
Multiway Partitioning with Pairwise Movement
�

Jason Cong and Sung Kyu Lim

UCLA Department of Computer Science, Los Angeles, CA 90095

fcong,limskg@cs.ucla.edu

Abstract

It is known to many researchers in the partitioning com-
munity that the recursive bipartitioning approach outper-
forms the direct non-recursive approach in solving the mul-
tiway partitioning problem. However, little progress has
been made to identify and overcome the weakness of the
direct (alternatively called at) approach. In this paper, we
make the �rst observation that the performance of iterative
improvement-based at multiway partitioner K-FM [10, 11]
is not suitable for today's large scale circuits. Then, we pro-
pose a simple yet e�ective hill-climbing method called PM
(Pairwise cell Movement) that overcomes the limitation of
K-FM and provides partitioners the capability to explore
wider range of solution space e�ectively while ensuring con-
vergence to satisfying suboptimal solutions. The main idea
is to reduce the multiway partitioning problem to sets of
concurrent bipartitioning problems. Starting with an initial
multiway partition of the netlist, we apply 2-way FM [7] to
pairs of blocks so as to improve the quality of overall mul-
tiway partitioning solution. The pairing of blocks is based
on the gain of the last pass, and the Pairwise cell Movement
(PM) passes continue until no further gain can be obtained.
We observe that PM passes are e�ective in distributing clus-
ters evenly into multiple blocks to minimize the connections
across the multiway cutlines. Our iterative improvement-
based at multiway partitioner K-PM/LR improves K-FM
by a surprising average margin of up to 86.2% and outper-
forms its counterpart recursive FM by up to 17.3% when
tested on MCNC and large scale ISPD98 benchmark cir-
cuits [1].

1 Introduction

The divide-and-conquer paradigm is regarded indispensable
for solving today's complex VLSI layout problem; the prob-
lem must be partitioned into smaller subproblems until they
are small enough to be solved e�ectively and e�ciently. Cir-
cuit partitioning is a technique to divide the given circuit
into a collection of subcircuits, which has been an active
area of research for at least a quarter of a century. The
main reason that partitioning plays a critical role in design
task today is the enormous increase of system complexity
along with substantial advances in VLSI system design and
fabrication. Among many solutions devised to solve the
partitioning problem, iterative improvement method such
as FM [7] is accepted as de facto standard in handling to-
day's large scale circuits due to (i) linear-time behavior (ii)
exibility in handling various constraints, (iii) controllable
cutsize/runtime tradeo�.

Multiway circuit partitioning divides the given circuit
into a predetermined number (> 2) of subcircuits. The stan-

�This work was partially supported by NSF Young Investigator
Award MIP-9357582, and Fujitsu Laboratories at America under the

1997-98 California MICRO Programs.

(b)(a)

Figure 1: (a) local cell move under recursive approach, (b)
global cell move under at approach

dard objective is to minimize the number of nets among all
partitions while satisfying various constraints such as lower
and upper bounds on the area and pin count of each par-
tition. Some of the previous works include recursive KL
[9], generalization of FM [10, 11], primal-dual [12], spectral
multiway ratio-cut [3], geometric embedding [2], multilevel-
based [8], and dual net-based [4] method.

There are two primary approaches for generating mul-
tiway partitioning solution; recursive or flat. The recur-
sive approach applies bipartitioning recursively until the de-
sired number of partitions is obtained, whereas the at ap-
proach partitions the circuit directly. We note that cells
move locally across the current level cutline in case of re-
cursive bipartitioning as depicted in Figure 1-(a), whereas
at approach enables cells to move between any arbitrary
blocks, promoting global change in the current con�gura-
tion as depicted in Figure 1-(b). Although it has remained
controversial, recursive approach is preferred in practice de-
spite the lack of global information and its greedy nature.
This is mainly due to its computational simplicity and cost-
e�ectiveness. In addition, recent advances in enhancing iter-
ative improvement bipartitioning algorithms have also made
recursive approach more and more attractive in solving mul-
tiway partitioning. On the other hand, little progress has
been made to improve iterative improvement-based at mul-
tiway partitioning algorithms such as K-FM [10, 11] despite
the potential gain from the availability of more global in-
formation and larger solution space. One major drawback
of K-FM that is consensus among CAD researchers is that
it is very susceptible of being trapped into a local minima
that is far from being optimal. This is especially true for at
multiway partitioning where the partitioner can easily make
wrong decision while dealing with more number of candidate
cells and directions to move.

