
Robust Latch Mapping for Combinational Equivalence
Checking

Jerry R. Burch and Vigyan Singhal
Cadence Berkeley Labs

Abstract
Existing literature on combinational equivalence checking
concentrates on comparing combinational blocks and
assumes that a latch mapping (register mapping) has already
been constructed. We describe an algorithm for
automatically constructing a latch mapping. It is based on
the functionality of the circuits being compared rather than
on heuristics. As a result, if two circuits are combinationally
equivalent, then our algorithm is guaranteed to find a latch
mapping. Our empirical results show that the method is
practical on large circuits.

1. Introduction
When applied to a pair of sequential circuits, combinational
equivalence checking typically consists of two steps. The
first step is to construct a latch mapping (also known as a
register mapping). This identifies corresponding latches in
the two designs to be compared. It is then possible to break
the circuits into corresponding combinational blocks. The
second step is to verify whether the corresponding
combinational blocks are equivalent. If so, then the circuits
are functionally equivalent.

The research literature has many papers on the second step.
Kuehlmann and Krohm [5] and Pradhan et al. [6] are recent
examples. Their lists of references contain many more
examples. However, there is little in the literature on the first
step, where a latch mapping is constructed [1, 2, 4].

Existing commercial tools use heuristics based on signal
names or circuit structure to construct a latch mapping. If
two combinational blocks are found to be inequivalent, it
may be because of an incorrect latch mapping rather than a
bug in the circuit. This complicates debugging. Tools that
do design transformations, such as synthesis or clock tree
insertion, often do not preserve signal names, especially
when a design is being flattened as part of the
transformation.

We describe an algorithm based on the functionality of the
circuits being compared rather than on heuristics. The

method produces a legal latch mapping if and only if one
exists. If a circuit bug exists, our method provides a
predictable, interactive procedure for isolating a
combinational block which has a bug.

Our empirical results show that the method is practical on
large circuits. The total CPU time required for latch
mapping and equivalence checking is similar to that
required by a combinational equivalence checking
algorithm that assumes that a latch mapping has already
been provided.

We also show how the method can be generalized to ternary
circuit models. This allows an implementation to be
compared to a specification with don't cares. Finally, we
describe the mathematical relationship between our latch
mapping algorithm and sequential equivalence checking.
This relationship can be helpful for developing formal
verification methods that combine some of the strengths of
both combinational and sequential equivalence checking.

1.1 Related Work
The latch mapping algorithm described by van Eijk [2] is
quite similar to the fixed point computation we have
developed (sections 3 and 5). However, van Eijk does not
show how bugs can be localized in incorrect circuits. In fact,
the behavior of the algorithm on inequivalent circuits is not
discussed at all. Finally, van Eijk does not consider the case
where don't care conditions must be used to show
equivalence.

van Eijk [3] described a method that combines some of the
strengths of combinational and sequential equivalence
checking.

1.2 Organization
Section 2 describes the circuit models we use. Section 3
describes how we represent latch mappings and gives a
high-level description of our fixed-point algorithm for
constructing latch mappings. The relationship between latch
mappings and reset states is discussed in section 4. Section
5 gives more details about the implementation of our latch
mapping algorithm while section 6 shows how circuit bugs
can be localized when automatic latch mapping is used.
Section 7 gives empirical results. Sections 2 through 7 are
based on a Boolean circuit model. Section 8 shows how our
techniques can be extended to handle ternary models and
don't care conditions. Finally, section 9 discusses the
relationship between combinational and sequential
equivalence checking and section 10 concludes.

Robust Latch Mapping for Combinational Equivalence Checking
Jerry R. Burch and Vigyan Singhal

Cadence Berkeley Labs

2. Circuit Models
We consider two circuits, the implementation circuit and the
specification circuit. To simplify the exposition, we assume
that the circuits have a single clock, and have the same
inputs I and outputs O. Let nI and nO be the number of
inputs and outputs, respectively.

