mixed hardware/software sys-
tems has been presented. It is based on a FunState model of the system
and the scheduling constraints. Further work concentrates on extending
the approach to hardware scheduling under more complex resource con-
straints and on considering the timing behavior of the system to allow
for the specification of timing constraints.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):667–691, August 1986.

[2] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. PhD thesis, University of California, Berkeley,
1993.

[3] C. N. Coelho Jr. and G. De Micheli. Dynamic scheduling and synchroniza-
tion synthesis of concurrent digital systems under system-level constraints.
In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD-94), pages 175–181, 1994.

[4] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software synthe-
sis for real-time information processing systems. In P. Marwedel and
G. Goossens, editors, Code Generation for Embedded Processors, pages
260–279. Kluwer Academic Publishers, 1995.

[5] S. Ha and E.A. Lee. Compile-time scheduling of dynamic constructs in
dataflow program graphs. IEEE Transactions on Computers, 46(7):768–
778, July 1997.

[6] S. Haynal and F. Brewer. Efficient encoding for exact symbolic automata-
based scheduling. In Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD-98), 1998.

[7] D. C. Ku and G. De Micheli. Relative scheduling under timing constraints:
algorithms for high-level synthesis of digital circuits. IEEE Transactions
on Computer-Aided Design, 11(6):696–718, June 1992.

[8] E. A. Lee. Recurrences, iteration, and conditionals in statically scheduled
block diagram languages. In R. W. Brodersen and H. S. Moscovitz, editors,
VLSI Signal Processing III, pages 330–340. IEEE Press, New York, 1988.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[10] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773–799, 1995.

[11] I. Radivojević and F. Brewer. Ensemble representation and techniques for
exact control-dependent scheduling. In Proceedings of the 7th Interna-
tional Symposium on High-Level Synthesis, pages 60–65, 1994.

[12] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli.
Quasi-static scheduling of embedded software using free-choice Petri nets.
In Proceedings of the Workshop on Hardware Design and Petri Nets
(HPWN ’98), 1998.

[13] Karsten Strehl and Lothar Thiele. Symbolic model checking of process net-
works using interval diagram techniques. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD-98), pages
686–692, San Jose, California, November 8–12, 1998.

[14] Karsten Strehl and Lothar Thiele. Interval diagram techniques for symbolic
model checking of Petri nets. In Proceedings of the Design, Automation
and Test in Europe Conference (DATE99), Munich, Germany, March 9–12,
1999.

[15] Lothar Thiele, Jürgen Teich, Martin Naedele, Karsten Strehl, and Dirk
Ziegenbein. SCF—state machine controlled flow diagrams. Technical
Report TIK-33, Computer Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092
Zurich, January 1998.

[16] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Combining
multiple models of computation for scheduling and allocation. In Proceed-
ings of the 6th International Workshop on Hardware/Software Codesign
(Codes/CASHE ’98), pages 9–13, Seattle, Washington, March 1998.

[17] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Represen-
tation of process mode correlation for scheduling. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD-
98), San Jose, California, November 8–12, 1998.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

