
Optimizing Geographically Distributed Timed Cosimulation by Hierarchically Grouped Messages�

Sungjoo Yoo Kiyoung Choi

Design Automation Laboratory
School of Electrical Engineering

Seoul National University
Seoul 151-742, Korea

fysj,kchoig@poppy.snu.ac.kr

Abstract

This paper presents a concept calledhierarchically grouped mes-
sageto improve the performance of geographically distributed timed
cosimulation. In the proposed method, messages which are trans-
ferred between simulators in a short period of simulated time are
hierarchically grouped into a physical message to reduce the num-
ber of rollbacks in optimistic simulation as well as the communica-
tion overhead of message transfer. Experiments show the efficiency
of the proposed method in an internationally distributed cosimula-
tion environment.

1 Introduction

In geographically distributed cosimulation environments, designers
can simulate a system which consists of various remotely located
intellectual property (IP) blocks without requiring local copies of
the IP blocks. IP providers and EDA vendors also have benefits
of allowing their IP blocks and proprietary tools, e.g. high perfor-
mance hardware emulators, to be accessed while protecting their
intellectual property rights.

However, high communication overhead in geographically dis-
tributed cosimulation environments prevents designers from per-
forming detailed timed cosimulation of communication intensive
systems. The problem gets more serious wheninterrupt is used as
the communication protocol in the system being designed, since
hardware and software simulators should synchronize with each
other (via slow communication over Internet) at every system clock
tick to detect the occurrence of interrupt [1].

There have been few researches on optimizing geographically
distributed timed cosimulation. As an optimization method, [2][3]
present a method, calledselective focus, which dynamically changes
the abstraction levels of communication models to allow designers
to trade off between performance and accuracy. Contrary to [2][3],
we present an optimization method which preserves the accuracy
of detailed cosimulation.

In this paper, we focus on geographically distributed timed cosim-
ulation of systems having interrupt as one of communication pro-
tocols. By a geographically distributed cosimulation environment,
we mean a network of workstations (or PC’s) over Internet (or Wide

�This work was supported in part by ETRI, Korea.

Area Network). Basically, our approach to the reduction of sim-
ulator synchronization overhead (including communication over-
head) is to apply optimistic simulation concept to geographically
distributed timed cosimulation since optimistic simulation is ad-
vantageous especially when communication overhead is dominant
[1][4][5].

However, since communication overhead is excessive in geo-
graphically distributed cosimulation environments, the performance
gain obtained by applying conventional optimistic simulation meth-
ods can be limited. In applying optimistic simulation to geographi-
cally distributed timed cosimulation, the effects of such high com-
munication overhead on the increase of cosimulation run-time are
twofold: (1) excessive rollbacks, i.e. rollback overhead caused by
the slow transfer of messages compared to the simulation execution
as well as (2) the communication overhead itself. According to our
experiments, optimistic simulation suffers from excessive rollbacks
when intensive synchronization between simulators is performed in
a short period of simulated time. It is because while messages are
being transferred via slow communication over Internet, the opti-
mistic simulator that is to receive the messages runs further into the
future, which causes rollbacks in the receiving simulator. To re-
duce such excessive rollbacks and high communication overhead,
we present a concept calledhierarchically grouped message(HM)
where messages transferred between simulators in a short period of
simulated time are hierarchically grouped into a physical message.

This paper is organized as follows. In Section 2, we give a brief
description of applying optimistic simulation to timed cosimula-
tion. Section 3 explains our motivation. We present hierarchically
grouped message concept in Section 4. We give experimental re-
sults in Section 5. Section 6 concludes this paper.

2 Background

In this section, we describe three types of timed cosimulation con-
sidered in this paper: uni-processor synchronous cosimulation, hy-
brid cosimulation, optimistic distributed cosimulation. In the fol-
lowing, we define amessageto be a timestamped event.

2.1 Uni-processor Synchronous Cosimulation

In Figure 1, we assume that software (SW) and hardware (HW)
start to run concurrently at time 0. The exact time when HW sends
an interrupt to SW is not knowna priori but given as a time inter-
val. In Figure 1, blank rectangles and numbers on them represent
simulation workloads and the corresponding local times in the sim-
ulator they are running on, respectively. Blank arrows represent
null messagesfor simulator synchronization only and shaded ar-
rows represent interrupts from HW to SW. Shaded rectangles rep-
resentsimulator synchronization overheadin cosimulation run-
time. In synchronous cosimulationas shown in Figure 1 (a), SW



Figure 1: Reduction of synchronization overhead by hybrid cosim-
ulation.

and HW simulators synchronize with each other at every system
clock tick to detect the occurrence of interrupt. In synchronous
cosimulation, most of simulation run-time can be consumed in sim-
ulator synchronization [1].

