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Abstract

Simulation-based power estimation is commonly used for its high
accuracy, despite excessive computation times. Techniques have
been proposed to speed it up by transforming a given sequence
into a shorter one while preserving the power consumption char-
acteristics of the original sequence. This work proposes a novel
method to compact a given input vector sequence to improve on
the existing techniques. We propose a graph model to transform
the problem to the problem of finding a heaviest weighted trail in
a directed graph. We also propose a heuristic based on min-cost
flow algorithms, using the graph model. Furthermore, we show
that generating multiple input sequences yields better solutions in
terms of both accuracy and simulation time. Experiments showed
that significant reduction in simulation times can be achieved with
extremely accurate results. Experiments also showed that the gen-
eration of multiple sequences improved the results further both in
terms of accuracy and simulation time.

1 Introduction

The growing need for low-power systems raises two major issues:
design optimization for low power and accurate estimation of power
consumption. Both issues have been studied extensively in re-
cent years. This work proposes a method to speed up simulation-
based power estimation, which often suffers from excessive run-
ning times. For a CMOS circuit, the dominant source of power dis-
sipation is the dynamic transition current. Other sources are much
smaller and can be neglected. For a combinational circuit, power
consumption corresponding to an input vector sequence depends
only on the transitions between successive input vectors. So, if a
given vector sequence can be transformed to a shorter one while
preserving the transition frequencies, the shorter sequence can be
used to estimate the power consumption for the original sequence.

Some recent works studied the problem of transforming a given
vector sequence to a shorter one preserving the power characteris-
tics. Tsuiet al. [9] and Marculescuet al. [4] proposed methods
for combinational circuits. These methods have the disadvantage
of generating vectors that are not in the original sequence. Huang
et al. [3] used a two phase strategy: they derived the transition pro-
file of internal signals by a fast power estimator in the first phase,
and then generated a new and shorter sequence using this profile
in the second phase. Marculescuet al. [5] used a Markov model to
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generate a compact sequence, and subsequently they proposed a hi-
erarchical model with macro and micro states to model the original
sequence [6].

This paper proposes a novel method to transform a sequence to
a shorter one preserving the transition frequencies. We will call
this problem theSequence Compactionproblem. In this paper,
we propose a graph model to transform the sequence compaction
problem to the problem of finding a heaviest weighted trail in a di-
rected graph. We propose a heuristic based on the min-cost flow
problem [2] in graphs. We also discuss the problem of generating
several input sequences with different compaction factors as op-
posed to generating merely a single input sequence. In this case,
the power consumption for the original sequence can be computed
as the weighted average of all sequences. This method can generate
accurate results with shorter sequences.

The proposed techniques have been applied to MCNC 91 cir-
cuits [10]. The circuit behaviors were simulated for different input
sequences using SPICE. Experiments show that significant reduc-
tions in simulation times can be achieved with highly accurate re-
sults. The error in estimations is limited to only 2%, where as the
simulation time is reduced by a factor of 5. Moreover, the gener-
ated sequences are reliable for estimation, since they preserve the
transition frequencies. We also showed that by generating multi-
ple sequences the results can be improved further both in terms of
accuracy and simulation time.

The rest of this paper is organized as follows. In Section 2 we
will discuss the problem, propose a graph model, and describe a
heuristic. Section 3 discusses generating multiple sequences. Ex-
perimental results are given in Section 4, and finally we conclude
with Section 5.

2 The Sequence Compaction Problem

The sequence compaction problem aims at transforming a given
vector sequence to a shorter one while preserving its characteris-
tics. An input sequenceS = hs1; s2; : : : ; si; sj ; : : : smi, is a se-
quence of binaryn-vectors. Atransition, t = (si; sj) is an ordered
pair of distinctn-vectors. We will useS(t) to denote the number of
transitionst, andT (S) to denote the set of transitions in sequence
S. The sequence compaction problem can formally be stated as:

Given an integerc (viz., the compaction factor), and an input se-
quenceS= hs1; s2; : : : ; smi, construct a new sequenceS0 to min-
imize the costC(S; S0), where

C(S; S0) =
X

t2T (S)

jS(t)� c � S0(t)j

S(t)

The accuracyA(S; S0) of a solutionS0 can be defined asA(S; S0) =
jT (S)j�C(S; S0), jT (S)j being the cardinality of the setT (S). So
minimizing the cost is equivalent to maximizing the accuracy. The
problem is NP-Complete [8], but we can not present the proof here
due to space restrictions.