In this paper, we propose a simple yet e�ective approach
to enhance the performance of K-FM by reducing the multi-
way partitioning problem to sets of concurrent bipartition-
ing problems. Starting with an initial K-way partition of



the netlist, we apply bipartitioning heuristic FM [7] to pairs
of blocks so as to improve the quality of overall multiway
partitioning solution. The pairing of blocks is based on the
gain of the last pass, and the Pairwise cell Movement (PM)
passes continue until no further gain can be obtained. This
method is shown e�ective in optimizing standard cost 1 and
cost k � 1 (to be de�ned in Section 2) metrics. We adapt
existing LR scheme [5] to generate initial partitions that
identify clusters in the given circuit, which in turn promotes
faster rate of convergence. Our iterative improvement-based
at multiway partitioner K-PM/LR improves K-FM by a
surprising average margin of up to 86.2% and outperforms
its counterpart recursive FM by up to 17.3% when tested on
MCNC and large scale ISPD98 benchmark circuits [1].

The remainder of the paper is organized as follows; Sec-
tion 2 presents the formulation of multiway partitioning
problem. Section 3 provides the analysis of limitation con-
ventional K-FM retains. Section 4 presents PM-based par-
titioning. Section 5 provides experimental results. Section
6 concludes the paper with our ongoing research.

2 Multiway Partitioning Formulation

Given a netlist to be partitioned into K non-empty disjoint
blocks, we use C = fc1, c2, � � �, cpg, N = fn1, n2, � � �, nqg,
and B = fb1, b2, � � �, bKg to denote the set of cells, nets,
and blocks, respectively. Each cell c 2 C may have non-
uniform area. Under \cost 1" metric, a net has a cost of
1 if it spans more than 1 block, and 0 otherwise. Under
\cost k � 1" metric, a net has a cost of k � 1 if it spans k
blocks. A net with non-zero cost is called cut, and the sum
of the cost of all cut nets is called cutsize. Then, the optimal
area-balanced K-way partitioning solution of a given netlist
satis�es the following conditions;

� Each cell is assigned to exactly one block;

� The total area of the cells in each block is within the
following bounds;

(1� s) �
A

K
� ai � (1 + s) �

A

K

where A is the total area of all the cells, ai is the total
area of all the cells in block bi (1 � i � K), and s
is a user-speci�ed parameter controlling the allowable
slack in the area constraint (0 < s < 1);

� The cutsize is minimized.

Let (n; bi) denote the number of free cells of net n which
are in block bi. If there is at least one locked cell of n in
bi, (n; bi) becomes 1. Then, let 0(n; bi) denote sum of all
(n; bk), for 1 � k � K, i 6= k. (n; bi) and 

0(n; bi) measure
how tightly net n is bound to block bi, and all other blocks
except for bi, respectively. If nc represents nets that are
incident to c, the gain associated with moving cell c from
block i to j based on cost 1 metric is;

g1c(i; j) = jfn 2 ncj
0

(n; bj) = 1 and (n; bj) > 0gj �

jfn 2 ncj
0

(n; bi) = 0 and (n; bi) > 1gj

The gain associated with moving cell c from block i to j
based on cost k � 1 metric is;