We refer to the state holding elements of the circuits as
latches. Let LImpl and LSpec be the set of latches of the
implementation and the specification, respectively. Let L =
LImpl ∪ LSpec be the combined set of latches. Let S be a
combined state, i.e. S: L→ {0, 1}. We write SImpl and SSpec
to denote the projection of S onto LImpl and LSpec,
respectively. Thus, SImpl and SSpec represent the states of
the individual circuits while S represents their combined
state. We write SImpl ∪ SSpec to denote the recombining of
SImpl and SSpec to form the combined state S.

Let δImpl be the transition function of the implementation,
i.e., given an input vector I and a state SImpl, δImpl(SImpl, I)
is the next state. The transition function of the specification,
δSpec, is analogously defined. The combined transition
functionδ is the result of combiningδImpl andδSpec: given
an input vector I and a combined state S,δ(S, I) is the next
combined state.

Let γImpl be the output function of the implementation:
γImpl(SImpl, I) is the output vector O for the implementation
state SImpl and input vector I. The output functionγSpec of
the specification is analogously defined.

Our latch mapping algorithm does not require that the user
provide a reset state (or states) for the circuits being
compared. However, reasoning about the relationship
between combinational and sequential equivalence
checking requires considering the reset states of the circuits,
even if all circuit states are considered possible resets states.
Let RImpl and RSpec be the set of reset states of the
implementation and the specification, respectively (we do
not distinguish between a predicate and the set of all objects
that satisfy the predicate).

It is standard to define a predicate PImpl on implementation
states to beinductive if

∀SImpl [RImpl(SImpl) ⇒ PImpl(SImpl)]

and

∀SImpl ∀I [PImpl(SImpl) ⇒ PImpl(δImpl(SImpl, I))].

It is easy to show that if PImpl is inductive, then it contains
all reachable implementation states.

In this paper, we often use predicates on combined states
rather than on implementation states. Thus, we must
consider the reset states of both the implementation and the
specification. As a result, the notion of an inductive
predicate (which considers only the reset states of one state
machine) is not adequate. We address this issue in two steps.
First, we define a predicate P on combined states to besemi-

inductive if

∀S ∀I [P(S) ⇒ P(δ(S, I))].

This corresponds to the second condition in the definition of
an inductive predicate. Second, we define the following
reset condition on a predicate P on combined states:

∀SImpl ∈RImpl [∃SSpec∈RSpec [P(SImpl ∪ SSpec)]].

Typically, combinational verification tools determine
whether the implementation is equivalent to the
specification. However, the specification may have more
reset states (and, therefore, more possible execution traces)
than the implementation. In this case, the implementation
could be safely substituted for the specification, although
the two circuits are not equivalent. To handle this situation,
we formalize what it means for the implementation to
conform to the specification. First, however, an auxiliary
definition is required, as follows.

The implementation and the specification aresequentially
equivalent for the initial combined stateS0 iff for all input
vectors I and all combined states S reachable from S0

γImpl(SImpl, I) = γSpec(SSpec, I).

Let P be the set of all states S0 such that the implementation
and the specification are sequentially equivalent for the
initial combined state S0. The implementationconforms to
the specification iff P satisfies the reset condition.

Finally, a predicate P on combined statesforces output
equality iff

∀S ∀I [P(S) ⇒ γImpl(SImpl, I) = γSpec(SSpec, I)].

Theorem 1: The implementation conforms to the
specification if and only if there exists a predicate P that is
semi-inductive, forces output equality and satisfies the reset
condition.

Proof: The forward implication follows by letting P be the
set of all combined states S such that the implementation
and the specification are sequentially equivalent for the
initial combined state S. The reverse implication follows
from the definitions using induction on the length of
sequences of input vectors.QED.

