
Combining GAs and Symbolic Methods
for High Quality Tests of Sequential Circuits

Martin Keim Nicole Drechsler Bernd Becker
Institute of Computer Science, Albert-Ludwigs-University
Am Flughafen 17, 79110 Freiburg im Breisgau, Germany

email: <keim, ndrechsler, becker>@informatik.uni-freiburg.de

Abstract
A symbolic fault simulator is integrated in a Genetic

Algorithm (GA) environment to perform Automatic Test
Pattern Generation (ATPG) for synchronous sequential
circuits. In a two phase algorithm test length and fault
coverage as well are optimized. However, there are cir-
cuits with bad random testability properties, that are
also hard to test using genetically optimized test pat-
terns. Thus, deterministic aspects are included in the
GA environment to improve fault coverage. Experiments
demonstrate that tests with higher fault coverages and
considerably shorter test sequences than in previously
presented approaches are obtained.

1 Introduction
The complex and time consuming task ofAutomatic

Test Pattern Generation(ATPG) for synchronous se-
quential circuits is of large interest in computer aided
design for integrated circuits. Primarily two methodolo-
gies have been studied intensively: Deterministic algo-
rithms, e.g. [19], and simulation based algorithms, e.g.
[25]. Deterministic ATPG has the advantage that it finds
a test sequence for a target fault if there exists one, or
proves the fault as undetectable. However, complex cal-
culations are necessary for the task. On the other hand
side, simulation based ATPG algorithms cannot guaran-
tee to find a test sequence, nor can they prove a fault
as undetectable. But the complexity of computation is
considerably reduced. The quality of the test sequence
computed by these algorithms is determined by the qual-
ity of the test sequence optimization algorithms. Such
an optimization paradigm is provided byGenetic Algo-
rithms (GAs) [8]. GAs have been demonstrated to be
an interesting and competitive alternative in ATPG, see
e.g. [25, 24, 4, 3, 23, 22, 9, 10]. In general, GAs provide
optimization and search strategies which are used more
and more in the area of VLSI CAD [7].

In this paper we propose an ATPG algorithm based
on simulation and a GA. We measure the quality of a
solution by means of fault coverage and test pattern se-
quence length. The main focus of the GA is quality of
the tests at the expense of a reasonable amount of run-
time. The idea is to split the ATPG into two runs: We use
a “fast but inexact” three-valued based simulation dur-
ing the first run to obtain tests for easy to detect faults.
Thereafter an “exact” simulation based onordered Bi-
nary Decision Diagrams(BDDs) [2] is used during a
second run to determine tests for the remaining “hard”
faults. A probabilistic and a deterministic ATPG sub-
routine is implemented to find a test sequence for a target
fault. Thereafter this sequence is genetically optimized
to increase the coverage of other faults.

The tool supports not only the common SOT(Sin-
gle Observation Time Test Strategy), but also theMul-
tiple Observation Time Test Strategy(MOT) [20]. The
experimental results show that MOT further improves
the number of detected faults in particular in comparison
to symbolic SOT. Details on symbolic simulation using
MOT can be found in [17]. Restricting MOT to only
those outputs of the fault-free circuit that are known,

there is only one partially defined sequence, that has
to be compared with the output sequence of the circuit-
under-test. This rMOT test strategy is able to improve
fault coverage and can be used for test execution with-
out modifying the test execution process itself.

We describe experimental results to show the effi-
ciency of the approach in comparison to previous work.
We also show the effect of using a three-valued simula-
tion or a symbolic simulation method. We compare our
method to several advanced ATPG algorithms found in
literature which do not make use of a given fault free re-
set state or a full scan environment. In general, the test
sequence length achieved with the approach proposed
here is only 2/9 of that of other ATPGs for SOT, and 1/2
for MOT.

2 The ATPG Tool
To solve the ATPG problem we combined a genetic

algorithm with an accurate fault simulator. In the fol-
lowing, we introduce the components of our ATPG tool.