2.2 Hybrid Cosimulation

Most simulators do not support optimistic simulation features such
as checkpoint (or state saving) and rollback. The same is true for
emulators which can hardly support a cycle-accurate state saving
feature. Therefore we consider a hybrid cosimulation where opti-
mistic simulator(s) and synchronous simulator(s) (including emu-
lators) co-exist. A representative case of the application of hybrid
cosimulation is accessing a high performance HW emulator via In-
ternet.

In hybrid cosimulation[1] as shown in Figure 1 (b), to reduce
simulator synchronization overhead, we first run the optimistic sim-
ulator for a time window of predetermined sizeW. In this exam-
ple, we assume that the SW simulator is an optimistic simulator.
The optimistic simulator stops after the time windowW elapses
or at a time pointW’ (< W) when a message is sent to the syn-
chronous simulator (in this example, the HW simulator), and waits
for messages from the synchronous simulator. During the simu-
lation, states of optimistic simulation are stored at checkpoints in
preparation for the rollback. The synchronous simulator starts to
run until the time point when the optimistic simulation stops. The
synchronous simulation may stop earlier if the synchronous sim-
ulator sends a message to the optimistic simulator. In this case,
since the timestamp of the message sent to the optimistic simula-
tor is earlier than the time point when the optimistic simulator has
stopped, the optimistic simulator rolls back to a checkpoint before
(or equal to) the timestamp of the message. If there is no message
from the synchronous simulator to the optimistic simulator, then
the synchronous simulator stops at the time pointW (or W’ ). After
determining a newW, the optimistic simulator starts to run until
W. Then, the cosimulation continues in this way. Note that in hy-
brid cosimulation a simulator stops its simulation when it sends a
message to another simulator or after the time windowW or W’
elapses.

2.3 Optimistic Distributed Cosimulation

In optimistic distributed cosimulation, a set oflogical processes
(physically, optimistic simulators) execute concurrently and com-
municate by exchanging messages. A logical process (LP), as a
unit of parallel simulation, consists of (1) the simulation model of
the sub-system being simulated, (2) a state queue to store the states
of the simulation model, (3) an input message queue for messages

which arrive at the LP, and (4) an output message queue for mes-
sages which the LP sends to other LP’s. Each LP has its own local
time calledlocal virtual time (LVT). Each LP works as follows.
After advancing LVT, the LP looks up the input message queue to
find an input message having a timestamp equal to LVT, processes
the message, and advances its LVT. If there is any unprocessed in-
put message which has a timestamp earlier than LVT (we call such
a message astraggler message), the LP rolls back its LVT accord-
ing to the timestamp of the straggler message, i.e. the state stored at
the time point earlier than or equal to the timestamp of the straggler
message is restored.

To support rollback, states are stored at checkpoints. To con-
strain the memory usage of simulation host for state saving, aglobal
virtual time (GVT) is calculated. GVT is the minimum of times-
tamps ofin-transit messages1 and local virtual times of all LP’s.
States and messages having timestamps earlier than GVT can be re-
moved from the state queue and the input/output message queues.2

For more details on optimistic distributed cosimulation, refer to [5].
A representative case of applying optimistic distributed cosimula-
tion is accessing the simulation models of IP blocks and performing
their simulations via Internet.

3 Motivation

Grouping multiple messages into fewer numbers of physical mes-
sages gives faster transmission of messages than transmitting each
message separately, since the communication overhead over Inter-
net does not strictly depend on the sizes of messages being trans-
ferred, but rather strongly depends on the number of physical mes-
sages transferred

Grouping messages also has the advantage of reducing the num-
ber of rollbacks. Figure 2 illustrates an example of communication
of messages between a SW simulator and a HW simulator in opti-
mistic distributed timed cosimulation. In Figure 2, we assume that
SW receives 64 data from HW. In SW processors, such a commu-
nication can be performed by executing memory load instructions
(e.g. LDR or LDM instructions in ARM7 processor [6]). To re-
ceive each of the data, SW sends the address value to HW (event
on the address bus). HW sends the datum corresponding to the re-
ceived address value to SW (event on the data bus). In memory
load (or store) instructions, the time gap between the event on the
address bus and the event on the data bus is within a few clock
cycles in the simulated time.