3. Latch Mappings
We represent latch mappings with a predicate M. The
latches l0 and l1 are mapped together iff M(l0, l1) is true. We
do not require that M be one-to-one; it can be an arbitrary
equivalence relation. This allows, for example, two latches
in the implementation to be mapped to a single latch in the
specification (see section 4). We say a combined state S
satisfies M if any two latches that are mapped together by M
have the same value in S. Let PM be the set of combined
states S that satisfy M:

PM(S) ⇔ ∀l0 ∀l1 [M(l0, l1) ⇒ S(l0) = S(l1)].

Several of the properties we defined for predicates are
extended to latch mappings, as follows. A latch mapping M
is semi-inductive if the predicate PM is semi-inductive. A

mapping M forces output equality if PM forces output
equality. Finally, a mapping M satisfies thereset condition if
PM satisfies the reset condition.

We say that M1 is a refinement of M0 (also written M1 ⊆
M0) if

∀l0 ∀l1 [M1(l0, l1) ⇒ M0(l0, l1)].

If M 1 ⊆ M0, then the set of combined states that satisfy M1
is larger than the set of combined states that satisfy M0, as in
the following theorem.

Theorem 2.If M 1 ⊆ M0, then∀S [PM0(S) ⇒ PM1(S)].

We construct a latch mapping by starting with the mapping
M0 that maps every latch to every other latch:

∀l0 ∀l1 M0(l0, l1).

We then iteratively refine this mapping until it is semi-
inductive. We formalize this process using a functionΦ that
takes a mapping Mn and returns a mapping Mn+1 that is a
refinement of Mn. The following definition does not
completely specifyΦ; there are many possibleΦ that will
do the job. We sayΦ is a refining function iff both of the
following two conditions hold.

1. M is a fixed point ofΦ (that is, M =Φ(M)) iff M is semi-
inductive.

2. Φ is monotonic, which means that if M1 ⊆ M0, then
Φ(M1) ⊆ Φ(M0).

We know that the greatest fixed point ofΦ exists and can be
computed in a finite number of steps becauseΦ is
monotonic and because there is a finite number of latches.
The following theorem shows how the latch mapping that is
the greatest fixed point ofΦ can be used to determine
whether the implementation conforms to the specification.

Theorem 3. If M is a fixed point of a refining functionΦ,
forces output equality and satisfies the reset condition, then
the implementation conforms to the specification.

Proof: By condition 1 of the definition of a refining
function, M is semi-inductive. Since M is semi-inductive,
forces output equality and satisfies the reset condition, we
know that PM is semi-inductive, forces output equality and
satisfies the reset condition. Thus, the result follows from
Theorem 1.QED.

Using Theorem 3, we can verify that the implementation
conforms to the specification, as follows. First, compute the
greatest fixed point M* ofΦ (see section 5 for more details
on how this is done). Confirming that M* forces output
equality is simply a matter of using combinational
equivalence checking on the combinational blocks driving
the primary outputs of the implementation and the
specification (M* provides the mapping between the latches
that are local inputs to these combinational blocks). All that
remains is to check that M* satisfies the reset condition,
which is discussed in section 4.

The previous theorems are applicable when the

implementation conforms to the specification. We must also
consider the case where we do not have conformance.

Theorem 4.Let M* be the greatest fixed point of a refining
functionΦ. Assume that M* does not force output equality.
Then there does not exist a latch mapping M that is semi-
inductive and forces output equality. Thus, by Theorem 1,
the implementation does not conform to the specification.

Proof: We prove the theorem by assuming there is such an
M and then showing that this leads to a contradiction. By
condition 1 of the definition of a refining function, any
semi-inductive mapping must be a refinement of M*. Thus,
M ⊆ M*. By Theorem 2, PM is weaker than PM* . Clearly
PM* does not force output equality, so PM also does not
force output equality. This contradicts the assumption that
M forces output equality.QED.

Theorems 3 and 4 give us the following method for
checking conformance. First, automatically construct the
greatest fixed point M* of some refining functionΦ for the
circuits. If M* does not force output equality (which is
checked using automatic combinational equivalence
checking), then conformance cannot be shown using
combinational methods. Section 6 describes how to localize
bugs in the implementation in this case. If M* does force
output equality, then conformance can be shown by showing
that M* satisfies the reset condition, as discussed in the
following section.