2.1 Hybrid Fault Simulator
The simulatorHFSim[16, 17] used here supports dif-

ferent logics for simulation: (1) a fault simulation based
upon the three-valued logic, (2) a symbolic fault simula-
tion based upon BDDs, and (3) a combined fault simula-
tion, with a symbolic true value simulation and a three-
valued based explicit fault simulation. Thus, the simu-
lator is able to automatically adapt itself to the memory
demand and execution time restrictions. It automatically
selects an appropriate procedure for the next time frame.
Additionally, it supports the SOT, MOT, and rMOT test
strategy.

2.2 GA Aspects
Our ATPG algorithm makes use of two main GA

phases. InPhase 1, the algorithm starts optimizing a test
sequence of fixed length, beginning in a given starting
state, e.g. the unknown initial state. This test sequence
is optimized with respect to fault coverage and length of
the test sequence. InPhase 2tests are generated for the
remaining undetected faults, i.e. the test sequence from
Phase 1is iteratively enlarged by test vectors.

An element (individual) of a GA's population is a
binary string, that represents a test sequence ofn time
frames. The maximum length of the individuals is fixed,
i.e. each test sequence in a population has an upper
bound in length. Initially, these binary strings are ran-
domly chosen. The objective function rate the number
of undetected faults as a first and the length of the test
sequence as a second optimization criterion. Thus, the
value of the objective function has to be minimized. This
objective function consists basically of the fault simula-
tior HFSim described in the last section. The perfor-
mance of the GA with respect to runtime is improved by
usingtournament selection[6] which reduces the num-
ber of evaluations tremendously. (For comparison we
usedroulette wheel selection[6] in another series of ex-
periments).



Genetic operators modify the individuals in the pop-
ulations. Here, we make use of “standard” operators
[14, 13], like mutations or crossover, and several prob-
lem specific operators (horizontal crossover[5], vertical
crossover[5], and free vertical crossover). The size of
the population inPhase 1is set tojPj = 32 and inPhase
2 it is set tojPj = 16. If Phase 2runs in the three-valued
mode the population size is enlarged tojPj = 32, since
the three-valued simulation runs much faster.Phase 2is
started ifPhase 1has had no improvement during the
last 100 generations. Each recombination operator is
performed with a probability of 20% and the mutation
rate is set to 5%. The magnitude of probabilities for the
operators showed to be a good choice in several other
applications.

2.3 Deterministic and Probabilistic Aspects

To improve fault coverage for hard to test faults, it
is necessary to include some deterministic ATPG into
the GA-environment. Our solution is a BDD-based
forward-propagation algorithm as an optional routine of
Phase 2. Starting from the reached state, a fault de-
tection BDD is constructed, i.e. a BDD for a circuit
where the according primary outputs of the fault-free
and of the faulty circuit are XORed together and these
XOR-outputs are ORed together; the primary inputs are
shared. There are two sets of present state variables: one
for the fault free and one for the faulty circuit. A fault is
detectable according to SOT, iff there is an assignment
to the primary input variables such that for all present
state variables the fault detection BDD evaluates to 1.
This found test pattern sequence (i.e. the 1-path in the
quantified BDD) defines the initial values of the individ-
uals of the current GA-population. Since usually only
a few primary input variables occur on this 1-path only
the according positions on the bit-string representing an
individual are initially preset. The value of all other non
occurring variables is randomly determined.

To compute a test sequence according to MOT, the
same fault detection BDD must be build. However, the
test of detection is different. The fault detection BDD of
the current time frame is paired with the fault detection
BDDs of all former time frames. Thus, a fault is de-
tectable, iff there is a primary input variable assignment,
such that the output sequence produced by the circuit-
under-test cannot be determined by any initial state of
the fault free circuit [17].

