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Abstract

Presented in this paper are decorrelating transfor-
mations (referred to as DECOR transformations) to
reduce the power dissipation in adaptive �lters. The
coe�cients generated by the weight update block in
an adaptive �lter are passed through a decorrelating
block such that fewer bits are required to represent
the coe�cients. Thus, the size of the arithmetic
units in the �lter (F-block) is reduced thereby re-
ducing the power dissipation. The DECOR trans-
form is well suited for narrow-band �lters because
there is signi�cant correlation between adjacent co-
e�cients. In addition, the e�ectiveness of DECOR
transforms increases with increase in the order of
the �lter and decrease in coe�cient precision. Sim-
ulation results indicate reduction in power dissipa-
tion in the F-block ranging from 12% to 38% for �l-
ter bandwidths ranging from 0:15fs to 0:025fs (where
fs is the sample rate).

1 INTRODUCTION

The recent proliferation of portable, battery-powered, wire-
less communication systems has made low power, high per-
formance Digital Signal Processing (DSP) an important re-
search area. A common DSP operation is �ltering, where

the output, bd(n), at time n is given by,

bd(n) =

N�1X
i=0

wi(n)x(n� i); (1)

where wi(n) is the i
th coe�cient of the adaptive �lter and

x(n) is the input. The most signi�cant portion of the power
dissipation in an adaptive �lter occurs in the multipliers in
the �lter. The power dissipation in the multiplier in turn de-
pends upon the size (i.e. number of bits) of the operands and
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reducing the operand bit-width will reduce the power dissi-
pation. In this paper, we present decorrelating (DECOR)
transformations to reduce the number of bits required to
represent the �lter coe�cients. The DECOR transforms
employ the fact that in most �lters, the magnitude of the dif-
ference between the absolute values of adjacent coe�cients
is typically less than the magnitude of the coe�cients them-
selves. Hence, fewer bits are required to represent the di�er-
ences compared to the actual coe�cients. In addition, there
is also a reduction in delay and area in certain situations
due to smaller bit-widths at the inputs to the multipliers.

The Signal Flow Graph Transformations (SFGT) in [7],
which were developed independently, are a special case of
the DECOR transform. The di�erences between our work
and [7] are as follows. In [8], the DECOR transform is
applied to in�nite-impulse response (IIR) �lters, adaptive
�lters (this paper), �lters with rounding after the output of
multipliers, and the inputs to a �lter in addition to �xed
coe�cient FIR �lters which retain full numerical precision.
We study the types of �lters that are suitable for DECOR
transforms and provide gate-level simulations describing the
e�ect of such �lter parameters as cuto� frequency and �lter
order. Power reduction is achieved by reducing the size of
the arithmetic units and not by reducing the number of 1's
in the coe�cients.

Another approach close to DECOR in literature is the
Di�erential Coe�cients Method (DCM) in [10] where dif-
ferences between adjacent coe�cients are employed for �xed
coe�cient Finite Impulse Response (FIR) �lters. The �rst-
order di�erential coe�cients, �1i , are given by,

�
1
i = wi � wi�1; (2)

where fwig
N�1
i=0 are the coe�cients of the �xed coe�cient �l-

ter (the time index is omitted because the coe�cients do not
change with time). Each product term, wix(n� i), (except
w0x(n)) in (1) is written as,

wix(n� i) = �
1
i x(n� i) +wi�1x(n� i): (3)

The term �
1
i x(n� i) in (3) is computed by a multiplier and

added to wi�1x(n� i), which is computed by the previous
stage, to give wix(n� i). The result of applying DCM to
the direct form (DF) �lter in Figure 1 is shown in Figure
2. It is possible to employ second-order di�erences, �2i , by
repeating the above procedure on the �rst-order di�erential
coe�cients �

1
i . The advantage of DCM is that the bit-

width of the coe�cients are reduced at the expense of N �
1 additional adders and delays for an N tap �lter. The
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Figure 2: Di�erential Coe�cients Method (DCM)

method described in this paper also converts a DF �lter into
one employing coe�cient di�erences. However, we employ
a di�erent formulation of this problem, which results in the
following advantages over DCM: 1) lower overhead for a
given �lter order, 2) overhead is independent of the �lter
order, 3) energy savings over a wider range of bandwidths,
4) easily and e�ciently implementable in software, and 5)
applicable to adaptive �lters.

