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Abstract

In this paper we present a polynomial-time algorithm
for retiming synchronous circuits with edge-triggered
registers under setup and hold constraints. Given a cir-
cuit G and a target clock period c, our algorithm com-
putes in O(V 3E) steps a retimed circuit that achieves
c and is free of hold violations, where V is the circuit's
gate count, and E is the number of wires in the cir-
cuit. This is the �rst polynomial-time algorithm ever
reported for retiming with constraints on both long and
short paths. The asymptotically e�cient operation of
our algorithm is based on a novel formulation of the tim-
ing constraints as an integer monotonic program with
O(E2) inequalities.

1 Introduction

Retiming is a general architectural-level optimization
that can improve circuit performance by shifting stor-
age elements across combinational logic blocks. The
�rst algorithmic investigation of retiming for reducing
the clock period and area of edge-triggered circuits ap-
peared in [7, 8]. Since then, retiming has been extended
to optimize the timing and area of level-clocked circuits
[4, 9, 10, 13] and has been further explored in the con-
text of logic synthesis, power optimization, and testa-
bility [2, 11].

Over the years, most retiming research has focused
on optimum timing. The original work in [7] has been
followed by a urry of research on minimum clock-period
retiming of edge-triggered and level-clocked circuits un-
der various delay models and multiphase clocking dis-
ciplines [3, 4, 6, 9, 10, 12, 17]. The polynomial-time
retiming algorithms described in these papers can only
be used to satisfy setup timing constraints, however.
An algorithm for retiming single-phase level-clocked cir-
cuits under setup and hold constraints has been pre-
sented in [15]. Its worst-case running time is exponen-
tial, however. A polynomial-time algorithm for pipelin-
ing a combinational circuit with level-clocked latches in
order to achieve minimum clock period under a two-
phase clocking scheme while satisfying all setup and
hold constraints has been presented in [5]. That al-
gorithm is applicable only to acyclic combinational cir-
cuits, however, and cannot be used to retime general
circuits with sequential cycles.

In this paper we present a polynomial-time algo-
rithm for minimum clock-period retiming of circuits with
edge-triggered registers under both setup and hold con-
straints. This problem remained open until now and
appeared to be intractable due to the competing re-
quirements imposed by the two kinds of constraints.
Surprisingly, our algorithm always terminates with the
correct answer and does so in a polynomial number of
steps in the size of the input circuit. Previous retiming
algorithms do not consider hold constraints and can re-
sult in retimed circuits with short-path violations. In
contrast, our algorithm always computes a retimed cir-
cuit in which every setup and every hold constraint is
satis�ed.

Given any edge-triggered sequential circuit G, a tar-
get clock period c, a setup time S, and a hold time H,
our algorithm computes a retimed circuit Gr in which
all long-path and all short-path constraints are satis-
�ed. If the problem is infeasible for the given input,
it reports so and terminates. The worst-case running
time of our algorithm is O(V 3E), where V and E are
the gate count and the number of wires in G, respec-
tively. In conjunction with binary search, this algorithm
can determine a minimum clock period in O(V 3E lg V )
time. The delay model in our procedure encompasses
minimum/maximum gate delays and clock skew.

The asymptotically e�cient operation of our algo-
rithm stems from the formulation of retiming under
setup and hold constraints as an integer monotonic pro-
gram with O(E2) inequalities. An integer monotonic
program is a special case of integer programming that
involves monotonic functions of the unknowns and can
be solved using iterative relaxation. The single-source
shortest-paths problem is an example of a simple such
program. The integer monotonic program we derive in
this paper is more complex than a shortest-paths pro-
gram. Yet, it is still solvable in polynomial time.

The remainder of this paper has six sections. In
Section 2 we give an example that illustrates the inad-
equacy of previous retiming algorithms in the presence
of hold constraints. Section 3 gives background ma-
terial on retiming and presents the delay model used
in our procedure. In Section 4 we give O(E2) neces-
sary and su�cient conditions for the retimed circuit to
be free of hold violations. These conditions along with
the setup constraints are cast as an equivalent integer
monotonic program in Section 5. Section 6 describes an
O(V 3E)-time algorithm for solving this program. Sec-
tion 7 discusses extensions of our contributions to level-
clocked circuits and mentions a number of important
open problems.
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Figure 1: (a) Original circuit. (b) Retimed circuit with hold
violation. (c) Retimed circuit with no timing violations.

2 Example

In this section we describe the retiming problem un-
der setup and hold constraints. We also argue that the
existing retiming algorithms can result in circuits with
hold time violations, since they ignore hold constraints.