Since the fault detection BDD is constructed using
the current state of the circuits that is largely initialized,
the BDD-forward simulation described above works fine
for five up to several ten time frames. Finally, the BDD-
sizes will exceed a given size limit. In order to sym-
bolically simulate a much larger number of time frames
another algorithm is implemented. It bases on signal
probabilities and fault detection probabilities, and the
fact that both probabilities can be computed exactly and
easily using BDDs [15]: A single fault detection BDD
is constructed assuming the unknown initial state. The
' forward simulation algorithm' works now as follows:
(1) Compute the signal probability of all next state lines
of the former time frame. (2) Assign this value to
the present state variables. (3) Compute the fault de-
tection probability. (4) Increment the time frame and
continue with step 1 for a given number of iterations.
Since the BDDs are iteratively evaluated and no BDD-
operations are performed, the algorithm works very ef-
ficiently. Changing the 1-probability value of the pri-
mary input variables changes the fault detection prob-
ability. Thus, optimizing the fault detection probabil-
ity means manipulating the vector of input probabilities.
This optimization task is done by an instance of the de-
scribed GA. However, the algorithm makes an inherent

error: Within each time frame all probabilities are ex-
actly computed, but no signal dependencies across time
frames are considered. Nevertheless, for two reasons
the approximation is sufficient: (1) Experiments [11]
showed that the relative error between the approxima-
tion and the real value is (very) small in most cases. (2)
The computed input probability vector is finally used to
determine an initial population ofPhase 2. This means,
it is sufficient that the input probability vector gives a
goodhint in a promising direction.

2.4 The ATPG Tool Composition

Now all components of our ATPG tool have been pre-
sented. In the following we show the options how to
combine these components to an ATPG tool in order to
achieve high quality test pattern for sequential circuits.
At first, the tool has the possibility to select a three-
valued greedy reset heuristic from [12]. If selected, the
(partial) reset sequence forms the first part of the test
sequence. In the first run, the GA determines a test se-
quence using the three-valued mode ofHFSimonly. In
the second run, this sequence is firstly symbolically sim-
ulated by one of the three symbolic modes ofHFSim
(SOT, rMOT, MOT). Furthermore, the GA is started us-
ing the symbolic modes to improve the test sequence.
Note, that each next step in our ATPG starts in the state
reached by applying the test sequence found so far to the
circuit-under-test. Depending on the user input,Phase
2 of the second run selects either no ATPG subroutine
(GAHFSim, genetic only), or the probabilistic subrou-
tine (GAHFSim probabilities), or the deterministic sub-
routine (GAHFSim deterministic).

3 Experimental Results
To show the efficiency of the approach we applied

the ATPG algorithm to severalISCAS 89benchmark cir-
cuits. We compare the results to those of other GA based
methods ([23, 22, 9]) and to aBest ofselection of ATPG
algorithms ([19, 1, 21, 10]). Table 1 shows the fault cov-
erages (FC) and test length (jYj). After the circuit name,
the number of primary inputs and the number of memory
elements are given. Furthermore, the best results from
our tool are presented.

Experimental results concerning SOT are given in Ta-
ble 2. The columns 2–11 show the results obtained by
the restriction to a pure three-valued simulation. The la-
bels to (ro ) denote experiments using the tournament
selection (roulette wheel selection). Tha labelre ini-
dicate the usage of the greedy reset sequence heuristic.
(Note, that all results are achieved withonly oneparam-
eter setting of the GA.) However, for almost all circuits
we achieve better results in fault coverage and/or test se-
quence length than [23].

