Robust Latch Mapping for Combinational Equivalence Checking

Jerry R. Burch and Vigyan Singha
Cadence Berkeley Labs

Abstract method produces a legal latch mapping if and only if one

- . R . . exists. If a circuit bug exists, our method provides a
Existing literature on combinational equivalence checking predictable, interactive procedure for isolating a

concentrates on comparing cor_nbmatlona! blocks and combinational block which has a bug.
assumes that a latch mapping (register mapping) has already
been constructed. We describe an algorithm for Our empirical results show that the method is practical on
automatically constructing a latch mapping. It is based onlarge circuits. The total CPU time required for latch
the functionality of the circuits being compared rather than mapping and equivalence checking is similar to that
on heuristics. As a result, if two circuits are combinationally required by a combinational equivalence checking
equivalent, then our algorithm is guaranteed to find a latchalgorithm that assumes that a latch mapping has already
mapping. Our empirical results show that the method is been provided.

practical on large circuits. We also show how the method can be generalized to ternary

. circuit models. This allows an implementation to be
1. Introduction compared to a specification with don't cares. Finally, we
When applied to a pair of sequential circuits, combinational describe the mathematical relationship between our latch
equivalence checking typically consists of two steps. The mapping algorithm and sequential equivalence checking.
first step is to construct a latch mapping (also known as athis relationship can be helpful for developing formal
register mapping). This identifies corresponding latches in verification methods that combine some of the strengths of

the two designs to be compared. It is then possible to breakyoth combinational and sequential equivalence checking.
the circuits into corresponding combinational blocks. The

second step is to verify whether the corresponding 1.1 Related Work
combinational blocks are equivalent. If so, then the circuits __,

are functionally equivalent. The latch mapping algorithm described by van Eijk [2] is

quite similar to the fixed point computation we have
The research literature has many papers on the second stedeveloped (sections 3 and 5). However, van Eijk does not
Kuehlmann and Krohm [5] and Pradhan et al. [6] are recentshow how bugs can be localized in incorrect circuits. In fact,
examples. Their lists of references contain many morethe behavior of the algorithm on inequivalent circuits is not
examples. However, there is little in the literature on the first discussed at all. Finally, van Eijk does not consider the case
step, where a latch mapping is constructed [1, 2, 4]. where don't care conditions must be used to show

- . - . equivalence.
Existing commercial tools use heuristics based on signal q

names or circuit structure to construct a latch mapping. If van Eijk [3] described a method that combines some of the
two combinational blocks are found to be inequivalent, it strengths of combinational and sequential equivalence
may be because of an incorrect latch mapping rather than ahecking.

bug in the circuit. This complicates debugging. Tools that

do design transformations, such as synthesis or clock tree] 2 Qrganization

insertion, often do not preserve signal names, especiallygection 2 describes the circuit models we use. Section 3

when a design is being flattened as part of the gegcrines how we represent latch mappings and gives a
transformation. high-level description of our fixed-point algorithm for

We describe an algorithm based on the functionality of the constructing latch mappings. The relationship between latch

circuits being compared rather than on heuristics. The mappings and reset states is discussed in section 4. Section
5 gives more details about the implementation of our latch

mapping algorithm while section 6 shows how circuit bugs
can be localized when automatic latch mapping is used.
Section 7 gives empirical results. Sections 2 through 7 are
based on a Boolean circuit model. Section 8 shows how our
technigques can be extended to handle ternary models and
don't care conditions. Finally, section 9 discusses the
relationship between combinational and sequential
equivalence checking and section 10 concludes.

2. Circuit Models inductiveif

We c_o_nsi(_jer two c_ircuits,_the _implementati_o_n circuit and the OSOI[PS) O P&(S, D).
specification circuit. To simplify the exposition, we assume o o
that the circuits have a single clock, and have the sameThis corresponds to the second condition in the definition of

inputs | and outputs O. Let; and ry be the number of an inductive predicate. Second, we define the following
inputs and outputs, respectively. reset conditioron a predicate P on combined states:

We refer to the state holding elements of the circuits as USimpt BRimpt [BSspecHRspecIP(Simpi U Sspedll-

latches. Let |mp and Lgpec be the set of latches of the rynically combinational verification tools determine
implementation and the specification, respectively. Let L = whether the implementation is equivalent to the
Limpl O Lgpecbe the combined set of latches. Let S be a specification. However, the specification may have more
combined state, i.e. S: L {0, 1}. We write Sy and Spec reset states (and, therefore, more possible execution traces)
to denote the projection of S ontoyy and Lspee than the implementation. In this case, the implementation

respectivelv. Thus and represent the states of could be safely substituted for the specification, although
pectively. Thus, jfip) and Fpec'ep _ 2" the two circuits are not equivalent. To handle this situation,
the individual circuits while S represents their combined \ye formalize what it means for the implementation to
state. We write g, [l Sgpecto denote the recombining of conform tothe specification. First, however, an auxiliary

Simpl @nd $pecto form the combined state S. definition is required, as follows.