gkc (i; j) = jfn 2 ncj(n; bi) = 1 and (n; bj) > 0gj �

jfn 2 ncj(n; bj) = 0 and (n; bi) > 1gj

3 Limitation of Existing Approaches

Recursive approach is a simple extension of bipartitioning to
multiway partitioning. It applies bipartitioning recursively
until the desired number of partitions is obtained. It is com-
putationally simple and fast, and many of the heuristics de-
vised for bipartitioning can be applied to further reduce the
current level cutsize. However, we note three major limita-
tions of the recursive approach. First, cells can only move
across the current level cutline, promoting local change in
the current con�guration as depicted in Figure 1-(a). The
objective of recursive bipartitioning is to reduce the number
of nets crossing the current level cutline in the absence of
global information, which can trap the partitioner into a lo-
cal minima and limit the solution quality. Second, recursive
multiway partitioner can only minimize cost k � 1 metric,
not cost 1 metric. Third, it becomes harder and harder to
reduce the cutsize as the bipartitioner performs deeper level
cuts. Highly optimized 1st and 2nd level cuts can cause 3rd
and 4th level cuts to cut through very dense clusters. Thus,
this conicting objective can cause recursive approach to
produce low quality multiway partitioning solutions.

Sanchis [10] showed that the at multiway partitioning
approach obtained better quality solution compared to the
recursive approach for small scale randomly generated cir-
cuits. In her K-way generalization of cell move based 2-way
FM heuristic (often referred to as K-FM), K(K � 1) bucket
structure are used to maintain cell gains. In practice, how-
ever, recursive FM is more widely used to generate multiway
partitioning solution due to the empirical observation that
K-FM is very susceptible of being trapped into a local min-
ima.

We observe two major problems related to conventional
K-FM. First, due to the high degree of exibility, K-FM is
prone to make wrong decision while dealing with many num-
ber of candidate cells and directions to move. This obviously
increases the probability of getting stuck in the local min-
ima in the absence of e�ective hill-climbing scheme. Table
1 shows the comparison of recursive FM (R-FM) and K-FM
based on 4-way, 8-way, and 16-way partitioning result of
MCNC and ISPD98 benchmark circuits [1] measured under
cost 1 and cost k � 1 metric.1 K-FM that minimizes cost 1
is based on formulation given in [10], and K-FM for mini-
mizing cost k�1 is based on [11]. As previously mentioned,
R-FM minimizes only cost k� 1, but we evaluate its multi-
way partitioning result with both metrics. As one can see,
50 runs of K-FM performs very poorly (almost 500% worse)
compared to 20 runs of R-FM (we provide more detailed
comparison in [6]).

Second problem is related to memory requirement. Each
cell is associated with K�1 gain values, and each block has
to maintainK�1 buckets for conventional K-FM algorithm.
This translates into O(N �K(K�1)) space complexity, where
N denotes total number of cells. In case of large K or N ,
it requires prohibitively large amount of memory, causing
K-FM to be undesirable in solving multiway partitioning
problem for today's large scale circuits.

4 PM-based Multiway Partitioning

We propose a simple yet e�ective hill-climbing method called
PM (Pairwise cell Movement) to enhance K-FM, which is
done by reducing the multiway partitioning problem to sets
of concurrent bipartitioning problems. PM passes are shown

1We note K-FM result on standard benchmark circuits is not well
documented in the literature unlike recursive FM and its variants.



cost 1 cost k-1

circuits 4-way 8-way 16-way 4-way 8-way 16-way

name # cell R-FM K-FM R-FM K-FM R-FM K-FM R-FM K-FM R-FM K-FM R-FM K-FM

biomd 6514 157 630 223 777 300 945 187 776 339 776 558 776
s13207 8772 141 625 209 827 270 945 163 688 253 688 348 688
s15850 10470 161 811 228 1026 320 1167 175 901 254 901 375 901
s35932 18148 231 1818 294 2651 373 3375 274 1902 411 1902 580 1902
s38584 20995 213 2209 314 3194 434 3825 224 2704 350 2704 533 2704
avq.sm 21918 528 3007 767 4071 1008 5043 572 3128 894 3128 1257 3128
s38417 23949 280 1899 449 2506 604 2837 296 2197 494 2197 689 2197
avq.lg 25178 717 3324 1042 4252 1251 5308 769 3379 1178 3379 1502 3379