If the GA no longer finds an improvement using
the three-valued mode ofHFSim, the test sequence
is handed to the GA-ATPG using symbolic evaluation
and the same selection method (tournament or roulette
wheel) as before. NowPhase 1starts in the (symbolic)
state achieved after the simulation ofY . In the first it-
eration ofPhase 2in the symbolic case, the elements of
the test pattern are chosen randomly with a 1-probability
of 50%. Since there are faults, that are hard to detect
with such a sequence,Phase 2is iterated with different
1-probabilities: We letPhase 2run eleven times, from
0% to 100% 1-probability in 10% steps. The two other
series of experiments are as follows: GAHFSim using
the fault detection probability optimization routine, and
GAHFSim using the deterministic test sequence com-
putation routine. The experimental results are given on
the right of Table 2. The column labelledSymb. Sim.
shows the fault coverage by simply simulating the three-



name PI SI Best of [19, 1, 21, 10] [23] [22] [9] Best results
three-valued symbolic

FC jY j FC jY j FC jY j FC jY j FC jY j FC jY j
s298 3 14 86.04 87 85.94 161 86.04 415 86.04 221 86.04 79 87.66 90
s344 9 15 96.20 37 96.20 95 95.91 169 96.20 75 96.20 56 97.37 56
s349 9 15 95.71 137 95.71 95 95.71 188 95.71 104 95.71 57 96.86 57
s386 7 6 81.77 121 76.88 154 81.77 359 81.77 241 80.47 128 81.77 160
s400 3 21 90.14 2424 85.70 280 81.22 704 90.14 2196 90.09 443 92.22 655
s444 3 21 89.45 1945 85.59 275 80.38 880 89.45 1046 88.19 372 90.08 529
s510 19 6 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 100.00 245
s526n 3 21 81.80 2642 75.08 281 67.75 873 81.62 2109 81.92 820 83.36 860
s641 35 19 86.51 63 86.51 139 86.51 292 86.51 140 86.51 64 87.37 64
s713 35 19 81.93 176 81.93 128 81.93 294 81.93 185 81.93 74 82.62 74
s820 18 5 95.76 424 60.76 146 95.76 1108 95.76 1243 68.35 106 95.88 412
s832 18 5 94.02 701 61.95 150 94.02 1064 94.02 1109 69.89 114 94.14 400
s953 16 29 8.87 20 – – – – – – 8.34 16 99.07 196
s1196 14 18 99.76 244 99.19 347 99.76 377 99.76 948 99.60 233 99.76 236
s1238 14 18 94.69 247 94.02 383 94.69 409 94.69 880 94.61 231 94.69 233
s1488 8 6 97.17 317 93.67 243 97.17 1369 97.17 1191 97.17 367 97.31 367
s1494 8 6 96.48 540 94.02 245 96.48 1224 96.48 985 96.48 305 96.61 305
s5378 35 179 79.06 11571 68.98 511 70.35 683 76.17 7270 72.21 180 74.99 303
s35932 35 1728 89.78 257 89.55 197 89.17 425 89.77 825 89.78 163 89.78 163

Table 1. Experimental results found in literature compared to our best result.

GAHFSim three valued Symb. GAHFSim symbolic
name to ro to,re ro,re Sim. Genetic only Probabilistic Deterministic

FC jY j FC jY j FC jY j FC jY j FC FC jY j FC jY j FC jY j
s298 86.04 128 86.04 79 86.04 135 86.04 95 87.01 87.66 91 87.66 94 87.66 90
s344 96.20 61 96.12 51 96.20 72 96.20 56 97.37 – – – – – –
s349 95.71 61 95.71 65 95.71 64 95.71 57 96.86 – – – – – –
s386 79.65 99 78.91 96 80.47 128 78.91 125 80.47 80.73 142 81.25 172 81.77 160
s400 56.13 82 81.12 209 57.78 73 90.09 443 90.09 90.33 444 92.22 655 92.22 691
s444 60.55 47 60.76 42 88.19 372 60.55 51 88.19 88.40 373 90.08 529 90.08 557
s510 0.00 – 0.00 – 0.00 – 0.00 – – 100.00 252 99.82 341 100.00 245
s526n 80.65 639 81.92 820 81.74 812 81.74 717 83.18 – – 83.36 860 83.36 879
s641 86.51 99 86.51 67 86.51 95 86.51 64 87.37 – – – – – –
s713 81.93 81 81.93 79 81.93 99 81.93 74 82.62 – – – – – –
s820 58.12 121 68.35 106 67.76 145 64.71 143 68.47 68.59 131 85.06 727 95.88 412
s832 57.01 118 69.89 114 60.23 128 67.24 86 70.00 70.11 139 82.76 720 94.14 400
s953 8.34 17 8.34 19 8.34 16 8.34 17 26.04 99.07 253 99.07 294 99.07 196
s1196 99.52 346 99.60 243 99.28 335 99.60 233 99.60 – – – – 99.76 236
s1238 94.46 458 94.46 342 94.17 318 94.61 231 94.61 – – – – 94.69 233
s1488 97.17 367 96.97 280 96.90 335 97.11 301 97.31 – – – – – –
s1494 96.28 332 72.21 305 96.15 267 96.35 299 96.61 – – – – – –
s5378 70.15 222 72.50 180 70.19 274 70.11 203 72.50 72.52 182 * * 74.99 303
s35932 89.78 163 89.78 163 89.78 170 89.78 191 89.78 – – * * – –