The sequential circuit shown in Figure 1(a) has �ve
combinational logic blocks connected in a ring and two
edge-triggered registers. The pair of integers in each
block gives the maximum and the minimum propaga-
tion delay of the data through that block. For example,
whenever data propagate through block A, they always
require at least 1 time unit and never more than 10 time
units. For simplicity, each register is assumed to have
zero delay, zero setup time, and a hold time of 4. More-
over, clock skew is assumed to be zero. (Nonzero delays,
setup times, and clock skews can be introduced without
any loss of generality.) Thus, the shortest clock period
achievable by this circuit is 10 + 30 + 20 = 60, since
ABC is the longest combinational path in it. There are
no hold violations in this circuit, since the minimum
propagation delays along ABC and DE are 7 and 5,
respectively, both exceeding the register hold time.

The retimed circuit in Figure 1(b) is obtained by
shifting the register k across block C and is function-
ally equivalent to the one in Figure 1(a). This circuit
can be computed by applying the retiming algorithm in
[8] with a target clock period of 40. Since the longest
combinational path in this circuit is AB with a delay of
10 + 30 = 40, there are no setup violations in the re-
timed circuit. The minimum delay along the path AB is
1 + 2 = 3 < 4, however. Therefore, a fast signal propa-
gating along AB can contaminate the inputs of register
k and result in erroneous circuit operation.

The retimed circuit in Figure 1(c) satis�es all setup
and hold constraints and achieves a clock period of 50.

u u
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Figure 2: (a) Vertex u in original circuit. (b) Vertex u
after retiming by r(u) = 1.

This is the shortest clock period that can be achieved
by retiming the original circuit. Our algorithm is guar-
anteed to compute such an optimal retiming in polyno-
mially many steps. All previous polynomial-time algo-
rithms for retiming ignore hold constraints and may re-
turn suboptimal circuits or circuits that contain races.

3 Preliminaries

We model an edge-triggered circuit as a directed multi-
graph G = hV;E; d; �;w; �i. With the exception of the
parameters � and � that are introduced to account for
minimum gate delays and clock skew, respectively, this
model is identical to the one used in [8]. Each vertex u
in the vertex-set V corresponds to a combinational logic
block. The nonnegative weights d(u) and �(u) associ-
ated with each vertex u denote the maximum and min-
imum data propagation delay through u, respectively.

Each edge u
e
! v in the edge-set E corresponds to a

wire from u to v in the circuit. All wires are assumed to
have zero delay. For each edge u

e
! v, the nonnegative

integer edge-weight w(e) denotes the register count of
the corresponding wire from u to v. All registers in the
circuit are assumed to have equal positive setup times
S and equal positive hold times H. Without loss of
generality, register delays can be assumed to be zero.

In addition to the register count w(e), each edge u
e
!

v is associated with a weight �(e) that gives the delay
in the propagation of the clock signal from the clock
source to the wire denoted by e. Clock skew is assumed
to be monotonic, that is, the \e�ective delay" of a path
increases with the number of combinational gates in it.

Given a path x
i
! u

p
; v

j
! y, where p is combinational,

w(i) � 1, and w(j) � 1, the minimum e�ective delay of
p is given by the expression �(p) + �(i) � �(j), where
�(p) =

P
x2p

�(x). Clock skew monotonicity is ensured

if for each edge pair x
i
! u, u

j
! y in E, we have

�(u) + �(i)� �(j) � 0 : (1)

A retiming of an edge-triggered circuit G = hV; E; d;
�;w; �i is an integer-valued vertex-labeling r : V ! Z.
This labeling denotes a transformation of the original
circuit G into a functionally equivalent circuit Gr =

hV;E; d; �;wr; �i, where for each edge u
e
! v in G, wr is

de�ned by the equation

wr(e) = w(e) + r(v)� r(u) : (2)

Figure 2 illustrates the retiming transformation for
a vertex u in V . When retiming with r(u) = 1, a stage
of registers is shifted from the outputs of u to its inputs.



Thus, the output of u's computation in Gr is generated
r(u) clock cycles later than in G, and the label r(u) is
called the lag of u. In order for Gr to be well-formed,
for all edges e 2 E, we must have

wr(e) � 0 : (3)

A retiming that satis�es Inequality (3) is called legal.
Equation (2) can be used to show that for every ver-

tex pair u; v in V , the change in the register count along
any path u ; v depends solely on the lags of its two

endpoints. Thus, for any path u
p
; v, we have

wr(p) = w(p) + r(v)� r(u) ; (4)

where w(p) =
P

e2p
w(e). From Equation (4) it follows

that when the path p is a cycle, then retiming does not
change its original register count.