2.1 A Graph Model

In this section, we will describe a graph model for the representa-
tion of the problem. In this model, each distinct input vector inS
will be represented by a vertex, and each transition will be repre-
sented by several weighted directed edges in the graph. We will
assign the weights such that finding a heaviest weighted trail in this
graph will be equivalent to finding an optimal compact sequence
for S. Replacing each vertex on the trail by its corresponding in-
put vector defines the corresponding sequence. The weight of an
edge will be equal to the change in the cost of solution, if the cor-
responding transition of the edge appears inS0. More specifically,
for a transitionti in S, there will be several edgesei1; ei2; : : : with
w(ei1) � w(ei2) � : : :. If an optimal solution hasj copies of the
edgeei, then there exists an optimal solution which uses the firstj
edges:ei1; ei2; : : : eij , because the weights of the edges are nonin-
creasing. Exploiting this fact, the weight of thejth edge is set to
be equal to the change in the cost, when transitionti is added once
more toS0, which already hasj � 1 copies of transitionti,

w(eij)=
jS(ti)�c � (j�1)j � jS(ti)�c � jj

S(ti)

A formal description for the construction of the graph follows.
Let S = hs1; s2; : : : ; si; : : : ; smi be the input sequence andc be
the compaction factor. In the graphG= (V;E) representing this
instance of the sequence compaction problem, each distinct input
vectorsi in S is represented by a vertexvi in V , and each vertex
in V correspond to an input vector inS, and for each transition
t = (si; sj) in S,

(i) The edge setE containsbS(t)
c
c copies of edge(vi; vj) with

weight c

S(t)
.

(ii ) If bS(t)
c
c 6= S(t)

c
thenE has one more(vi; vj) edge with

weight 2(S(t)%c)�c
S(t)

, where% represents the modulo opera-
tion.

(iii ) E contains M more copies of the edge(vi; vj) with weight
�c
S(t)

, where M is the total number of positive weight edges in
the graph. Note that in the worst case each transition occurs
c+1

2
times, and the number of positive weight edges can be

bounded asM �
2�jSj
c+1

.

Edges generated by the first rule correspond to transitions that will
always reduce the error inS0. On the contrary, edges generated by
the last rule correspond to transitions that will always increase the
error inS0. The edge produced by the second rule corresponds to
approximating theS(t)

c
by eitherbS(t)

c
c or dS(t)

c
e. There are only

three possible weights for an edge between two vertices. Based on
this observation, we can add capacities to edges in order to avoid
too many edges in the graph.

A trail in this graph clearly describes a sequence for the com-
paction problem. The greater is the sum of weights of the edges this
trail covers, the less will the cost be in the corresponding sequence.
Negative weight edges can be included in the trail for the sake of
forthcoming positive weight edges. A heaviest weighted trail in
this graph gives the optimal solution for the sequence compaction
problem.

Figure 1 illustrates an example. There are 5 transitions from
B to D. The cost of the firstB ! D edge can be calculated
as the difference in cost of zero appearances and one appearance,
i.e., w(eBD1) = j5�3�0j�j5�3�1j

5
= 3

5
. The weight of the sec-

ond edge is the difference between underestimating and overesti-
mating the transitionBD, and can be computed asw(eBD2) =
j5�3�1j�j5�3�2j

5
= 1

5
. Other edges will cost�3=5. In this graph,
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Figure 1: The graph representation for the sequenceS =
hBDABCABDABDCABDABCBDCABCi and the compaction
factor c = 3. The figure on the left presents the number of transitions,
and the one on the right presents the graph forS. Edge weights are written
as[(weight of the edge, number of edges with this weight); :::]. e.g., From
B to D, there is 1 edge with weight3=5, 1 edge with weight1=5, and
M edges with weight�3=5, whereM =9 is the total number of positive
weight edges.

the maximum weighted trail, can be constructed asB ! D !