In other work on low-power adaptive �lters, in [5] the
total switched capacitance is reduced by dynamically vary-
ing the �lter order based on signal statistics. In [4], power
reduction is achieved by a combination of powering down �l-
ter taps and modifying the coe�cients. In [11], the strength
reduction transformation is applied at the algorithmic level
to reduce power dissipation in complex adaptive �lters. The
techniques in [4, 5, 11] can be applied in addition toDECOR.

The rest of this paper is organized as follows. In section
2, the application ofDECOR transforms to �xed coe�cient
�lters [8] is summarized. In section 3, the DECOR trans-
form is applied to adaptive �lters and in section 4, simulation
results for the reduction in power dissipation are presented.

2 PRELIMINARIES

In this section, we summarize the application of theDECOR
transform to �xed coe�cient �lters [8]. In DECOR, the
transfer function, H(z), is multiplied and divided by the
polynomial f(z) given below,

f(z) = (1 + �z
��)m; (4)

where � and � depend upon the type of �lter (low-pass, high-
pass, band-pass, band-stop) as shown in Table 1. Therefore,

the z-transform, bD(z), of the output is given by,

bD(z) = H(z)
(1 + �z

��)m

(1 + �z��)m
X(z); (5)

where X(z) is the z-transform of the input. In (4) and (5)
�, �, and m are integers chosen such that the magnitude
of the impulse response of H(z)(1 + �z

��)m is minimized.
The derivation of the optimum values in Table 1 is presented
in [8]. In Table 1, the parameter, �, is either 1 or �1 and
determines if coe�cients spaced � sample delays apart are
either added or subtracted respectively. The parameter m is
the order of di�erence and determines the number of times

Table 1: Optimum � and � for di�erent types of FIR �lters

Filter Type � � f(z)

Low-pass �1 1 (1� z
�1)m

High-pass 1 1 (1 + z
�1)m

Band-pass 1 1
2fc

(1 + z
� 1

2fc )m

(center = fc)
Band-stop �1 2 (1� z

�2)m

the coe�cients are added or subtracted. The �lter obtained
after applying DECOR with � = �1, � = 1, and m = 1
(i.e., f(z) = 1 � z

�1) to the DF �lter in Figure 1 is shown
in Figure 3. In Figure 3, all coe�cients, except for the left-
most and right-most, are di�erences of adjacent coe�cients
in the original �lter. Note that the left-most coe�cients in
Figure 1 and Figure 3 are identical, while the right-most
coe�cients have opposite signs.
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Figure 3: DECOR Filter (� = �1, � = 1, m = 1)

For DECOR to be useful there must be a reduction
in the bit-width of the coe�cients, which in turn implies
that the maximum magnitude of the impulse response of
H(z)(1+�z

��)m must be less than half the maximum mag-
nitude of the impulse response of H(z). This typically im-
plies that the �lter must have a pass-band width less than
0:1925fs (where fs is the sample rate).

3 LOW-POWERADAPTIVE FILTERSVIA DECOR
TRANSFORMS

In order to apply theDECOR transform to adaptive �lters,
we derive the following from (1),

bd(n) = ��bd(n� �) +

N+��1X
i=0

�i(n)x(n� i): (6)

The derivation of (6) is presented in Appendix A. The �i(n)
in (6) are given as follows,

�i(n) =

(
wi(n) 0 � i < �

wi(n) + �wi��(n� �) � � i < N

�wi��(n� �) N � i < N + �

(7)

From (7), we see that the �rst � coe�cients are identical
to the �rst original � coe�cients and the last � coe�cients
are the last original � coe�cients scaled by �. The center
N � � coe�cients are sums or di�erences (depending on
whether � is 1 or �1) of the original coe�cients. The size
of the multipliers will be reduced if max(j�i(n)j) is less than
max(jwi(n)j)

2
. Reducing the size of the multipliers reduces

the power dissipation and in certain situations, also reduces
the delay and the area of the �lter.