Equation (4) can be used to identify paths that can
become critical after retiming. Based on this equation
and Inequality (3), the maximum change in the register
count of any path u; v is given by the expression

W (u; v) = min
n
w(p) : u

p
; v

o
: (5)

Thus, the only paths u
p
; v that can become combina-

tional (and possibly critical) in Gr are those for which
w(p) = W (u; v) in G. For each of the O(V 2) vertex
pairs u; v in V , the quantity

D(u; v) = max
n
d(p) : u

p
; v;w(p) = W (u; v)

o
(6)

gives the longest propagation delay from u to v when-
ever the retimed circuit includes a combinational path
between the two vertices. Therefore, the clock period
of any retimed circuit Gr is always some element in the
O(V 2)-size set of D(u;v)'s.

For the retimed circuit Gr to satisfy all setup con-
straints, every combinational path in Gr whose propa-
gation delay exceeds the target clock period c must be
interrupted by a register. Thus, for each vertex pair
u; v in V with D(u; v) > c, the retimed register count
Wr(u; v) of each path u; v that can become combina-
tional is given by the equality

Wr(u; v) = W (u; v) + r(v)� r(u) (7)

and must satisfy the inequality

W (u; v) + r(v)� r(u) � 1 : (8)

The O(V 2) di�erence constraints speci�ed by In-
equalities (3) and (8) can be computed in O(V E +
V 2 lg V ) steps by an all-pairs shortest-paths algorithm
and can be solved in O(V 3) steps by a Bellman-Ford
algorithm for single-source shortest-paths. An asymp-
totically more e�cient procedure that solves these con-
straints in O(V E) steps has been presented in [8].

4 Timing constraints

This section gives a mathematical statement of the hold
constraints that must be satis�ed in a correctly timed
edge-triggered circuit. It also describes a set of O(E2)
necessary and su�cient conditions for a retimed circuit

to be free of hold violations. These conditions are inde-
pendent of the setup constraints.

Discovering an e�ciently solvable set of constraints
that captures the hold requirements in the retimed cir-
cuit is a surprisingly challenging task. At �rst, it seems
that one could derive such a set by a straightforward
adaptation of Inequality (8). Intuitively, this inequal-
ity states that if a long path can become combinational
in a retimed circuit, it must be interrupted by at least
one register. This idea cannot be applied in the case
of hold constraints, however. If a potentially combina-
tional path is too short, then we may or may not need
to insert a register in it. The decision depends on the
existence of registers in the path's boundaries.

A retimed circuit Gr is free of hold violations if
and only if there exists no register-to-register combina-
tional path whose minimum e�ective propagation delay
is shorter than the register hold time H. This statement
is formalized in the following proposition.

Proposition 1 Let G = hV; E; d; �; w;�i be an edge-
triggered circuit, and let H be the register hold time.
Given any legal retiming function r : V ! Z, the re-
timed circuit Gr is free of hold violations if and only

if for every path x
i
! u

p
; v

j
! y in Gr, where p is

combinational, wr(i) � 1, and wr(j) � 1, we have that
�(p) + �(i)� �(j) � H.

A direct consequence of the hold requirements is that
no wire in the retimed circuit can have more than one
register.

Lemma 2 Let G = hV;E; d; �;w; �i be an edge-triggered
circuit. Given any legal retiming function r : V ! Z,
the retimed circuit Gr has no hold violations only if for

every edge u
e
! v in E, we have

wr(e) � 1 : (9)

Proof. By contradiction. Suppose that for some wire

u
e
! v in E, we have wr(e) � 2. Then, any two registers

on e are connected by a zero-delay path and result in a
hold violation.

Corollary 3 Let G = hV;E; d; �;w; �i be an edge-trig-
gered circuit. Given any legal retiming function r : V !
Z, the retimed circuit Gr has no hold violations only if

for every simple path or simple cycle u
p
; v in G, we

have
wr(p) � jV j : (10)

Let us now turn to paths with more than one edge.

Given two vertices u and v, the only paths u
p
; v that

can possibly give rise to a hold violation between u and
v are the ones that can become combinational after re-
timing, that is, the paths that satisfy w(p) = W (u; v).
Among these paths, we only need to focus on the ones
with the shortest minimum propagation delay. To that
end, we de�ne the O(V 2) values �(u; v) as follows:

�(u; v) = min

n
�(p) : u

p
; v;w(p) = W (u; v)

o
: (11)

These values are used in the following main theorem
that gives a set of necessary and su�cient conditions
for the absence of any hold violations in the retimed
circuit.