4. Satisfying the Reset Condition
Assume a latch mapping M is a fixed point of a refinement
function Φ, and that M forces output equality. We want to
check whether M satisfies the reset condition, in order to use
Theorem 3 to show conformance.

Typically, our equivalence checking tool is used without the
user providing any information about reset states. In this
case, the sets of reset states RImpl and RSpec contain all
possible states of their respective circuits. It is easy to show
that the reset condition is satisfied if there are no two
implementation latches that are mapped together by M. Two
implementation latches are mapped together by M only if
they are redundant (that is, one is functionally a copy of the
other).

In the less common case where there are two
implementation latches l0 and l1 that are mapped together
by M, it is possible for the implementation to start in a state
SImpl where l0 and l1 do not have the same value. Then there
is no specification state in RSpec that can be used to satisfy
the reset condition. There may also be no start state that
results in the same sequential behavior for the specification
as SImpl does for the implementation. This would mean that
the implementation does not conform to the specification
unless the reset states of the implementation are restricted to
have l0 and l1 with the same value.

In this situation (where the user has provided no information
about reset states and there are redundant implementation
latches), our latch mapping algorithm can provide
constraints on the reset states of the implementation (that is,

pairs of redundant implementation latches that must have
the same initial value). If these constraints are satisfied, then
conformance is guaranteed (given that the tool has already
been used to check the assumptions at the beginning of this
section).

Sometimes these constraint are stronger than necessary.
They can be weakened by refining M in such a way that it is
still a fixed point ofΦ and forces output equality, and that l0
and l1 are no longer mapped together. The worst case
complexity of searching for such refinements appears to be
exponential. Although it is beyond the scope of this paper,
there are methods that are likely to work well in practice.
van Eijk [2] also considered methods for searching for such
refinements.

5. Implementation Issues
Our latch mapping algorithm involves computing the
greatest fixed point M* of a refining functionΦ (see section
3). This section describes how latch mappings are
represented and how the functionΦ is computed.

A latch mapping M is an equivalence relation between
latches. Thus, it can be represented efficiently as a partition
of the set of latches. It is easy to design the data structure so
that equivalence classes can be split efficiently.

Given a latch mapping Mn, we need to compute Mn+1 =
Φ(Mn), whereΦ is a refining function as defined in section
3. This can be done with the following algorithm.

1. Randomly produce a combined state S that satisfies Mn.
This can be done by randomly assigning Boolean values
to the equivalence class of Mn, and then constructing S
so that every latch l has the value assigned to the
equivalence class that l is a member of. Also, randomly
produce an input vector I.

2. Compute S1 = δ(S, I). If S1 satisfies Mn, go to step 4.

3. Construct Mn+1 such that for all l0 and l1, Mn+1(l0, l1) if
and only if Mn(l0, l1) and S1(l0) = S1(l1). Clearly Mn+1⊆ Mn. Because S1 does not satisfy Mn, we know that
Mn ≠ Mn+1. Exit and return Mn+1.

4. For all pairs of latches l0 and l1 such that Mn(l0, l1)
a. Use combinational equivalence checking to show

whether the combinational blocks that drive l0 and
l1 are equivalent for all combined states that satisfy
Mn.

b. If the blocks are equivalent, continue the loop with
the next pair of latches.

c. Otherwise, the combinational equivalence checker
will produce a counter-example: a combined state S
and an input vector I such thatδ(S, I)(l0) ≠ δ(S,
I)(l1).

d. Compute S1 = δ(S, I) and go to step 3.

5. Mn is semi-inductive. Set Mn+1 = Mn. Exit and return
Mn+1.

Using transitivity of equality, step 4 can be optimized so

that the number of iterations is linear in the number of
latches, rather than quadratic. In steps 1 and 2, more than
one randomly chosen S and I can be tried before continuing
to step 4.