ibm01 12752 576 3212 857 4234 1462 4604 581 2690 904 4059 1615 4870
ibm02 19601 688 5984 2069 7138 3727 7725 740 1274 2215 3636 4356 7099
ibm03 23136 2596 6737 3512 8263 4454 8997 2811 6141 4216 9131 5765 10960
ibm04 27507 2290 8332 3751 10347 5154 11162 2369 7025 4039 10518 5962 13143
ibm05 29347 4225 8537 5760 9387 7310 9488 4751 8264 7183 13036 9746 18145
ibm06 32498 2096 8664 2954 10923 3914 12026 2343 6480 3668 9066 5466 12887
ibm07 45926 3069 12724 4375 15725 5955 16765 3193 9754 4853 14650 6836 20048
ibm08 51309 2945 12845 4532 16056 6031 17472 3040 11693 5048 15737 7043 21388
ibm09 53395 2838 15888 4759 19619 6327 21509 2918 14679 5104 16890 7131 23890
ibm10 69429 3163 20820 4888 26170 7047 27681 3319 16425 5173 21540 7716 29387
ibm11 70558 4685 21448 6059 27479 8168 29598 4799 18988 6360 25327 8855 35055
ibm12 71076 5258 23081 7946 28764 10776 29074 5387 18697 8407 26548 11644 37215
ibm13 84199 3102 24758 4390 30975 7258 31965 3278 20245 4803 30565 8063 41234
ibm14 147605 6451 38767 8424 49334 12038 51738 6842 29983 9251 46698 13456 61250
ibm15 161570 8310 48130 11465 64235 13966 67543 8701 41495 12689 53406 16106 76367
ibm16 183484 6228 54578 10372 65553 16205 68765 6303 48174 10864 60343 17452 79736
ibm17 185495 9326 64340 14733 75432 21857 80645 9494 53886 15336 63899 23591 89736
ibm18 210613 3952 53128 6588 65361 10327 68424 4070 43875 6902 56865 11208 79162

SUM - 74226 446296 110960 554299 156536 588626 77599 375443 121188 497589 177853 677242

TIME - 20.3 29.3 29.0 36.5 36.7 51.3 20.3 30.0 29.0 37.8 36.7 53.2

Table 1: Multiway partitioning of MCNC and ISPD98 benchmark circuits with recursive FM (R-FM) and at K-way FM
(K-FM) measured under cost 1 and cost k� 1 metric. TIME reports total elapsed CPU hour for 20 (R-FM) and 50 (K-FM)
runs of all 26 circuits.

to be e�ective in distributing clusters evenly into the multi-
ple blocks to minimize the connections across the multiway
cutlines. PM overcomes the limitation of conventional K-
FM and provides partitioners the capability to explore a
wider range of solution space e�ectively while ensuring con-
vergence to satisfying suboptimal solutions.

4.1 Pairwise Cell Movement

In our Pairwise cell Movement (PM) approach, bipartition-
ing is applied to pairs of blocks so as to improve the quality
of overall multiway partitioning. Cell moves are limited be-
tween paired blocks in this case, but PM can also promote
global cell moves during subsequent passes that employ dif-
ferent pairing con�gurations. Starting with an initial K-way
partition of the netlist, we pair all K blocks before a pass
of PM begins. Then, we initialize and update gain of each
cell moving from block bi to bj only if they are paired. Note
that this is a restricted version of K-FM, where some of the
cell move directions are ignored.