Theorem 4 Let G = hV;E; d; �;w;�i be an edge-trig-
gered circuit, and let H be the hold time of each register.
Given any legal retiming function r : V ! Z that sat-
is�es the condition of Lemma 2, the retimed circuit Gr

has no hold violations if and only if for every edge pair

x
i
! u, v

j
! y in E such that �(u; v)+�(i)��(j) < H,

we have

Wr(u; v) +wr(v; y) � 1 ) wr(x;u) = 0 : (12)

Proof. ()) We will prove the contrapositive: If there

exists an edge pair x
i
! u, v

j
! y in E such that

�(u; v)+�(i)��(j) < H for whichWr(u; v)+wr(v; y) �
1 and wr(x; u) � 1, then the retimed circuit Gr has a
hold violation.

Consider a path u
p
; v in Gr such that w(p) =

W (u; v) and �(p) = �(u; v). Since Wr(u; v)+wr(v; y) �

1, there exists at least one edge in the path q = u
p
;

v ! y whose register count is positive. Let s ! t be
the �rst such edge in q, and let q0 = u ; s be a pre�x
subpath of q. Then, q0 is a combinational path, and
since wr(x; u) � 1, it connects a register on x! u with
a register on s! t. From Inequality (1) we have

�(q0) + �(i)� �(k) � �(p) + �(i)� �(j) ;

where k is the edge following s ! t in q. Since �(p) =
�(u; v), it follows that

�(q0) + �(i)� �(k) < H :

Therefore, a hold violation occurs along the path q0 in
the retimed circuit.

(() By contradiction. Suppose that for every edge

pair u0
e
! u, v

e0

! v0 in E with �(u; v)+�(e)��(e0) < H,
we have thatWr(u; v)+wr(v; v

0) � 1 implies wr(u
0; u) =

0. Moreover, suppose that the retimed circuit Gr has
a hold violation. We will derive a contradiction of the
implication.

Since some hold constraint is violated in Gr, there

exists a path x0
i
! x

p
; y

i0

! y0 in Gr such that wr(p) =
0, wr(x

0; x) � 1, wr(y; y
0) � 1, and �(p)+�(i)��(i0) <

H. Since q is combinational, it follows that w(p) =
W (x; y). Without loss of generality, assume that p is
such that �(p) = �(x; y). Since �(p)+�(i)��(i0) < H,
it follows that �(x; y) + �(i) � �(i0) < H. Moreover,
wr(y; y

0) � 1 implies that Wr(x;y) + wr(y; y
0) � 1.

Since wr(x
0; x) = 1, the path p contradicts the impli-

cation in the theorem's statement.

5 Integer monotonic program

In this section we give an integer monotonic program
that is equivalent to the necessary and su�cient con-
ditions in Theorem 4. We then argue that the setup
constraints can also be expressed as a monotonic pro-
gram. A solution to the two sets of constraints can be
computed using iterative relaxation.

The necessary and su�cient conditions in Theorem 4
can be recast as a set of linear inequalities.

Theorem 5 Let G = hV;E; d; �;w;�i be an edge-trig-
gered circuit, and let H be the hold time of the circuit's
registers. Given a legal retiming function r : V ! Z that

satis�es the conditions of Lemma 2, the retimed circuit
has no hold violations if and only if for every edge pair

x
i
! u, v

j
! y in E such that �(u; v)+�(i)��(j) < H,

we have

(jV j+ 1) �wr(x; u) + (Wr(u; v) +wr(v; y)) � jV j+ 1 :
(13)

Proof. We �rst show that if Inequality (13) holds then
Relation (12) holds. The proof is by a straightforward
case analysis. If Wr(u; v) + wr(v; y) � 1, then Inequal-
ity (13) and Inequality (3) imply that wr(u

0; u) = 0, and
therefore Relation (12) holds. If Wr(u; v) +wr(v; v

0) =
0, then Inequality (13) implies that wr(x; u) � 1. This
constraint is identical to Inequality (9), and therefore
Relation (12) holds.

We now prove that Relation (12) yields Inequality (13).
If Wr(u; v) + wr(v; y) � 1, then wr(x;u) = 0. From In-
equality (9), we have that wr(v; y) � 1. Moreover, from
Inequality (10) we have that Wr(u; v) � jV j. There-
fore, Wr(u; v) + wr(v; y) � jV j+ 1 and Inequality (13)
holds. If Wr(u; v) + wr(v; y) = 0, then Inequality (13)
is equivalent to wr(x;u) � 1, which already holds from
Inequality (9).