A ! B !C ! A ! B ! D ! C. The weight of this trail is
3

5
+ 3

3
+ 3

6
+ 3

3
+ 3

3
+ 3

6
+ 1

5
+ 1

2
= 159

30
. The corresponding

compact sequence isS0 = hBDABCABDCi. The cost of this
solution can be computed asC(S; S0) = 17

10
. Note that the accuracy

of the solutionA(S;S0) = jT (S)j � C(S; S0) = 7� 51

30
= 159

30
is

equal to the weight of a heaviest weighted trail.

2.2 Finding a Heaviest Weighted Trail

The heuristic has three basic steps: (1) removing the positive weight
cycles (2) finding a heaviest weighted trail on the reduced graph (3)
improving the solution by adding back the cycles, if possible. Pos-
itive weight cycles on a graph can be detected by repeatedly apply-
ing the Bellman-Ford algorithm [1]. After removing the positive
weight cycles, a heaviest weighted trail in the reduced graph can be
found by using a minimum-cost flow algorithm. We will augment
the reduced graph, and by finding the minimum cost flow in this
augmented graph, we will identify a heaviest weighted trail in the
reduced graph.

Let G1 = (V1; E1) be the graph induced by the removal of
positive weight cycles. The flow graphG2=(V2; E2) satisfies the
following conditions. The set of verticesV2 is equal toV1 with a
source vertexs and a terminal vertext added, i.e.,V2 = V1[fs; tg.
The node flows,nf , are:nf(s) = 1; nf(t) = �1; and0 for all
other vertices. The source vertexs is connected to each vertex in
V1, and each vertex inV1 is connected to the terminal vertext. The
cost of these edges are all zero, and capacities are all one. If there
exists an edge fromvi to vj inE1,E2 contains a distinct edge from
vi to vj for each distinct cost value forvi to vj edges. The cost of
this edge is equal to the negative of the determining cost value, and
the capacity is equal to the number of edges with this cost value in
E1.

The min-cost flow problem will identify a trail froms to t with
the minimum cost. This trail corresponds to a heaviest weighted
trail in the reduced graph. We have used Goldberg’s algorithm and
implementation [2], the complexity of which isO(V 2E log(V C)),
whereC is equal to the largest edge cost for finding teh min-cost
flow solution. The trail found at the second step can be further
improved by inserting the positive weight cycles removed at the
first step.

Consider the example in Figure 1. The positive weight cycles
in this graph can be detected asB!D!A!B andB!C!

A!B. The flow graph after removing these cycles and negating
the weight of each edge is presented in Figure 2. The min-cost flow
in this graph follows the paths!B!D!C! t. Removing the
source and sink vertices and inserting the cycles removed before,
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Figure 2: The flow graph for Example 2. Edge weights are written as
[(weight of the edge, number of edges with this weight); :::]. e.g., For ex-
ample, there is one edge with weight1=5 and9 edges with weight�3=5
fromB toD.

we get the trailB!D!A!B!C!A!B!D!C and the
corresponding compact sequence isS0 = hBDABCABDCi.

3 Constructing Multiple Sequences

So far, we discuss how an input sequence can be compacted as a
single sequence with a given compaction factor. However, several
sequences with different compaction factors can be generated to
represent the original sequence, and the power consumption can
be estimated by the weighted average of the power consumptions
of these sequences. That is, a given input sequenceS is repre-
sented byk subsequencesS1; S2; : : : ; Sk with compaction factors
c1; c2; : : : ck , respectively, then the average power consumption
AP (S) can be estimated as

AP (S) =

Pk

i=1
P (Si) � ciPk

i=1
ci � jSij

whereP (S) is the total power dissipation forS. This approach can
be helpful both in decreasing the total length of the input sequences
and in achieving more accurate estimations. We will work on con-
structing a specified number of sequences for an input sequenceS.
The problem can be stated as:

Given an input sequenceS, and compaction factorsc1 � c2 �

: : : � ck, construct sequencesS01; S
0
2; : : : ; S

0
k to minimize

X

t2T (S)

jS(t)�
Pk

i=1
ci � S

0
i(t)j

S(t)

Effective solutions to this problem can be found by using the
graph model and the heuristic for finding a heaviest weighted trail
already described. First, the sequenceS01 for c1 is constructed, and
then the edge weights are recomputed consideringS01, before con-
structingS02. Generally, during the construction of the graph for the
ith sequence, the weight of an edge is computed to be equal to the
change in the objective function, withS01; S

0
2; : : : S

0
i�1 already con-

structed andS0i+1; S
0
i+2; : : : S

0
k assumed to be empty sequences.