The fixed point algorithm for latch mapping repeatedly calls
the above algorithm for evaluating a refining functionΦ. It
records the sequence of the Mn that are produced and also
records the sequences of the S and the I that were computed
during each evaluation ofΦ.

6. Debugging
So far, we have concentrated on the case where there exists
a latch mapping M that is semi-inductive and forces output
equality. If the implementation conforms to the specification
(and if this can be demonstrated using combinational
verification techniques), then our algorithm is guaranteed to
find such an M. However, if there is no such M, we must
give debugging information to the user. This section
describes an interactive procedure that can be used to
localize a bug in the implementation. If there is more than
one incorrect combinational block in the implementation,
the procedure will home in on one of the incorrect blocks.

The algorithm described in section 5 produces a length k
sequence of latch mappings Mn, each a refinement of its
predecessors. It also produces length k-1 sequences of
combined states Sn and input vectors In. For all n between 0
and k-2 (inclusive) PMn(Sn) holds and

∀l0 ∀l1 [(Mn(l0, l1) ∧ ¬Mn+1(l0, l1)) ⇒

(δ(Sn, In)(l0) ≠ δ(Sn, In)(l1))].

In addition, Mk-1 must be semi-inductive. Since we are
assuming that there is no latch mapping that is semi-
inductive and forces output equality, there must exist an
output o, an input vector Ik-1, and a combined state S that
satisfies Mk-1 such that

γImpl(SImpl, Ik-1)(o) ≠ γSpec(SSpec, Ik-1)(o).

Let Sk-1 be the combined state S, above. The procedure for
isolating a bug is as follows

1. The user is shown the combinational blocks that drive o
in the implementation and the specification, and shown
the latches that are local inputs to those blocks. The user
must choose which of these latches should be mapped
together. The number of latches being considered at this
step is typically much smaller than the total number of
latches, so deciding which of them should be mapped
together is much easier than manually mapping the full
circuits.

2. If all the latches that should be mapped together have the
same value in Sk-1, then there must be a bug in the
combinational block driving o in the implementation. A
bug has been localized to a particular combinational
block, and the user can continue with standard
debugging techniques.

3. Otherwise, the user chooses latches l0 and l1 that should
be mapped together but that have different values
assigned to them in Sk-1.

4. The tool automatically finds the largest integer n such
that l0 and l1 are mapped together in Mn.

5. Analogous to step 1, the user is shown the latches that
are local inputs to the combinational blocks driving l0
and l1, and decides which should be mapped together. If
all the latches that should be mapped together have the
same value in Sn, then there must be a bug in the
combinational block driving either l0 or l1 (depending
on which is in the implementation). A bug has been
localized to a particular combinational block, and the
user can continue with standard debugging techniques.

6. Otherwise, there are latches l2 and l3 that are local inputs
to the combinational blocks driving l0 and l1, and that
should be mapped together, but that have different
values in Sn.

7. Assign l2 and l3 to l0 and l1, respectively. Go to step 4.
The above procedure is guaranteed to terminate since all
latches are mapped together in M0. After it terminates, the
user has been guided to a combinational block in the
implementation that has a bug. During the procedure, the
user must manually determine some of the latches that
should be mapped together.

7. Empirical Results
Our empirical results are summarized in Table 1. We did
experiments on four proprietary commercial circuits. In
each case, the specification is RTL and the implementation
is synthesized gates. The table gives the number of latches,
redundant latches and outputs. We compare runs where the
latch mapping was given before the run vs where the latch
mapping was constructed by our algorithm as part of the
run. We compare both the CPU time and the number calls to
the core combinational equivalence checker. The columns
labeled "Diff'' give the percent increases from the "Given"
run to the "Build" run

For circuit pairs D1 and D2, the implementation conforms
to the specification and every latch is mapped to one or
more latches in the other design. For circuit pair D3, there is

a mismatch. For circuit pair D4, there are specification
latches that are not mapped to any implementation latch.
However, all of these unmapped latches are unobservable,
so the implementation conforms to the specification.