However, due to high communication overhead (e.g. at least
a few milliseconds per message transfer) in geographically dis-
tributed cosimulation environments, when the datum requested by
SW arrives at the SW simulator, the SW simulator (one which
has millions cycles/sec performance on high performance worksta-
tions) may have proceeded further into the future in the simulated
time. Such a straggler message causes rollback in the receiving
optimistic simulator, in this example, the SW simulator. Figure
2 also illustrates rollbacks (upward arcs) caused by such straggler
messages. As shown in Figure 2 (a), optimistic distributed timed
cosimulation suffers from excessive rollbacks when intensive syn-
chronization between simulators is performed in a short period of
simulated time.

To reduce such excessive rollbacks, we use ahierarchically
grouped message(HM) concept. Figure 2 (b) shows simulator syn-
chronization using HM’s. In this example, we group 64 messages
transferring from SW to HW (HW to SW) into a single physical
messageHM2hw (HM2sw). In constructing a new physical mes-
sage, we neither merge original events into a new event nor increase

1Messages which are in the communication channels between LP’s, or not pro-
cessed yet in input message queues. In our implementation, the Internet communica-
tion channel works as a FIFO queue.

2 If there is no state stored at GVT, the state having the latest timestamp (but earlier
than GVT) is kept in the state queue.



DGGUHVV���
GDWD���

DGGUHVV���

GDWD����
+0�KZ

�D� �E�

+0�VZ

6: 6:+: +:

WLPH WLPH

Figure 2: Reduction of rollbacks by hierarchically grouped mes-
sages.

Figure 3: An example of hierarchically grouped message.

the abstraction levels of messages, i.e. original events (i.e. their ab-
straction levels) are kept unchanged in our method. Since only a
single physical message is sent from SW (HW) to HW (SW) in
Figure 2 (b), rollback occurs only twice in total.

Such reduction of excessive rollbacks, however, does not come
for free. Since the transfer of messages is delayed for the con-
struction of the whole HM,rollback distance(the amount of simu-
lated time which is canceled by rollback) on each simulator may in-
crease. In Section 5, however, we show experimentally that such a
negative effect is negligible. Basically, since optimistic simulation
is performed, the construction of HM’s is possible. It is because the
causality error caused by the delay of message transfer during the
construction of HM’s can be recovered by the rollback mechanism.

4 Hierarchically Grouped Messages

4.1 Speci�cation of HM

For the explanation of specifying HM’s, Figure 3 illustrates the
construction of an HM for transferring 64 data from SW to HW.
First, each message represents an event (or simultaneous events)
on the address/data buses or control signals such as web (write
enable bar). The transfer of each datum is specified as a group of
messages as shown in Figure 3. The transfer of 64 data is specified
as a group of groups of messages, each group of which represents
the transfer of a datum. As such, higher level groups of messages
are constructed by grouping lower level messages (or groups of
messages) in a hierarchical way.

Each HM has an (or a set of) address range(s) associated with
the data belonging to the HM. In Figure 3, the HM transferring 64
data has an address range from0x80 to 0xbc . The designer can
also specify an address range to construct an HM for the purpose
of performance optimization.

4.2 Construction of HM during Simulation

During cosimulation, each simulator monitors the values on the ad-
dress bus and starts to construct an HM by detecting the start ad-
dress value (e.g.0x80 in Figure 3) of the address range of the
HM. During the construction of the HM, output messages are not
sent to their receiving simulator. Instead, they are stored in the out-
put message queue. If the simulator detects the end address of the
address range (e.g.0xbc in Figure 3), then the simulator creates a
physical message with the unsent messages in the output message
queue and sends it to the receiving simulator. We refer to the time
period between the start time and the end time of the construction
of an HM as anHM construction period.

From the implementational viewpoint, an HM is an array of
messages. From the viewpoint of the receiving simulator which
reads each incoming message one by one from the Internet com-
munication channel, there is no difference between hierarchically
grouped messages and separately sent messages. The construction
of an HM requires proper modifications in the cases that (1) in-
terrupt is allowed during the construction of an HM, (2) an HM
is constructed during the data dependent execution, and (3) a syn-
chronous simulator in hybrid cosimulation constructs an HM.