Now each cell is associated with single gain value, and
each block maintains single bucket. This translates into a
lower O(N �K) space requirement compared to the conven-
tional K-FM. However, PM only considers O(K) directions
out of O(K(K�1)), which ignores many directions with even
higher gains. Then, a natural question arises if PM will ad-
versely a�ect the partitioner with this restriction. Figure
2 shows a typical behavior of K-FM and PM with random
initial partition. K-FM converges to a local minima quickly,
while PM searches for better solution with a slight increase

of runtime. A possible explanation is that during each PM
pass, the partitioner focuses on removing clusters that strad-
dle the cutline between paired blocks. Then the subsequent
PM passes are used to redistribute clusters evenly into the
K blocks to minimize the connections across the multiway
cutlines. Note that it is possible to end up with negative
gain between some non-paired blocks at the end of a PM
pass. K-FM does not allow this case; a positive overall pass
gain always means cutsize improvement with respect to all
possible pairs. Our stopping criteria of PM-based run is
based on the overall gain computed from the gain between
all possible pairs of blocks to ensure the convergence. This
is how PM provides the partitioner with hill-climbing capa-
bility that overcomes the drawback of K-FM.

4.2 Block Pairing and Initial Partitioning

One important decision to make at the end of each PM pass
is how to come up with pairing con�guration for the next
PM pass. PM requires a matching-like pairing of blocks as
shown in Figure 3-(a), and we observe the following possible
strategies in regards to the selection of K=2 pairs out of
K(K � 1)=2;

� random : randomly pair blocks. It serves as a reference
point to other strategies.

� exhaustive : rotate among all possible pairing con�g-
urations, as shown in Figure 3-(b). The purpose is to
apply the same number of PM pass to each possible
pairing con�guration, giving the partitioner a chance



0

20000

40000

60000

80000

100000

120000

0 5 10 15 20

C
ut

si
ze

Pass

K-FM
PM

K-PM/LR

Figure 2: Typical cutsize reduction trend of K-FM, PM, and
K-PM/LR for 8-way partitioning of ibm18

to move cells between any blocks during subsequent
PM passes.

� cut-based : always pair two most tightly or loosely con-
nected blocks, measure in terms of cutsize.

� gain-based : always pair two blocks between which the
cutsize reduction is maximum or minimum during last
p PM passes.

We empirically observe from related experiment [6] that
gain-based pairing that selects two blocks between which
the cutsize reduction is maximum during the last PM pass
produces the best result. The gain-of-pair is computed by
comparing the number of nets that span both blocks before
and after a pass. Then, we use a heap of sizeK(K�1)=2 that
sorts pairs in descending order of their gains from the last
pass. Another decision to be made is when to terminate the
current run. In immediate stopping, the partitioner stops
right after it encounters the �rst non-positive pass gain. In
exhaustive stopping, the partitioner stops if all (or some por-
tion of) possible pairing con�gurations consecutively can't
improve the partition. We observe from related experiment
[6] that immediate stopping produces almost the same qual-
ity solution within only a fraction of runtime compared to
exhaustive stopping.

Another important issue to be addressed is on initial par-
tition. Figure 2 shows the typical behavior of PM (based on
random initial partition) and K-PM/LR (based on initial
partition by recursively applying the existing LR scheme
[5]). LR is a simple yet e�ective approach to dynamically
identify and remove clusters that straddle the cutline in bi-
partitioning. We use limited number of LR passes (usually
less than 3) at each recursive level cut for the generation
of K blocks, which requires little CPU time in most cases.
However, the impact on the performance of PM is notice-
able. The rate of convergence is faster compared to random
initial partition, and PM obtains better quality solutions as
revealed in Figure 2. Our most enhanced multiway parti-
tioner named K-PM/LR combines recursive LR-based initial
partitioning and PM passes as shown in Table 2.

5 Experimental Result

We have implemented our K-PM/LR algorithm that com-
bines LR [5] and PM, compiled with gcc v2.4, and tested on

(a) (b)

1

3

2

4

1

3

2

4

1

3

2

4

Figure 3: (a) One possible block pairing con�guration for
16-way partitioning, (b) All 3 possible block pairing con�g-
urations for 4-way partitioning

K-PM/LR()

for (r = 1 to total run)

LR Init Partition();

while (: Immediate Stop())

Gain Based Block Pairing();

PM Pass();

Table 2: Description of K-PM/LR

SUN ULTRA SPARC-1, 143Mhz. The benchmark circuits
are from MCNC and ISPD98 [1] suits. The area of the cells
is uniform, and all pads are included to be partitioned. The
recursive bipartitioning algorithms use [0.45, 0.55] balanc-
ing constraint for all level cuts, whereas 4-way, 8-way, and
16-way at algorithms use [0:452 = 0.203, 0:552 = 0.303],
[0:453 = 0.091, 0:553 = 0.166], and [0:454 = 0.041, 0:554 =
0.092]. All cutsizes are based on 20 runs, and runtimes are
measured in hours. We report the sum of total elapsed CPU
time of each algorithm.