The results show that the increase in CPU time required for
using our algorithm to construct the latch mapping is quite
reasonable, averaging 28%. We believe this a worthwhile
price to pay for the extra convenience and robustness
provided by our method.

8. Don't Cares and Ternary Latch Mappings
It is important to be able to take don't care conditions into
consideration when comparing two circuits. These don't
cares are typically represented by using X's in the
specification description. This section describes how our
latch mapping algorithm can be extended to work with don't
cares and ternary values.

Define a partial order⊆X on {0, 1, X} such that

u ⊆X v ⇔ u = v∨ v = X.

The inputs, outputs, latches, transition functions, output
functions and reset states of the implementation and the
specification are the same as the Boolean case, except they
are extended to ternary values. In addition, the reset
condition is the same as in the Boolean case.

The implementation conforms to the specification for the
initial combined state S0 iff for all input vectors I and all
combined states S reachable from S0

γImpl(SImpl, I) ⊆X γSpec(SSpec, I).

Let P be the set of all states S0 such that the implementation
conforms to the specification for the initial combined state
S0. The implementation conforms to the specification iff P
satisfies the reset condition.

The notion of a semi-inductive predicate is analogous to the
Boolean case. A predicate P forces output conformance if

∀S ∀I [P(S) ⇒ γImpl(SImpl, I) ⊆X γSpec(SSpec, I)].

In the ternary case, a mapping M is a partial order over L.
Let PM be the set of states that satisfy M:

PM(S) ⇔ ∀ l0, l1 [M(l0, l1) ⇒ S(l0) ⊆X S(l1)].

.

Latches Redundant EQC Calls Time (sec.)

Name Impl Spec Impl Spec Outputs Given Build Diff Given Build Diff

D1 1368 1435 114 181 96 1392 1731 24% 1166 1373 18%

D2 1697 1697 0 0 202 1899 1925 1% 1453 1887 30%

D3 932 932 0 0 447 1318 1649 25% 3151 4634 47%

D4 1789 2206 50 467 641 2760 3223 17% 2984 3469 16%

Table 1: Empirical results

The definition of refinement for ternary latch mappings is
analogous to the Boolean case. Theorems 1 and 2 are also
true in the ternary case. The definition of a refinement
function is analogous, and Theorem 3 holds. The statement
and proof of Theorem 6 and Theorem 7 (below) are
analogous to Theorem 4 and Theorem 5, respectively.

Theorem 6. If M is a fixed point of a refining functionΦ,
forces output conformance and satisfies the reset condition,
then the implementation conforms to the specification.

Theorem 7.Let M* be the greatest fixed point of a refining
function Φ. Assume that M* does not force output
conformance. Then there does not exist a latch mapping M
that is semi-inductive and forces output conformance.

Although much of the mathematical theory for ternary latch
mapping is analogous to the Boolean case, the
implementation of the algorithm is quite different. A latch
mapping is a partial order rather than an equivalence
relation. Thus, it can no longer be represented with just a
partitioning. The partitioning must be augmented with links
between partitions that indicate that all of the latches in one
partition are strictly less than the all of the latches in the
other partition.

Refining a latch mapping is also more complicated, as
illustrated in Figures 2 and 3. Figure 2 shows a latch
mapping with two classes A and B. The link from B to A
indicates that all of the latches in A are less than all of the
latches in B. Consider a combined state S and an input
vector I. Let A0 be the set of latches l in A such thatδ(S,
I)(l) = 0. We define A1, AX, B0, B1 and BX analogously.
Assume that A0, A1, AX, B0, B1 and BX are all nonempty.
Figure 3 shows the result of using S and I to refine the
mapping in Figure 2.

Figure 1: Example ternary latch mapping.

Figure 2: Possible result of refining the latch
mapping in Figure 2.

9. Sequential Equivalence Checking
Sequential equivalence checking involves finding the set of
reachable combined states P of the implementation and the
specification, and then checking whether the two designs
have the same output values for all reachable states. The set
of states P can be represented either explicitly or

symbolically (with BDDs, for example).