4.3 Handling Interrupts

Depending on whether interrupt is allowed during communication
between SW and HW, we classify the hierarchically grouped mes-
sage into two types:interruptible HM and non-interruptibleHM.
We define an interruptible HM as follows.

Definition 1 If the execution of SW can be interrupted while SW
is constructing (or processing messages belonging to) an HM, the
HM is defined to be an interruptible HM.

For example, while SW reads 64 data from HW, the execution
of SW can be interrupted by a timer interrupt to the SW processor
unless the interrupt is masked. For the non-interruptible HM, the
execution of SW is guaranteed to be continued during the construc-
tion or reception of the HM. For the interruptible HM, the simulator
sends apartial HM in the cases described below. By a partial HM,
we mean an HM which has been constructed until some time point
before the end address of the HM is reached.

For the interruptible HM, the simulator sends a partial HM in
the following two cases.

Case 1 While the HW simulator is constructing an interruptible
HM, HW sends an interrupt to SW.

In this case, since SW execution will be interrupted by the in-
terrupt sent by HW, the transfer of the interruptible HM is not guar-
anteed to continue. Thus, the HW simulator stops constructing the
HM and sends the partial HM to the SW simulator.

Case 2 During the HM construction period of an interruptible HM,
the SW simulator processes a message containing an interrupt event.

In this case, since SW execution is interrupted by the interrupt
event, the SW simulator sends the partial HM to the HW simulator.

4.4 Sending a Partial HM in Data Dependent Execution

To avoid large delay caused by the data dependent executions such
as data dependent loops during the construction of an HM, the sim-
ulator sends the partial HM if the delay exceeds a given timeout
value (Ttimeout). That is, if LVT�THM start > Ttimeout, then
the simulator sends the partial HM.THM start represents the local
virtual time when the simulator starts to construct the HM. The de-
signer can set a timeout valueTtimeout. If Ttimeout = 0, then HM
concept is not used.



Figure 4: Optimistic distributed cosimulation using ARM7 ISS and
Synopsys Cyclone.

4.5 Construction of HM in Hybrid Cosimulation

As explained in Section 2, in hybrid cosimulation the simulator
stops its simulation when it sends a message to another simulator
or after the time windowW or W’ elapses. However, in applying
HM concept to hybrid cosimulation, the simulator does not stop
its simulation during the construction of an HM. Therefore, it may
continue the simulation beyondW or W’ . After the construction of
the HM, the simulator sends the HM to another simulator, stops its
simulation, and waits for messages from the other simulator.

Basically, since HM concept is applied to optimistic simula-
tion, only the optimistic simulator can construct HM’s. For the
non-interruptible HM, however, the synchronous simulator can also
construct HM’s in hybrid cosimulation since SW execution is guar-
anteed to be continued during the construction of the non-interruptible
HM.

4.6 Calculation of GVT during the Construction of HM

In optimistic distributed cosimulation, when a simulator calculates
GVT, it sends a request to the other simulators to obtain informa-
tion for calculating GVT. When a simulator acknowledges to the
request, it sends to the requesting simulator the minimum value of
its LVT and the timestamps of unprocessed messages in its input
message queue. When the simulator acknowledges to the request,
if it is constructing an HM, then it sends to the requesting simula-
tor the minimum value of its LVT, the timestamps of unprocessed
input messages, and the timestamps of unsent output messages.

5 Experiments

We performed geographically distributed timed cosimulation for
two examples : an H.263 decoder [7] and a JPEG encoder [8]. For
the H.263 decoder, 3 frames of an image called Carphone (QCIF:
176x144 pixels) are decoded and for the JPEG encoder, a 116x96
image is encoded. For the HW parts of the examples, Discrete
Cosine Transformation (DCT) and Inverse DCT functions are im-
plemented. The other parts of the examples are implemented in
SW.

We construct HM’s for transferring 64 data from SW (HW) to
HW (SW). In our implementation, a single original message has
44 bytes information. For transferring one datum from SW (HW)
to HW (SW), four messages are transferred from the SW simulator
to the HW simulator. In the case of transferring one datum from
HW to SW, a single message is transferred from the HW simulator
to the SW simulator together with four messages transferred from
the SW simulator to the HW simulator. Thus, an HM from SW
to HW contains 11,264 (=44x4x64) bytes and an HM from HW to
SW contains 2,816 (=44x64) bytes in total.