Table 3 shows the comparison of recursive FM (R-FM)
and K-PM/LR based on 4-way, 8-way, and 16-way partition-
ing result measured under cost 1 and cost k � 1 metric. As
one can see, K-PM/LR signi�cantly improves K-FM by up
to 86.2% based on the comparison with Table 1, and outper-
forms R-FM by up to 17.3%. In addition, cost k� 1 results
by K-PM/LR is so highly optimized that it almost matches
cost 1 cutsize. In other words, most of the cut nets span only
2 blocks. Our at multiway partitioner K-PM/LR also ob-
tains comparable result (within 5%) when compared to the
state-of-the-art recursive bipartitioner hMetis (recent result
available at http://vlsicad.cs.ucla.edu/�cheese). Note
that hMetis uses hierarchical clustering during partitioning.
We expect that our result will further improve when com-
bined with proper clustering schemes. Our technical report
[6] provides more detailed experimental result.

6 Conclusion & Ongoing Work

We proposed a simple yet e�ective method to improve the
iterative improvement-based multiway partitioner by reduc-
ing the multiway partitioning problem to sets of concur-
rent bipartitioning problems. The main contribution of our
study is �rst to reveal the poor performance of conventional
improvement-based multiway partitioner K-FM and next to
provide detailed analysis as well as e�ective way to overcome
the drawback of K-FM. The result is an e�ective and e�cient



cost 1 cost k-1

circuits 4-way 8-way 16-way 4-way 8-way 16-way

name # cell R-FM K-PM R-FM K-PM R-FM K-PM R-FM K-PM R-FM K-PM R-FM K-PM

biomd 6514 157 172 223 261 300 374 187 198 339 394 558 602
s13207 8772 141 171 209 219 270 368 163 204 253 331 348 490
s15850 10470 161 140 228 264 320 412 175 165 254 286 375 486
s35932 18148 231 154 294 291 373 352 274 175 411 379 580 440
s38584 20995 213 191 314 368 434 600 224 228 350 459 533 669
avq.sm 21918 528 562 767 794 1008 1100 572 587 894 828 1257 1159
s38417 23949 280 168 449 220 604 441 296 170 494 301 689 535
avq.lg 25178 717 625 1042 927 1251 1102 769 625 1178 1065 1502 1400

ibm01 12752 576 479 857 1020 1462 1699 581 542 904 1109 1615 1821
ibm02 19601 688 639 2069 1751 3727 3592 740 662 2215 1892 4356 4152
ibm03 23136 2596 2537 3512 3882 4454 5736 2811 2530 4216 4119 5765 5662
ibm04 27507 2290 2192 3751 3559 5154 5349 2369 2201 4039 3671 5962 5766
ibm05 29347 4225 3442 5760 4834 7310 6419 4751 3692 7183 6543 9746 9344
ibm06 32498 2096 1944 2954 3198 3914 4815 2343 2245 3668 3988 5466 5900
ibm07 45926 3069 2843 4375 4398 5955 6854 3193 2949 4853 4707 6836 6854
ibm08 51309 2945 3161 4532 4466 6031 6477 3040 3529 5048 5426 7043 7364
ibm09 53395 2838 2555 4759 4115 6327 6046 2918 2965 5104 4187 7131 5978
ibm10 69429 3163 2996 4888 5252 7047 8559 3319 3229 5173 5518 7716 8525
ibm11 70558 4685 3189 6059 6086 8168 8871 4799 3646 6360 5321 8855 8420
ibm12 71076 5258 4429 7946 7736 10776 11000 5387 4615 8407 7530 11644 10495
ibm13 84199 3102 2325 4390 3570 7258 7066 3278 2374 4803 3667 8063 7382
ibm14 147605 6451 5233 8424 6753 12038 9854 6842 5098 9251 7427 13456 12476
ibm15 161570 8310 6344 11465 8965 13966 11345 8701 8049 12689 11008 16106 14448
ibm16 183484 6228 5034 10372 7543 16205 10456 6303 5992 10864 9322 17452 14901
ibm17 185495 9326 6738 14733 10654 21857 17653 9494 6779 15336 11818 23591 20830
ibm18 210613 3952 3123 6588 5765 10327 9653 4070 3814 6902 6982 11208 11692