Table 2. Results using three-valued evaluation (left) and symbolic simulation (right).

valued test sequence symbolically. A '�' denotes that
the according method obtains no further improvement
in comparison to the symbolic simulation. A ' *' means
that the according computation has been terminated due
to too complex BDDs (800000 bdd-nodes maximum
have been allowed) or too many faults to consider.

Assume the FC and test length of the deterministic
GAHFSim to be 100.00%. Table 3 (left) shows the ratio
of these values to those of other algorithms. Since not
all researchers report results fors953two columns have
been made. For both columns the results fors510have
not been considered since this circuit is untestable us-
ing basic three-valued ATPG. Obviously, our GA-ATPG
computes higher fault coverages than all other presented
ATPGs, even if the advantage is not much. However,
our test sequence length is only a fraction of theirs: It is
about only 2/9 !

Experiments concerning MOT are given in Table 4. It
also shows that the change of the test method from SOT
to rMOT further improves the fault coverage and often
shortens the test sequence in comparison to symbolic
SOT. Comparing to MIX [18], that only supports rMOT,
our (r)MOT-GAHFSim computes mostly the same fault
coverage. However, our test sequence length is only as
half as long (Table 3, right).

The execution time of the symbolic part of the ATPG
algorithm is, in general, only some minutes due to the
following facts: Most faults have already been found
and the correct circuit and many faulty circuits are ini-
tialized. Therefore, the memory demand of the sym-

bolic simulation is small due to small BDDs. For ex-
ample for circuits5378: Three valued GAHFSim using
tournament selection takes an execution time of 6h 50
minutes, whereas the symbolic GAHFSim SOT (MOT)
part needs time less than additional 11 (54) minutes on
a Sparc Ultra 1. However, the cumulative three-valued
simulation time is high because we do perform a single-
fault single-pattern simulation until now. Thus, a paral-
lel version is focus of our current work.

4 Conclusions
In this paper we presented aGenetic Algorithm(GA)

for Automatic Test Pattern Generation(ATPG) for se-
quential circuits. We outlined the advantages of using
hybrid symbolic fault simulation concerning the quality
of the fault coverages. The experiments have demon-
strated that our ATPG tool can generate high quality test
patterns in both, fault coverage and test length: The test
length is reduced to 2/9 (1/2 for (r)MOT) with respect to
that of comparable ATPGs without neglecting the fault
coverage. This quality is mainly based on a high quality
GA. Applying symbolic methods, in particular rMOT,
does further improve the quality of the test sequence
without any drawbacks in test execution.

Acknowledgment
The authors would like to thank Dr. Rolf Drechsler

for his participation in a former version of this work.