Let &mp be the transition function of the implementation, The implementation and the specification seguentially
i.e., given an input vector | and a staigy§ Simpl(Smph) equivalent for the initial combined sta$g iff for all input

is the next state. The transition function of the specification, VECtrs I and all combined states S reachable figm S

6Spe(% is gnalogously defmed: 'The combined tr.ansmon Yimpi(Simpl:) = YspedSspec -

functiond is the result of combiningmp anddgpee given])

an input vector | and a combined stat@,) is the next Let P be the set of all stateg Sich that the implementation

combined state. and the specification are sequentially equivalent for the
initial combined state § The implementatiomwonforms to

Let Yimpi be the output function of the implementation: o gpecification iff P satisfies the reset condition.

Yimpl(Simpt» 1) is the output vector O for the implementation
state &yp and input vector 1. The output functiqgpeof
the specification is analogously defined.

Our latch mapping algorithm does not require that the user OSTHPES) O Yimpi(Smpi: 1) = YspedSspea DI-

provide a reset state (or states) for the circuits beingTheorem 1: The implementation conforms to the
compared. However, reasoning about the relationshipspecification if and only if there exists a predicate P that is

between combinational and sequential equivalencesemi-inductive, forces output equality and satisfies the reset
checking requires considering the reset states of the circuitsgondition.

even if all circuit states are considered possible resets states. S)
Let Ryp and Rypec be the set of reset states of the Proof: The forward implication follows by letting P be the
implementation and the specification, respectively (we do set of all combined states S such that the implementation

not distinguish between a predicate and the set of all object&nd the specification are sequentially equivalent for the
that satisfy the predicate). initial combined state S. The reverse implication follows

from the definitions using induction on the length of
It is standard to define a predicatg,f on implementation sequences of input vectoGED.

states to benductiveif
3. Latch Mappings
0 R 0 R
Simpt [Rimpi(Smpt) & Plmpi(Smpp! We represent latch mappings with a predicate M. The
and latches § and | are mapped together iff (i, 11) is true. We

do not require that M be one-to-one; it can be an arbitrary
OSimpt 1 [Pimpi(Smpt) B Pimpi(Gimpi(Simpt: 1 equivalence relation. This allows, for example, two latches
It is easy to show that ifyRy is inductive, then it contains in the implementation to be mapped to a single latch in the
all reachable implementation states. specification (see section 4). We say a combined state S
satisfieaMl if any two latches that are mapped together by M
In this paper, we often use predicates on combined stategave the same value in S. Ley; Pe the set of combined
rathgr than on implementation states. Thus, ‘We Mustgiates S that satisfy M:
consider the reset states of both the implementation and the
specification. As a result, the notion of an inductive Pu(S) = OlgUly [M(lg, 1) O Slg) = Al
predicate (which considers only the reset states of one stat
machine) is not adequate. We address this issue in two step
First, we define a predicate P on combined statesserbe

Finally, a predicate P on combined stafeses output
equalityiff

geveral of the properties we defined for predicates are
extended to latch mappings, as follows. A latch mapping M
is semi-inductiveif the predicate g is semi-inductive. A

mapping M forces output equalityif Py, forces output implementation conforms to the specification. We must also
equality. Finally, a mapping M satisfies tieset conditiorif consider the case where we do not have conformance.

Py satisfies the reset condition. Theorem 4.Let M* be the greatest fixed point of a refining
function @. Assume that M* does not force output equality.
Then there does not exist a latch mapping M that is semi-
inductive and forces output equality. Thus, by Theorem 1,
Olg Ol7 [M4(lo, 11) O Mg(lg, 1] the implementation does not conform to the specification.