We use an ARM7 instruction set simulator (ISS) having opti-
mistic simulation features for SW simulation [9]. For optimistic

Table 1: Cosimulation run-times for the H.263 decoder.
Opt. Dist. (sec) Hybrid (sec)

Nhop w/o HM w/ HM w/o HM w/ HM
3 3,727 2,436 4,579 406
12 5,900 4,200 74,577 1,457

Table 2: Cosimulation run-times for the JPEG encoder.
Opt. Dist. (sec) Hybrid (sec)

Nhop w/o HM w/ HM w/o HM w/ HM
3 629 523 617 110
12 1,266 879 24,118 371

HW simulation, we use a commercial cycle-based simulator, Syn-
opsys Cyclone utilizing its checkpoint and restore functions [10].
Optimistic simulation library functions [5] are linked with ARM7
ISS and Cyclone, respectively. We also use a HW emulator [11]
(based on Xilinx XC4085), which does not provide optimistic sim-
ulation features.

We use the number ofhopsNhop to denote the number of
Internet connections in a geographically distributed cosimulation
environment.3 To experiment the effect of communication over-
head via Internet, we performed cosimulation in two different ge-
ographically distributed cosimulation environments (Nhop = 3 or
12). Especially, the case ofNhop = 12 is a connection between a
workstation (or a PC) at Seoul Nat’l Univ. in Korea and a worksta-
tion at Virginia Tech. in the U.S.

For optimistic distributed cosimulation, we run ARM7 ISS and
Cyclone on two remotely located simulation hosts (two SUN Ul-
traSparc I’s, 143 MHz). Figure 4 shows a simplified view of our
optimistic distributed cosimulation. For the case of Synopsys Cy-
clone, we use C Language Interface (CLI) to link our optimistic
simulation library functions with Cyclone. We also use a wrapper
(a Unix process) to issue simulation commands (run, checkpoint,
and restore as shown in Figure 4) to Cyclone. For hybrid cosimu-
lation, we run ARM7 ISS (i.e. the optimistic simulator) on a work-
station and the HW emulator (i.e. the synchronous simulator) on a
PC (Pentium II, 300 MHz, Win98).

First, we ran uni-processor synchronous cosimulation of two
examples using ARM7 ISS and Cyclone on an UltraSparc I work-
station and obtained 5,816 sec (for H.263) and 1,418 sec (for JPEG)
for the run-times. Table 1 and 2 show cosimulation run-times of
two geographically distributed cosimulation environments. Com-
pared to the run-times of uni-processor synchronous cosimulation,
the performance improvement of optimistic distributed cosimula-
tion (w/o HM) comes mainly from the reduction of simulator syn-
chronization overhead rather than the benefit from parallel simula-
tion. Applying HM concept to optimistic distributed cosimulation,
we can obtain 1.53 and 1.40 times (1.20 and 1.44 times) perfor-
mance improvement for the H.263 example (for the JPEG example)
in the two cases ofNhop.

Table 3 shows the reduction of the numbers of rollbacks by ap-
plying HM concept to optimistic distributed cosimulation. Figure
5 shows the histograms of the numbers of rollbacks in the case
of optimistic distributed cosimulation of the H.263 example (when
Nhop = 12). In Figure 5, the number of short rollbacks is dramati-
cally reduced by applying HM concept, while that of long rollbacks
slightly increases due to the delay of message transfer caused by the

3 In this paper,Nhop is defined to be the number of Internet routers (including
gateways) plus one.



Table 3: The numbers of rollbacks in optimistic distributed cosim-
ulation.

H.263 JPEG
Nhop w/o HM w/ HM w/o HM w/ HM

3 7,721 1,775 1,710 380
12 8,697 2,130 1,815 431

Figure 5: Histograms on rollback statistics (# of rollbacks v.s. roll-
back distance) in the H.263 decoder example.

construction of HM.
In Table 1 and 2, compared to the run-times of uni-processor

synchronous cosimulation, the performance improvement of hybrid
cosimulation (w/o HM) is mainly from the reduction of HW simu-
lation run-time by using a HW emulator instead of the cycle-based
simulator. As shown in Table 4, by applying HM concept to hybrid
cosimulation, the numbers of physical messages and rollbacks are
reduced down to 0.78% and 4.22% for the H.263 example, respec-
tively (0.84% and 4.87% for the JPEG example). Such reduction of
the numbers of physical messages and rollbacks gives 11.28 times
(for H.263) and 5.61 times (for JPEG) performance improvement
(whenNhop = 3) in Table 1 and 2. In hybrid cosimulation [1], since
the increase of communication overhead does not change rollback
behavior, Table 4 gives a single number for each type of cosimula-
tion.