SOT
Without s953 With s953

Method FC jY j FC jY j
Det. GAHFSim 100.00 100.00 100.00 100.00

Prob. GAHFSim 98.35 108.72 98.45 110.26
Symb. GAHFSim 96.19 76.72 96.42 78.68

Symb. Sim. 96.08 75.13 91.87 72.63
Best three valued 95.64 75.13 90.37 72.63

[9] 99.40 411.49 – –
[22] 96.90 214.64 – –
[23] 92.82 75.89 – –

Best of [19, 1, 21, 10] 99.60 434.57 94.13 418.71

rMOT Without s510
Method FC jY j

Det. GAHFSim 100.00 100.00
Symb. GAHFSim 94.51 73.03

Symb. Sim. 90.14 68.10
Best three valued 89.88 68.10

[18] 100.32 199.07

Table 3. Comparing the experimental results. SOT on the left and MOT on the right.
Best rMOT GAHFSim rMOT MOT GAHFSim MOT

name MIX three valued Sim. Genetic only Deterministic Sim. Genetic only Deterministic
FC jY j FC jY j FC FC jY j FC jY j FC FC jY j FC jY j

s298 88.64 206 86.04 79 88.31 88.64 86 88.64 90 88.31 88.64 86 88.64 90
s344 97.95 76 96.20 56 97.95 – – – – 97.95 – – – –
s349 97.43 104 95.71 57 97.43 – – – – 97.43 – – – –
s386 81.77 226 80.47 128 80.47 80.73 142 81.77 160 80.47 80.73 142 81.77 160
s400 93.40 1170 90.09 443 92.22 92.45 444 93.63 706 92.22 92.45 444 93.41 706
s444 91.77 870 88.19 372 90.51 90.72 373 92.41 929 90.51 90.72 373 92.41 929
s510 100.00 587 0.00 – – 100.00 337 * * – 100.00 309 * *
s526n 83.24 1545 81.92 820 84.09 – – 84.27 879 84.09 – – 84.27 879
s641 87.37 131 86.51 64 87.37 – – – – 87.37 – – – –
s713 82.62 130 81.93 74 82.62 – – – – 82.62 – – – –
s820 95.88 838 68.35 106 68.47 68.59 131 95.88 412 68.47 68.59 131 95.88 412
s832 94.14 881 69.89 114 70.00 70.11 139 94.14 400 70.00 70.11 139 94.14 400
s953 99.07 563 8.34 16 27.90 99.07 217 99.07 188 27.90 99.07 212 99.07 188
s1196 99.76 306 99.60 233 99.60 – – 99.76 236 99.60 – – 99.76 236
s1238 94.69 347 94.61 231 94.61 – – 96.69 233 64.61 – – 96.69 233
s1488 97.31 918 97.17 367 97.31 – – – – 97.31 – – – –
s1494 96.61 759 96.48 305 96.61 – – – – 96.61 – – – –
s5378 79.14 1766 72.21 180 72.54 72.56 182 75.21 273 72.54 72.56 182 75.21 273
s35932 89.81 296 89.78 163 89.81 – – – – 89.81 – – – –

Table 4. Experimental results using different symbolic evaluation methods (rMOT and MOT).

References
[1] M. Abramovici, K.B. Rajan, and D.T. Miller. Freeze: A new

approach for testing sequential circuits. InDesign Automation
Conf., pages 22–25, 1992.

[2] R.E. Bryant. Graph - based algorithms for Boolean function ma-
nipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[3] F. Corno, P. Prinetto, M. Rebaudengo, and M.S. Reorda. Com-
paring topological, symbolic and GA-based ATPGs: an experi-
mental approach. InInt' l Test Conf., pages 39–47, 1996.

[4] F. Corno, P. Prinetto, M. Rebaudengo, and M.S. Reorda.
GATTO: A genetic algorithm for automatic test pattern gener-
ation for large synchronous sequential circuits.IEEE Trans. on
CAD, 15(8):991–1000, 1996.