We say that M is arefinementof M, (also written M O
M) if

; - Proof: We prove the theorem by assuming there is such an
O sfy . : »
I M U Mo, then the set of combined states that satisfy M M and then showing that this leads to a contradiction. By

is larger than the set of combined states that satighia¥in conqition 1 of the definition of a refining function, any

the following theorem. semi-inductive mapping must be a refinement of M*. Thus,

Theorem 2.1f M1 U Mg, thenOS [Ryo(S) O Py1(9)]. M O M*. By Theorem 2, | is wegker than jz.. Clearly
Py« does not force output equality, sg Rlso does not

We construct a latch mapping by starting with the mapping force output equality. This contradicts the assumption that
Mg that maps every latch to every other latch: M forces output equalityQED.

Olo Ol1 Moo 1. Theorems 3 and 4 give us the following method for
checking conformance. First, automatically construct the

We then iteratively refine this mapping until it is semi- greatest fixed point M* of some refining functionfor the

Lnﬁuctlve. We formahzt(ejthlf Process using afur:ﬁmt)t?nat circuits. If M* does not force output equality (which is
akes a mapping land returns a mapping Wy thatis a8 — cpecked using automatic combinational equivalence

completely specifyd; there are many possibfe that will combinational methods. Section 6 describes how to localize
do the job. We sayp is arefining functioniff both of the bugs in the implementation in this case. If M* does force
following two conditions hold. output equality, then conformance can be shown by showing

that M* satisfies the reset condition, as discussed in the

1. Mis afixed point ofd (that is, M =p(M)) iff M is semi- . .
following section.

inductive.
2. ® is monotonic, which means that if{MJ Mg, then 4. Satisfying the Reset Condition

d(My) U D(Mo). .)) Assume a latch mapping M is a fixed point of a refinement
We know that the greatest fixed pointdexists and can be function ®, and that M forces output equality. We want to
computed in a finite number of steps becadgeis check whether M satisfies the reset condition, in order to use

monotonic and because there is a finite number of latchesTheorem 3 to show conformance.
The following theorem shows how the latch mapping that is))) .)
the greatest fixed point ab can be used to determine Typically, our equivalence checking tool is used without the

whether the implementation conforms to the specification. USer providing any information about reset states. In this
case, the sets of reset statgggRand Rypec contain all

Theorem 3.1f M is a fixed point of a refining functio, ossible states of their respective circuits. It is easy to show
forces output equality and satisfies the reset condition, thenh,t the reset condition is satisfied if there are no two
the implementation conforms to the specification. implementation latches that are mapped together by M. Two

Proof: By condition 1 of the definiton of a refining implementation latches are mapped together by M only if
function, M is semi-inductive. Since M is semi-inductive, they are redundant (that is, one is functionally a copy of the
forces output equality and satisfies the reset condition, weother).

know that R, is semi-inductive, forces output equality and |, the less common case where there are two
satisfies the reset condition. Thus, the result follows from imp|ementation |atche% land !L that are mapped together
Theorem 1QED. by M, it is possible for the implementation to start in a state

Using Theorem 3, we can verify that the implementation Simpi Where § and j do not have the same value. Then there
conforms to the specification, as follows. First, compute theis no specification state inggecthat can be used to satisfy
greatest fixed point M* ofb (see section 5 for more details the reset condition. There may also be no start state that
on how this is done). Confirming that M* forces output results in the same sequential behavior for the specification
equality is simply a matter of using combinational as g, does for the implementation. This would mean that
equivalence checking on the combinational blocks driving he implementation does not conform to the specification

the primary outputs of the implementation and the ypjess the reset states of the implementation are restricted to
specification (M* provides the mapping between the latchesy 5y b and | with the same value.

that are local inputs to these combinational blocks). All that

remains is to check that M* satisfies the reset condition, In this situation (where the user has provided no information
which is discussed in section 4. about reset states and there are redundant implementation
latches), our latch mapping algorithm can provide

The previous theorems are applicable when theconstraints on the reset states of the implementation (that is,

pairs of redundant implementation latches that must havethat the number of iterations is linear in the number of
the same initial value). If these constraints are satisfied, thedatches, rather than quadratic. In steps 1 and 2, more than
conformance is guaranteed (given that the tool has alreadyne randomly chosen S and | can be tried before continuing
been used to check the assumptions at the beginning of thito step 4.

section). The fixed point algorithm for latch mapping repeatedly calls

Sometimes these constraint are stronger than necessarthe above algorithm for evaluating a refining functinit

They can be weakened by refining M in such a way that it isrecords the sequence of the, Mhat are produced and also
still a fixed point of® and forces output equality, and that | records the sequences of the S and the | that were computed
and | are no longer mapped together. The worst caseduring each evaluation df.