In Table 1 and 2, as the communication overhead represented by
Nhop increases, the run-time of hybrid cosimulation without HM
concept gets increased steeply due to the large numbers of physi-
cal messages and rollbacks, while HM concept gives much slower
increase of run-time.

In Table 1 and 2, HM concept gives better performance im-
provement in hybrid cosimulation than in optimistic distributed cosim-
ulation. The reason is as follows. In hybrid cosimulation without
HM concept, two simulators synchronize at least at every message
transfer as described in Section 2. For the simulator to start, it
should wait to receive a message (null message or a message hav-
ing an event) from other simulator(s). On the contrary, in optimistic
distributed cosimulation, simulators do not stop to wait for mes-
sages. Thus, the reduction of the number of physical messages in
the case of hybrid cosimulation has stronger effect on the reduction
of the number of simulator synchronization, i.e. the reduction of
simulator synchronization overhead including rollback overhead.

6 Conclusion

In this paper, we present hierarchically grouped message concept to
reduce the simulator synchronization overhead in geographically

Table 4: The numbers of physical messages (No. MSG) and roll-
backs (No. RB) in hybrid cosimulation.

H.263 JPEG
w/o HM w/ HM w/o HM w/ HM

No. MSG 684,262 5,325 163,880 1,375
No. RB 41,091 1,735 10,374 505

distributed timed cosimulation. We obtained significant perfor-
mance improvement by applying HM concept to geographically
distributed cosimulation environments. Our experiments show that
HM concept enables geographically distributed timed cosimulation
to be applied in practical situations.

Currently, we are integrating hybrid and optimistic distributed
cosimulation together with HM concept into an existing system de-
sign framework. Our future work includes developing efficient syn-
chronization methods in hybrid distributed cosimulation environ-
ments where software simulators, hardware simulators, and analog
simulators co-exist.

Acknowledgement

We would like to thank Prof. Dong S. Ha in the Dept. of ECE,
Virginia Tech. for his help with the experimental setup.

References

[1] S. Yoo and K. Choi, “Synchronization Overhead Reduction in Timed Cosimu-
lation”, Proc. IEEE International High Level Design Validation and Test Work-
shop, pp. 157–164, Nov. 1997.

[2] K. Hines and G. Borriello, “Selective Focus as a Means of Improving Geo-
graphically Distributed Embedded System Co-simulation”,Proc. Eighth IEEE
International Workshop on Rapid System Prototyping, pp. 58–62, June 1997.

[3] K. Hines and G. Borriello, “A Geographically Distributed Framework for Em-
bedded System Design and Validation”,Proc. Design Automat. Conf., pp. 140–
145, June 1998.

[4] H. Rajaei, R. Ayani, and L. Thorelli, “The Local Time Warp Approach To Paral-
lel Simulation”, Proc. 7th Workshop on Parallel and Distributed Simulation, pp.
119–126, 1993.

[5] S. Yoo and K. Choi, “Optimistic Distributed Timed Cosimulation Based on
Thread Simulation Model”,Proc. Int. Workshop on Hardware-Software Code-
sign, pp. 71–75, Mar. 1998.

[6] D. Jaggar,Advanced RISC Machines Architectural Reference Manual, Prentice
Hall, July 1996.

[7] Telenor,Telenor’s H.263 Software, http://www.nta.no/brukere/DVC/h263
software/.

[8] Portable Video Research Group,PVRG-JPEG CODEC, ftp://havefun.stanford
.edu/pub/jpeg/JPEGv1.2.1.tar.Z.

[9] W. Jang, D. Lim, and S. Yoo, ARM7 Instruction Set Simulator,
http://poppy.snu.ac.kr/Codesign/ARMISS/.

[10] Synopsys, Inc.,Synopsys Simulation Homepage, http://www.synopsys.com/
products/simulation/simulation.html.

[11] D. Lim, K. Rha, and S. Yoo, Design Automation Lab. Prototyping Board,
http://poppy.snu.ac.kr/Codesign/DALP98A/.


	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