In (7), we see that the DECOR �lter has an over-
head of � additional multipliers, adders, and delays due to
�i(n)x(n � i), i = N : : :N + � � 1. From Table 1, we note



that � is typically 1 or 2 and independent of the �lter order.
Each of the multipliers will, however, have a smaller size if

max(j�i(n)j) is less than
max(jwi(n)j)

2
. The DECOR �lter

also requires 1 additional adder and � additional delays to

add ��bd(n � �)).
The standard adaptive �lter, shown in Figure 4, has 2

blocks,

1. Weight update (WUD) block: This block uses the
inputs and the error to compute the new coe�cients.
The weight-update equation for an LMS �lter is,

wi(n+ 1) = wi(n) + �e(n)x(n� i); (8)

where � is the step size and e(n) is the adaptation
error given by,

e(n) = d(n)� bd(n): (9)

In (9), d(n) is the desired response of the �lter.

2. Filter (F) block: This block �lters the input employing
the coe�cients computed by the WUD block accord-
ing to (1).

The DECOR adaptive �lter, shown in Figure 5, has 3
blocks,

1. Weight update (WUD) block: This block is identical
to the WUD block in Figure 4.

2. Decorrelating block: The inputs to this block are the
coe�cients computed by theWUD block. The output
consists of decorrelated coe�cients.

3. Filter (F0) block: This block �lters the input em-
ploying the coe�cients computed by the decorrelating
block according to (6). As can be seen from Figure 3,
this block will be di�erent from the F-block in Figure
4.
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Figure 4: Adaptive Filter
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Figure 5: DECOR Adaptive Filter

The inputs to the decorrelating block are the N coe�cients
fwi(n)g

N�1
i=0 . The outputs of the decorrelating block are the

N + � coe�cients f�i(n)g
N+��1
i=0 . The parameters � and �

are chosen as in Table 1 depending on the type of �lter to

be implemented. In (7), the parameter �, which is either
1 or �1, determines if coe�cients spaced � taps apart are
either added or subtracted, respectively. The proof that the
output is identical to the standard adaptive �lter as long as
the computations in the F0-block are exact (i.e., no rounding
or truncation) is presented in Appendix A. Hence the �nite
precision analysis for the original adaptive �lter holds for
the DECOR adaptive �lter as well.

It is possible to employ higher order di�erences corre-
sponding to m > 1 in (5) by cascading more than one decor-
relating block as shown in Figure 6. In section 4, we will
see that, typically, a single decorrelating block provides the
most reduction in power dissipation and multiple decorre-
lating blocks increase the delay and consume more area.
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Figure 6: DECOR adaptive �lter using multiple decorrela-
tors

After the �lter has converged the power dissipation in
the WUD and decorrelating blocks can be reduced sub-
stantially by powering them down. Hence, after conver-
gence, only the F0-block will consume power. The block
diagrams for an adaptive Least-Mean Squares (LMS) �lter
and a DECOR adaptive LMS �lter are shown in Figure 7
and Figure 8, respectively.

Dynamic algorithm transformations [4] can be applied
in addition to the DECOR transform. In that case, the
WUD block would send a zero coe�cient for the taps to
be turned o�. The decorrelating block would, as always,
generate a new set of coe�cients using the coe�cients from
the WUD block.

It may be possible to combine the WUD block with the
decorrelating block by deriving update equations for �i(n).
We can employ (7) and (8) to calculate �i(n) directly from
its previous values. The weight update equation for �i(n) is,

�i(n+ 1) =

8>><>>:
�i(n) + �e(n)x(n� i) 0 � i < �

�i(n� � + 1) + �
P��1

k=0
(e(n� k)

+�e(n � k � �))x(n� i� k) � � i < N

�i(n� � + 1) + ��P��1

k=0
e(n� k � �)x(n� k � i) N � i < N + �

(10)

Hence it is possible to combine the decorrelating block and
theWUD block by modifying theWUD block to calculate
�i(n) directly instead of the WUD block computing wi(n)
and the decorrelating block computing �i(n). One potential
problem with combining the WUD block and the decorre-
lating block using (10) is that a quantizer is often used in
the WUD block to reduce the precision of the coe�cients.
The output of the DECOR LMS �lter will not be identical
to the original �lter, in general, because of the quantizer.
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However, the e�ect of the quantizer will be small if enough
bits are used for wi(n), in which case, theWUD and decor-
relating blocks can be combined.