complexity of searching for such refinements appears to be

exponential. Although it is beyond the scope of this paper,6. Debugging

there are methods that are likely to work well in practice. So far, we have concentrated on the case where there exists
van Eijk [2] also considered methods for searching for suchg |atch mapping M that is semi-inductive and forces output

refinements. equality. If the implementation conforms to the specification
_ (and if this can be demonstrated using combinational
5. Implementation Issues verification techniques), then our algorithm is guaranteed to

Our latch mappmg a|go|’ithm involves Computing the find such an M. However, if there is no such M, we must
greatest fixed point M* of a refining functioh (see section ~ give debugging information to the user. This section
3). This section describes how latch mappings aredescribes an interactive procedure that can be used to
represented and how the functidris computed. localize a bug in the implementation. If there is more than
one incorrect combinational block in the implementation,

A latch mapping M is an equivalence relation between the procedure will home in on one of the incorrect blocks.
latches. Thus, it can be represented efficiently as a partition

of the set of latches. It is easy to design the data structure séhe algorithm described in section 5 produces a length k
that equivalence classes can be split efficiently. sequence of latch mappings,Meach a refinement of its

predecessors. It also produces length k-1 sequences of

Given a latch mapping M we need to compute My = o hined states,@nd input vectors,l For all n between 0
®(Mp), whered is a refining function as defined in section __ .\ - (inclusive) R,(S;) holds and
n

3. This can be done with the following algorithm.

1. Randomly produce a combined state S that satisfies M Ol Oy [(Mp(lo, 1) O=Mp4a(lo, 1) O
This can be done by randomly assigning Boolean values (O(Sy, 1)) Z (S 1IN

to the equivalence class of,Vand then constructing S
so that every latch | has the value assigned to theln addition, Mc; must be semi-inductive. Since we are

equivalence class that | is a member of. Also, randomly @8sSuming that there is no latch mapping that is semi-

; inductive and forces output equality, there must exist an
produce an input vector |. output o, an input vecto;fh, an?:i a c)c/>mbined state S that
Compute $=9(S, |). If S; satisfies M, go to step 4. satisfies N, such that
Construct such that for alldand §, My+1(Ig, 17) if
and only If'\ﬁ/-l:hOi |1) and g(lo) (:J S_'I_(Il% Crg;E"?/ '\]4)_]+1 Vlmpl(slmpl’ |k_1)(0) 7 ySpe((SSpec |k_1)(0).

M. Because Sdoes not satisfy] we know that Let S_; be the combined state S, above. The procedure for
Mp # Mp4q. Exit and return M, ;. isolating a bug is as follows
4. For all pairs of latcheg bnd } such that M(lo, 1) 1. The user is shown the combinational blocks that drive o
a. Use combinational equivalence checking to show in the implementation and the specification, and shown
whether the combinational blocks that driyehd the latches that are local inputs to those blocks. The user
I, are equivalent for all combined states that satisfy ~ must choose which of these latches should be mapped
M, together. The number of latches being considered at this

step is typically much smaller than the total number of
latches, so deciding which of them should be mapped

. o . together is much easier than manually mapping the full
c. Otherwise, the combinational equivalence checker circuits.

will produce a counter-example: a combined state S

b. If the blocks are equivalent, continue the loop with
the next pair of latches.

; 2. Ifallthe latches that should be mapped together have the
ia)?lci)'an input vector | such theS, N(lo) # &S, same value in §;, then there must be a bug in the
combinational block driving o in the implementation. A
d. Compute $=4(S,) and go to step 3. bug has been localized to a particular combinational
5. M, is semi-inductive. Set M, = M,,. Exit and return block, and the user can continue with standard
Mps1e debugging techniques.

Using transitivity of equality, step 4 can be optimized so

Latches Redundant EQC Calls Time (sec.)

Name | Impl | Spec] Impl | Spec] Outputs] Given| Build| Diff | Given| Build | Diff
D1 1368| 14351 114 18I 9p 1392 1731 24% 1166 1373 18%
D2 1697 | 1697 0 0 207 1899 1925 1pp 1453 1887 3P%
D3 932| 932 0 0 447 1318 1649 25y 3151 4634 4%
D4 1789 | 2206 50 461 64} 2760 3223 19% 2984 3469 16%

Table 1: Empirical results

a mismatch. For circuit pair D4, there are specification
3. Otherwise, the user chooses latcgem | that should |atches that are not mapped to any implementation latch.
be mapped together but that have different valuesHowever, all of these unmapped latches are unobservable,
assigned to them in.S. so the implementation conforms to the specification.