More generally, P can be any inductive invariant, not just the
set of reachable states. This allows, for example, finding the
set of all states Q from which an inequivalent combined
state can be reached, and then checking if Q includes a reset
state. In this case, the inductive invariant P is equal to the
complement of Q. Using the terminology of Theorem 1, we
want to find a set of states P that is semi-inductive (that is,
closed under the combined transition function, as defined in
section 2), forces output equality and satisfies the reset
condition.

Like sequential equivalence checking, the latch mapping
algorithm of sections 3 and 5 also attempts to find an
invariant P. The difference is that latch mapping only
considers sets PM that satisfy some latch mapping M (as
defined in section 3). The algorithm starts with the smallest
possible PM0, which is where all latches in both designs are
mapped together and, therefore, have the same value. If this
set is not semi-inductive, then it is increased to a larger set
PM1. This process is continued until a fixed point is reached.
The resulting fixed point forces output equality iff the two
circuits are combinationally equivalent.

If two circuits are sequentially equivalent but not
combinationally equivalent, it means there is an inductive
invariant that forces output equality, but no such invariant of
the form PM. The performance/accuracy trade-off between
combinational and sequential equivalence checking can be
viewed in terms of the set of inductive invariants that is
being considered. Sequential equivalence checking
considers all possible invariants. Combinational equivalence
checking only considers those invariants PM that are the set
of all states that satisfy some latch mapping M.

In this regard, combinational and sequential equivalence
checking are two extremes. There are intermediate points
that can be characterized by the kinds of invariants that are
considered. The ternary latch mapping algorithm in section
8 is an example that considers a richer set of invariants than
combinational equivalence checking does, and is, therefore,
less conservative. Variants on combinational equivalence
checking that allow small differences in state encoding
(such as allowing a latch to be mapped to the logical
negation of another latch) can also be described in this
framework. We believe that this framework makes it easier
study formal verification methods that might combine some
of the strengths of both combinational and sequential
equivalence checking.

10. Conclusions and Future Work
We have described an automatic latch mapping algorithm
that does not depend on signals names or other heuristics.
We have shown how the method can be applied to circuits
with reset sequences. In the case that the implementation
does not conform to the specification, we described an
interactive procedure for identifying a particular
combinational block with a bug. We gave empirical results
for our implementation that showed that the method is quite
efficient in practice, requiring an average of only 28% more
CPU time than if a latch mapping was provided. We also

A B

BX

AX

B1

A1

B0

A0

showed how the method can be extended with ternary
values to compare an implementation to a specification in
the presence of don't care conditions.

Our primary area of future work is to implement and test the
ternary version of our algorithm. We would also like to
study the relationship of our fixed point algorithm to fixed
point algorithms for reachability analysis in sequential
equivalence checking, as discussed in section 9. We will
explore verification methods that offer a trade-off between
the efficiency of combinational equivalence checking and
flexibility of sequential equivalence checking.

References

1. H. Cho and C. Pixley. Apparatus and method for
deriving correspondence between storage elements of a
first circuit model and storage elements of a second
circuit model. U. S. Patent 5,638,381. June, 1997.

2. C. van Eijk. Formal Methods for the Verification of
Digital Circuits. Ph.D. Thesis, Eindhoven University of
Technology, 1997.

3. C. van Eijk. Sequential Equivalence Checking without
State Space Traversal. In DATE 1998.

4. T. Filkorn. Symbolische Methoden für die Verifikation
endlicher Zustandssysteme. Dissertation Institut für
Informatik der Technishen Universität München, 1992.

5. Andreas Kuehlmann and Florian Krohm. Equivalence
Checking Using Cuts and Heaps. In DAC 1997.

6. D.K. Pradhan, D. Paul, and M. Chatterjee. VERILAT:
Verification Using Logic Augmentation and
Transformations. In ICCAD 1996.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