In this section, we have so far described the application
of the DECOR transform to the coe�cients. For an LMS
�lter, we can also apply DECOR to the inputs. For in-
stance, we can derive the following from (1),bd(n) = ��bd(n� �) +

PN�1

i=0
wi(n� �)(x(n� i) + �x(n� i� �))

+�
PN�1

i=0

P��1

j=0
e(n� j)x(n� i)x(n� i� j): (11)

The derivation of (11) is similar to that of (6) shown in
Appendix A. In (11), we see that one of the inputs to the
multiplier is the di�erence between successive input samples
instead of the input samples themselves. We can reduce
the size of the multipliers if the input is correlated and the
maximum of the di�erence is less than half the maximum of
the original samples. This implies that the input must have
its energy concentrated in a narrow band of the frequency
spectrum. There is no restriction on the transfer function
of the �lter when DECOR is applied to the input. There
is an overhead in the form of the �nal double summation in
(11). After convergence, this term will be small because the
errors will be small. Thus we do not need to compute the
�nal term if the DECOR transform is applied to the input
only after convergence.

4 SIMULATION RESULTS

In this section, we present the results of zero-delay, gate-
level simulations of serial LMS �lters and DECOR LMS

�lters. In order to perform gate-level simulations, a zero-
delay, gate-level model of a ripple-carry adder and a two's
complement array multiplier [6] was developed in C. The
array multiplier was employed in the simulations because
of its simplicity and regularity. The simulation assumed all
the multiplications and additions were performed on sepa-
rate units. All multipliers and adders were assumed to have
operands of the same bit-width. In our simulations, we mea-
sured the following 3 quantities,

1. The total number of transitions at the inputs to the
gates. This is a measure of the power dissipation in
CMOS circuits because power is dissipated predomi-
nantly during signal transitions.

2. The maximum number of gates between two latches.
This is a measure of the critical path or delay.

3. The total number of transistors, which provides a mea-
sure of the area.

Only inverters and 2 and 3 input NAND gates were em-
ployed to construct the adders and multipliers since the aim
is to estimate power dissipation in CMOS circuits. The
adder and multiplier models were employed to construct �l-
ters. The transitions in a latch were assumed to be equal
to the transitions at its inputs. The gates were assumed to
have zero-delay since zero-delay simulations are fast. For
instance, a zero-delay gate-level simulation of a 40 tap �xed
coe�cient low-pass FIR �lter with 4096 samples of 16 bit in-
put data required 100 seconds on a Sparc Ultra-2, whereas
a unit-delay simulation of the same �lter required 9840 sec-
onds. One set of simulations was run with unit-delay to



examine the e�ect of changing the delay model on the reduc-
tion in power dissipation. The savings in power dissipation
are around 10 percentage points lower for a �xed coe�cient
�lter with the unit-delay model compared to the zero-delay
model. This is because, in an array multiplier, the number
of transitions is higher under the unit-delay model due to
glitching caused by reconvergent fanout. Hence, the over-
head due to DECOR is higher under the unit-delay model
since DECOR introduces additional multipliers. The over-
head can be reduced by employing a di�erent multiplier (ex.:
Booth multiplier) with less glitching, or by modifying the ar-
ray multiplier to reduce glitching (ex.: introducing latches).
The correctness of simulations of FIR �lters was veri�ed
by comparing the outputs of the gate-level simulations and
RTL simulations.

The adaptive �lter was used for system identi�cation of
low-pass FIR �lters. The input was 4096 samples of uniform
white noise. The desired response was obtained by applying
the input to a �lter generated using MATLAB's �r1 com-
mand. The step-size, �, was set at 0.0078125. In order to
easily compare the output of the serial LMS �lter and the
DECOR LMS �lter, all computations in the F0-block were
exact (i.e., without any rounding or truncation).