4. The tool automatically finds the largest integer n such The results show that the increase in CPU time required for
that b and | are mapped together inM using our algorithm to construct the latch mapping is quite

5. Analogous to step 1, the user is shown the latches thafeaSonable, averaging 28%. We believe this a worthwhile
' price to pay for the extra convenience and robustness

are local inputs to the combinational blocks drivigg | ovided bv our method
and |, and decides which should be mapped together. prr vided by ourme '

all the latches that should be mapped together have th% Don't Cares and Ternary Latch Mappings

same val_ue n then_ t_here_ must be a bug n the It is important to be able to take don't care conditions into
comb|r_1at|qngl blOCk. driving e|th_e5 br Iy (depending consideration when comparing two circuits. These don't
on which is in the implementation). A bug has been careq are typically represented by using X's in the
localized to a particular combinational block, and the gpecification ‘description. This section describes how our
user can continue with standard debugging techniques. jJatch mapping algorithm can be extended to work with don't

6. Otherwise, there are latchesihd k that are local inputs ~ Cares and ternary values.
to the combinational blocks driving &nd |, and that Define a partial ordeFX on {0. 1. X} such that
should be mapped together, but that have different P 0.1
values in §. u®v - u=vOv=X

7. Assignjand gtolyand}, respectively. Gotostep 4. The inputs, outputs, latches, transition functions, output
The above procedure is guaranteed to terminate since alfunctions and reset states of the implementation and the
latches are mapped together i.Mfter it terminates, the specification are the same as the Boolean case, except they
user has been guided to a combinational block in theare extended to ternary values. In addition, the reset
implementation that has a bug. During the procedure, thecondition is the same as in the Boolean case.

uier Icringst manugl![y d(tart]ermine some of the latches thatre jmplementation conforms to the specification for the
should be mapped together. initial combined state §Siff for all input vectors | and all

7. Empirical Results combined states S reachable frogn S

Our empirical results are summarized in Table 1. We did Yimpl(Simpt: 1) 0% YspedSspec 1)-

experiments on four proprietary commercial circuits. In

each case, the specification is RTL and the implementatiori-et P be the set of all stateg Sich that the implementation

is synthesized gates. The table gives the number of latches;onforms to the specification for the initial combined state
redundant latches and outputs. We compare runs where th&,. The implementation conforms to the specification iff P

latch mapping was given before the run vs where the latchgatisfies the reset condition.

mapping was constructed by our algorithm as part of the) o)))

run. We compare both the CPU time and the number calls tol he notion of a semi-inductive predicate is analogous to the
the core combinational equivalence checker. The columnsBoolean case. A predicate P forces output conformance if

labeled "Diff" give the percent increases from the "Given"
e e the Ut T OS 01 P(S) O Yienpi(Simpt:) 0¥ VspedSspec N

For circuit pairs D1 and D2, the implementation conforms [N the ternary case, a mapping M is a partial order over L.
to the specification and every latch is mapped to one or-€t Py be the set of states that satisfy M:
more latches in the other design. For circuit pair D3, there is

Pu(S) = Olo I Mo 1) O Sllg) X S(Ip].

The definition of refinement for ternary latch mappings is symbolically (with BDDs, for example).
analogous to the Boolean case. Theorems 1 and 2 are alsi\gl
true in the ternary case. The definition of a refinement
function is analogous, and Theorem 3 holds. The statemen
and proof of Theorem 6 and Theorem 7 (below) are
analogous to Theorem 4 and Theorem 5, respectively.

ore generally, P can be any inductive invariant, not just the
§et of reachable states. This allows, for example, finding the
set of all states Q from which an inequivalent combined
state can be reached, and then checking if Q includes a reset
state. In this case, the inductive invariant P is equal to the

Theorem 6.If M is a fixed point of a refining functiofp, complement of Q. Using the terminology of Theorem 1, we

forces output conformance and satisfies the reset conditionwant to find a set of states P that is semi-inductive (that is,

then the implementation conforms to the specification. closed under the combined transition function, as defined in
section 2), forces output equality and satisfies the reset

Theorem 7.Let M* be the greatest fixed point of a refining
function ®. Assume that M* does not force output
conformance. Then there does not exist a latch mapping MLike sequential equivalence checking, the latch mapping
that is semi-inductive and forces output conformance. algorithm of sections 3 and 5 also attempts to find an
invariant P. The difference is that latch mapping only
considers sets)p that satisfy some latch mapping M (as

condition.