SUM - 74226 61386 110960 96891 156536 146193 77599 67263 121188 108278 177853 167791

TIME - 20.3 19.4 29.0 29.4 36.7 37.4 20.3 19.3 29.0 28.4 36.7 35.1

Table 3: Multiway partitioning of MCNC and ISPD98 benchmark circuits with R-FM (Recursive FM) and K-PM/LRmeasured
under cost 1 and cost k � 1 metric. TIME reports total elapsed CPU hour for 20 runs of all 26 circuits.

algorithm K-PM/LR that improves conventional at mul-
tiway partitioning algorithm signi�cantly and outperforms
recursive algorithms. Our ongoing study includes; (i) adap-
tation of clustering to further reduce cutsize and runtime,
(ii) application of K-PM/LR to quadrisection based place-
ment.

Acknowledgement

We thank Charles Alpert at IBM Austin Research Labo-
ratory, George Karypis at University of Minnesota, Laura
Sanchis at Colgate University, and Narayanan Shivakumar
at Stanford University for sharing their experience on mul-
tiway partitioning. We would also like to thank Honching
Li at UCLA for his helpful comments regarding this paper.

References

[1] C. J. Alpert. The ISPD98 circuit benchmark suite. In
Proc. Int. Symp. on Physical Design, pages 80{85, 1998.

[2] C. J. Alpert and A. B. Kahng. Multi-way partitioning
via space�lling curves and dynamic programming. In
Proc. Design Automation Conf., pages 652{657, 1994.

[3] P. Chan, M. Schlag, and J. Zien. Spectral k-way ratio-
cut partitioning and clustering. In Proc. Design Au-
tomation Conf., pages 749{754, 1993.

[4] J. Cong, W. Labio, and N. Shivakumar. Multi-way
VLSI circuit partitioning based on dual net representa-

tion. IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, pages 396{409, 1996.

[5] J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu.
Large scale circuit partitioning with loose/stable net
removal and signal ow based clustering. In Proc. Int.
Conf. on Computer-Aided Design, pages 441{446, 1997.

[6] J. Cong and S. K. Lim. Multiway partitioning with
pairwise movement. Technical Report 980029, CS Dept.
of UCLA, Aug. 1998.

[7] C. Fiduccia and R. Mattheyses. A linear time heuris-
tic for improving network partitions. In Proc. Design
Automation Conf., pages 175{181, 1982.

[8] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. Technical Report 95-
064, CS Dept. of Univ. of Minnesota, 1995.

[9] B. Kernighan and S. Lin. An e�cient heuristic proce-
dure for partitioning of electrical circuits. Bell System
Technical Journal, pages 291{307, 1970.

[10] L. A. Sanchis. Multiple-way network partitioning.
IEEE Trans. on Computers, pages 62{81, 1989.

[11] L. A. Sanchis. Multiple-way network partitioning with
di�erent cost functions. IEEE Trans. on Computers,
pages 1500{1504, 1993.

[12] C. W. Yeh, C. K. Cheng, and T. T. Lin. A general
purpose multiple-way partitioning algorithm. In Proc.
Design Automation Conf., pages 421{426, 1991.


	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index