In this scheme, sequences with large compaction factors can
greedily use negative weight edges to add more positive weight
edges to the trail. However, these positive weight edges might be
covered by another sequence in the upcoming compactions. So, it
might be helpful to construct sequences with high compaction fac-
tors using only positive weight edges. More specifically, satisfying
the condition,S(t) �

Pj

i=1
ci � S

0
i(t) for the first few sequences

usually helps, and this can be achieved by allowing the sequences
to be constructed by only those edges produced by the first rule in
the graph definition in Section 2.1.

4 Experimental Results

The methods proposed were implemented inC and applied to the
MCNC91 benchmark circuits [10]. Input sequences were gener-
ated randomly but biased. The power consumption of the circuits
for input sequences were measured with SPICE for maximum ac-
curacy. We worked on 6 circuits and 3 compaction factors:3; 5; 10.
We measured the power consumption of the circuits for 4 different
sequences of length 1000. Then the sequences were compacted us-
ing the proposed heaviest weighted trail method (HWT) and the
Markov model (MM) described in [5]. Table 1 presents the average
accuracies for the two methods. In this table, the first three columns
present the name, number of inputs and actual power dissipation of
the circuit, respectively. The other columns present the accuracy

in estimations, calculated as:AP (S)�AP (S
0
)

AP (S)
�100, whereAP (S)

denotes the average power dissipation for sequenceS. The results
show that HWT can predict the original power consumption very
accurately, with negligible differences from the original values.

Table 1: SPICE Simulations

Name #inp Power c = 3 c = 5 c = 10
�W HWT MM HWT MM HWT MM

C432 36 1878.5 0.7 2.8 0.7 2.4 1.1 2.8
C880 60 3788.7 0.9 5.0 1.8 5.0 2.0 5.5
C1355 41 3956.2 1.8 8.8 2.5 9.3 2.6 9.2
C1908 33 6454.9 1.5 3.3 2.8 4.1 3.1 5.4
cordic 23 1641.5 1.4 4.4 3.1 4.9 3.3 4.6
i3 133 3856.8 0.5 2.2 0.7 2.0 1.7 1.9

Averages 1.1 4.1 1.9 4.6 2.3 4.9

Another important issue is the reliability of the compacted se-
quences. In a compacted sequence, some transitions may be over-
estimated while some others maybe underestimated, and these er-
rors can cancel each other to give an accurate estimation. Such
a compacted sequence is definitely not reliable. Since these com-
paction methods are proposed to avoid simulating long sequences,
the user cannot determine the accuracy of the estimation. So relia-
bility is a major concern. A reliable solution should estimate each
transition accurately. We compared the solution qualities of HWT
and MM in terms of reliability, for 200 input sequences of length
4000. We also wanted to see how far the solutions are from an op-
timal solution. Since the value of an optimal solution is not known,
we used an upper bound on the accuracy of an optimal solution,
which we call the accuracyA� of an ideal solution. In an ideal
solution, each transition is estimated in the most accurate way, i.e.,
a transitiont, which appearsS(t) times in the original sequence
S, should appearround(S(t)

c
) times inS0, whereround maps the

number to the nearest integer. The accuracy computed this way
is only a bound on the optimal value, because there does not nec-
essarily exist a sequence to realize this. Note that the accuracy
of an ideal solutionA� is equal to the sum of weights of positive
weight edges in the associated graph. Table 2 presents the results
(the numbers in parentheses display the std. deviation). The second

Table 2: The reliability for HWT and MM

c jS0j
C(S;S0

MM
)

C(S;S0

HWT
)