Although much of the mathematical theory for ternary latch

mapping is analogous to the Boolean case, the . _ .)
implementation of the algorithm is quite different. A latch defined in section 3). The algorithm starts with the smallest

mapping is a partial order rather than an equivalenceposs'ble o, Which is where all latches in both designs are
relation. Thus, it can no longer be represented with just amapped together and, therefore, have the same value. If this
partitioning. The partitioning must be augmented with links Set is not semi-inductive, then it is increased to a larger set
between partitions that indicate that all of the latches in onePuz- This process is continued until a fixed point is reached.
partition are strictly less than the all of the latches in the The resulting fixed point forces output equality iff the two
other partition. circuits are combinationally equivalent.

Refining a latch mapping is also more complicated, aslf two circuits are sequentially equivalent but not
illustrated in Figures 2 and 3. Figure 2 shows a latch combinationally equivalent, it means there is an inductive
mapping with two classes A and B. The link from B to A invariant that forces output equality, but no such invariant of
indicates that all of the latches in A are less than all of thethe form R,. The performance/accuracy trade-off between
latches in B. Consider a combined state S and an inpucombinational and sequential equivalence checking can be
vector |. Let Ay be the set of latches | in A such R4S, viewed in terms of the set of inductive invariants that is
() = 0. We define A Ay, Bg, B; and B¢ analogously. being considered. Sequential equivalence checking
Assume that 4 A;, Ay, By, By and By are all nonempty. conS|d_ers all possﬂqle invariants. Combmanonal equivalence
Figure 3 shows the result of using S and | to refine the checking only conS|_ders those mvarlan;ﬁ.ﬂﬁat are the set
mapping in Figure 2. of all states that satisfy some latch mapping M.

In this regard, combinational and sequential equivalence

° e checking are two extremes. There are intermediate points

that can be characterized by the kinds of invariants that are

considered. The ternary latch mapping algorithm in section

Figure 1: Example ternary latch mapping. 8is an e>§ample th_at considers a _richer set of inyariants than
combinational equivalence checking does, and is, therefore,

less conservative. Variants on combinational equivalence

m checking that allow small differences in state encoding

@ Bx @ (such as allowing a latch to be mapped to the logical
negation of another latch) can also be described in this

framework. We believe that this framework makes it easier

study formal verification methods that might combine some
of the strengths of both combinational and sequential

equivalence checking.
2

10. Conclusions and Future Work

We have described an automatic latch mapping algorithm
that does not depend on signals names or other heuristics.
We have shown how the method can be applied to circuits
))) with reset sequences. In the case that the implementation
9. Sequential Equivalence Checking does not conform to the specification, we described an
Sequential equivalence checking involves finding the set ofinteractive procedure for identifying a particular
reachable combined states P of the implementation and theombinational block with a bug. We gave empirical results
specification, and then checking whether the two designsfor our implementation that showed that the method is quite
have the same output values for all reachable states. The sefficient in practice, requiring an average of only 28% more
of states P can be represented either explicity or CPU time than if a latch mapping was provided. We also

Figure 2: Possible result of refining the latch
mapping in Figure 2.

showed how the method can be extended with ternary
values to compare an implementation to a specification in
the presence of don't care conditions.

Our primary area of future work is to implement and test the
ternary version of our algorithm. We would also like to
study the relationship of our fixed point algorithm to fixed
point algorithms for reachability analysis in sequential
equivalence checking, as discussed in section 9. We will
explore verification methods that offer a trade-off between
the efficiency of combinational equivalence checking and
flexibility of sequential equivalence checking.

References

1. H. Cho and C. Pixley. Apparatus and method for
deriving correspondence between storage elements of a
first circuit model and storage elements of a second
circuit model. U. S. Patent 5,638,381. June, 1997.

2. C. van Eijk. Formal Methods for the Verification of
Digital Circuits. Ph.D. Thesis, Eindhoven University of
Technology, 1997.

3. C.van Eijk. Sequential Equivalence Checking without
State Space Traversal. In DATE 1998.

4. T. Filkorn. Symbolische Methoden fir die Verifikation
endlicher Zustandssysteme. Dissertation Institut fir
Informatik der Technishen Universitat Miinchen, 1992,

5. Andreas Kuehlmann and Florian Krohm. Equivalence
Checking Using Cuts and Heaps. In DAC 1997.

6. D.K. Pradhan, D. Paul, and M. Chatterjee. VERILAT:
Verification Using Logic Augmentation and
Transformations. In ICCAD 1996.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