[5] F. Corno, P. Prinetto, M. Rebaudengo, M.S. Reorda, and
R. Mosca. Advanced techniques for GA-based sequential ATPG.
In European Design & Test Conf., pages 375–379, 1996.

[6] L. Davis. Handbook of Genetic Algorithms. van Nostrand Rein-
hold, New York, 1991.

[7] R. Drechsler. Evolutionary algorithms for computer aided design
of integrated circuits. InInt' l Symposium on IC Technologies,
Systems and Applications, pages 302–311, 1997.

[8] J.H. Holland. Adaption in Natural and Artifical Systems. The
University of Michigan Press, Ann Arbor, MI, 1975.

[9] M.S. Hsiao, E.M. Rudnick, and J.H. Patel. Alternating strategies
for sequential circuit ATPG. InEuropean Design & Test Conf.,
pages 368–374, 1996.

[10] M.S. Hsiao, E.M. Rudnick, and J.H. Patel. Sequential circuit test
generation using dynamic state traversal. InEuropean Design &
Test Conf., pages 22–28, 1997.

[11] M. Keim and B. Becker. Nearly exact signal probabilities
for synchronous sequential circuits – an experimental analysis.
Technical Report 106/98, Albert-Ludwigs-University, Freiburg,
Jun. 1998.

[12] M. Keim, B. Becker, and B. Stenner. On the (non-) resetability
of synchronous sequential circuits. InVLSI Test Symp., pages
240–245, 1996.

[13] M. Keim, N. Göckel, R. Drechsler, and B. Becker. Combining
GAs and symbolic methods for high quality tests of sequential
circuits. Technical Report 105/98, Albert-Ludwigs-University,
Freiburg, May 1998.

[14] M. Keim, N. Göckel, R. Drechsler, and B. Becker. Test gener-
ation for (sequential) multi-valued logic networks based on ge-
netic algorithm. InInt' l Symp. on multi-valued Logic, 1998.

[15] R. Krieger. PLATO: A tool for computation of exact signal prob-
abilities. InVLSI Design Conf., pages 65–68, 1993.

[16] R. Krieger, B. Becker, and M. Keim. A hybrid fault simulator
for synchronous sequential circuits. InInt' l Test Conf., pages
614–623, 1994.

[17] R. Krieger, B. Becker, and M. Keim. Symbolic fault simula-
tion for sequential circuits and the multiple observation time test
strategy. InDesign Automation Conf., pages 339–344, 1995.

[18] X. Lin, I. Pomeranz, and S.M. Reddy. MIX: A test genera-
tion system for synchronous sequential circuits. InVLSI Design,
pages 456–463, 1998.

[19] T.M. Niermann and J.H. Patel. HITEC: A test generation pack-
age for sequential circuits. InEuropean Conf. on Design Au-
tomation, pages 214–218, 1991.

[20] I. Pomeranz and S.M. Reddy. The multiple observation time test
strategy.IEEE Trans. on Comp., pages 627–637, May 1992.

[21] I. Pomeranz and S.M. Reddy. On static compaction of test se-
quences for synchronous sequential circuits. InDesign Automa-
tion Conf., pages 215–220, 1996.

[22] E. Rudnick and J.H. Patel. Combining deterministic and genetic
approaches for sequential circuit test generation. InDesign Au-
tomation Conf., pages 183–188, 1995.

[23] E.M. Rudnick, J.H. Patel, G.S. Greenstein, and T.M. Niermann.
Sequential circuit test pattern generation in a genetic algorithm
framework. InDesign Automation Conf., pages 698–704, 1994.

[24] D.G. Saab, Y.G. Saab, and J.A. Abraham. Iterative [simulation-
based genetics+deterministic techniques] =complete ATPG. In
Int' l Conf. on CAD, pages 40–43, 1994.

[25] D.S. Saab, Y.G. Saab, and J.A. Abraham. Cris: A test cultivation
program for sequential vlsi circuits. InInt' l Conf. on CAD, pages
216–219, 1992.


	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index