In Figures 9, 10, 11, 12, and 13 we report the impact of
pass-band width, �lter order, coe�cient precision, order of
di�erence, and data precision respectively on power, delay,
and area. The base-line �lter was a low-pass FIR �lter with
cuto� of 0:05fs, data precision of 17 bits, coe�cient preci-
sion of 8 bits, and �lter order of 40. We measured the power
dissipation in the F0-block separately from the rest of the �l-
ter because, after the coe�cients have converged, all blocks
other than the F0-block can be turned o� reducing the power
dissipation in those blocks to zero. The coe�cient width was
determined experimentally by running RTL simulations and
noting the maximum magnitude of the coe�cients.

From Figure 9, we see that, in general, the percentage
reduction in power dissipation in the F0-block is increased
as the width of the pass-band is reduced. This is because
the di�erences between adjacent coe�cients is smaller for
narrow-band �lters leading to a greater reduction in bit-
width of coe�cients. There is little change in delay and
area. From Figure 10, we see that the percentage reduction
in power dissipation in the F0-block is increased as the �lter
order is increased. This is because the relative overhead due
to the DECOR transform is decreased as the �lter order
is increased. There is also a small reduction in delay and
area. From Figure 11, we see that the percentage reduction
in power dissipation in the F0-block is increased as the pre-
cision of the coe�cients is decreased. This is because the
reduction in the number of bits is generally independent of
the precision due to which the fractional savings is higher
for lower precision. There is a small percentage reduction
in delay and area which is higher for lower precision. From
Figure 12, we see that the percentage reduction in power dis-
sipation is maximized for the �rst order of di�erence only.
This is because of the overhead for higher order of di�er-
ences. There is a small reduction in delay and area for the
�rst order of di�erence. From Figure 13, we see that the
percentage reduction in power dissipation in the F0-block is
nearly independent of data precision. In all the experiments,
the power dissipation in blocks other than the F0-block (i.e.,
WUD and decorrelating blocks) changed by less than �2%.
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5 CONCLUSION

In this paper, we presented DECOR transforms and ap-
plied it to reduce power dissipation in adaptive �lters. The
coe�cients generated by the weight update block in an adap-
tive �lter are passed through a decorrelating block such that
fewer bits are required to represent the decorrelated coef-
�cients. Thus the size of the arithmetic units in the �lter
(F-block) is reduced thereby reducing the power dissipation.
TheDECOR transform is suited for narrow-band �lters be-
cause there is signi�cant correlation between adjacent coef-
�cients. The e�ectiveness of DECOR transforms increases
with increase in the order of the �lter and decrease in co-
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e�cient precision. Simulation results indicate reduction in
power dissipation in the F-block ranging from 12% to 38%
for �lter bandwidths ranging from 0:15fs to 0:025fs.

APPENDIX A

DERIVATION OF (6)

We present the derivation of (6) in this appendix.bd(n��) =
PN�1

i=0
wi(n��)x(n��� i) [ Replace n with

n� � in (1) ]bd(n)+�bd(n��) =PN�1

i=0
wi(n)x(n�i)+�

PN�1

i=0
wi(n�

�)x(n� � � i) [ Add (1) and above equation ]

=
P��1

i=0
wi(n)x(n�i)+

PN�1

i=�
wi(n)x(n�i)+�

PN���1

i=0
wi(n�

�)x(n� � � i) + �
PN�1

i=N��
wi(n� �)x(n� � � i)

=
P��1

i=0
wi(n)x(n�i)+

PN�1

i=�
wi(n)x(n�i)+�

PN�1

i=�
wi��(n�

�)x(n� i) + �
PN+��1

i=N
wi(n� �)x(n� i) [ Replace i with

i+ � in the second and third sums ]

=
P��1

i=0
wi(n)x(n�i)+

PN�1

i=�
(wi(n)+�wi��(n��))x(n�

i) + �
PN+��1

i=N
wi��(n� �)x(n� i)

) bd(n) = ��bd(n��)+P��1

i=0
wi(n)x(n�i)+

PN�1

i=�
(wi(n)+

�wi��(n � �))x(n� i) + �
PN+��1

i=N
wi��(n� �)x(n� i)

= ��bd(n � �) +
PN+��1

i=0
�i(n)x(n� i); [ Using (7) ]

which is the desired equation. {
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