Acc. HWT

3 852 (87) 3.92 (0.41) 82.0(2.69)
5 592 (68) 3.61 (0.42) 85.3(5.22)
10 329 (33) 3.36 (0.38) 88.2(2.96)

column in Table 2 presents the average length of the sequences gen-



erated by the HWT method and shows that HWT produces much
shorter sequences than MM. The third column displays the aver-
age of the ratio of costs of the solutions of the two methods. The
numbers show that the costs of solutions of HWT are more than 3
times smaller than those of MM, meaning that the solutions by the
HWT are much more reliable. The ratio becomes smaller with in-
creasing compaction factor. The reason for this increase should be
attributed to the increase in the cost of an optimal solution for large
compaction factors. Since, the cost of an optimal solution becomes
higher, the cost due to the imperfectness of the solution becomes
less effective in this ratio. The last column presents the comparison
with the ideal solution. The numbers were calculated as:A0�100

A�
,

whereA0 denotes the accuracy of the produced solution. It can
be seen that the accuracy of solutions of HWT are within 18% of
the ideal solutions forc= 3, going down to 14.7% and 11.8% for
c=5 and10, respectively. This decrease is most likely because the
bound on the value of an optimal solution becomes tighter as the
compaction factor increases. The results show that the HWT is not
only more reliable than MM, but also generates solutions that are
very close to optimal. The compaction times are negligible com-
pared to the simulation times.

The next set of experiments observes the performance of gen-
erating several input sequences. We worked on 200 input vec-
tors of length 4000. Table 3 presents the results for these exper-
iments. The table displays the total length of sequences for gen-
eratingk = 1; 2; 3 sequences. Each column displays the results
for using the firstk compaction factors indicated in that row. The
accuracy fork = 1, and2 is computed asA

0�100
A�

, whereA� is
the accuracy of an ideal solution forc equal to the first number in
that row. Fork= 3 we computed the improvement in accuracy as
A2�A3�100

A2

, whereA2 andA3 stand for the the accuracy of the
solutions fork= 2 and3, respectively (Note thatA� is no longer
an upper bound, because the last compaction factor is smaller than
the compaction factorA� is computed for). The results show that

Table 3: Reliability of generating multiple sequences

c k = 1 k = 2 k = 3
jS0j Acc

P
i
jS0ij Acc

P
i
jS0ij Imp

3,5,2 852 82.0 808 89.7 1024 5.1
5,8,3 592 85.3 567 89.6 715 13.4
10,15,7 329 88.2 318 89.7 383 4.3

by using compaction factors greater than the intended compaction
factor (the compaction factor if only one sequence would be gen-
erated, which is the first number in each row in this case) more
accurate solutions can be achieved with shorter sequences. The ac-
curacy is increased by 7.7%, 4.3% and 1.5%, whereas the lengths
of the sequences are around 5% shorter. By using a compaction
factor lower than the intended compaction factor, the accuracy can
be improved with the cost of longer sequences. As the last set
of experiments, we measured the power consumption for these se-
quences on circuits. In Table 4, MS correspond to generating three
sequences with compaction actors listed, and HWT correspond to
generating one sequence with the first compaction factor at the top
of the column. The table shows that the accuracies can be improved
by generating multiple sequences. The error in estimation is only
0.9%.

5 Conclusion

This paper addressed the input sequence compaction problem for
efficient power estimation. We described a novel graph model which
reduces the sequence compaction problem to the problem of finding

Table 4: SPICE Simulations for MS and HWT

Name c = 3; 5; 2 c = 5; 8; 3 c = 10; 15; 7
HWT MS HWT MS HWT MS

C432 0.7 0.6 0.7 0.6 1.1 1.0
C880 0.9 0.7 1.8 1.2 2.0 1.5
C1355 1.8 1.5 2.5 2.0 2.6 2.2
C1908 1.5 1.2 2.8 1.7 3.1 2.2
cordic 1.4 1.1 3.1 2.4 3.3 2.7
i3 0.5 0.5 1.3 0.5 1.7 0.7
Avg. 1.1 0.9 1.9 1.4 2.3 1.7

a heaviest weighted trail in a directed graph. Then a decent heuris-
tic for constructing a heaviest weighted trail was proposed. The
paper also proposed generating multiple compact sequences with
different compaction factors as opposed to constructing merely a
single sequence. The experimental results showed that simulation
times can be significantly reduced with a negligible difference in
accuracy. Furthermore, generating multiple sequences helped to
reduce the simulation times and to increase accuracy.
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