The inequalities in Theorem 5 can be rewritten as a
simple integer monotonic program [4], which is de�ned
as follows:

Problem SIMP (Simple Integer Monotonic Program-
ming) Let S be a set of constraints over the unknowns
x1; x2; � � � ; xn, in which the kth constraint has the form

fk(xi) � gk(x1; x2; � � � ; xn) ; (14)

where the function fk is a monotonically increasing in
the single unknown xi and gk is monotonically increas-
ing in the n� 1 unknowns xj, for j = 1; 2; � � � ; n, j 6= i.
The simple integer monotonic programming problem is
to �nd a vector x = hx1; x2; � � � ; xni of integers satisfy-
ing S, or to determine that no feasible vector exists.

Theorem 6 The retiming problem under setup and hold
constraints can be reduced to the Problem SIMP with
O(E2) constraints.

Proof. For a given edge-triggered circuit G = hV; E; d;
�;w; �i, a target clock period c, a setup time S, and a
hold time H, the retiming problem under setup and hold
constraints is expressed by the following inequalities:

� For every edge u! v in E, we have

w(u; v) + r(v) � r(u) : (15)

� For every edge pair x
i
! u; v

j
! y in V such that

D(u; v) + �(i)� �(j) > c� S, we have

W (u; v) + r(v) � r(u) + 1 : (16)

� For every edge u! v in E, we have

r(u) + 1 � w(u;v) + r(v) : (17)

� For every edge pair x
i
! u; v

j
! y in E such that

�(u; v) + �(i)� �(j) < H, we have

(jV j+ 1) � (r(x) + 1) � (18)

r(y) + jV j � r(u) +w(v; y) +W (u; v) + w(x;u) :



MonoRelax (S)
1 for i 1 to n

2 xi  0
3 while there exists an unsatis�ed constraint in S

4 let fk(xi) � gk(x1; x2; � � � ; xn) be unsatis�ed
5 repeat xi  xi + 1
6 until constraint satis�ed
7 S  S [ fall constraints with xi on r.h.s.g
8 return hx1; x2; � � � ; xni

Figure 3: Algorithm MonoRelax for solving a simple in-
teger monotonic program S with unknowns x1; x2; � � � ; xn.
The procedure returns a solution if S is satis�able.

The setup constraints are captured by Inequalities (15)
and (16), which are derived by extending the constraints
in Section 3 to encompass monotonic clock skew. The
hold constraints are captured by Inequalities (17) and (18)
and follow from Theorem 5. All these O(E2) inequali-
ties are in the form of Problem SIMP.

6 Polynomial-time algorithm

In this section, we describe our O(V 3E)-time algorithm
for retiming with setup and hold constraints. We �rst
outline a general algorithm for solving integer mono-
tonic programs. Subsequently, we adapt that algorithm
to solve the retiming problem.

A simple integer monotonic program can be solved
using AlgorithmMonoRelax which is described in Fig-
ure 3. This algorithm relies on the fact that simple
integer monotonic programs can be solved by iterative
relaxation [4]. Its correctness stems from the following
theorem which has been proved in [4].

Theorem 7 For any simple integer monotonic program
having a solution in which xi � 0 for i = 1; 2; : : : ; n,
there exists a unique minimum solution hx1; x2; : : : ; xni
such that for all other nonnegative solutions hx1; x2; : : : ;
xni, we have xi � xi for i = 1; 2; : : : ; n.

Theorem 7 applies to the retiming problem described
by Inequalities (15){(18). If r is a solution for these in-
equalities, then r + k is also a solution, where k is any
integer. Consequently, any solution can be shifted up
by a constant to yield a nonnegative solution. More-
over, no variable r(v) needs to increase above a mini-
mum value r(v), since by the monotonicity of f and g

that minimum value is also a solution. Therefore, if the
retiming problem is feasible, one can �nd a minimum
nonnegative solution to it.

The following lemma shows that if the retiming prob-
lem is feasible, then jV j gives an upper bound for the
minimum solution r.

Lemma 8 LetG = hV; E; d; �;w; �i be an edge-triggered
circuit, let c be a target clock period, let S be the reg-
ister setup time, and let H be the register hold time.
Moreover, let r be the minimum nonnegative retiming
such that the retimed circuit Gr achieves c with no hold
violations. Then for every vertex v 2 V , we have

r(v) � jV j : (19)

RSH(G, c, S, H)
1 Q fInequalities (15){(18) from Theorem 6g
2 for every vertex v 2 V
3 r(v) 0
4 while Q 6= ;
5 remove \f(r(x)) � g(r(u); r(y))" from Q

6 if f(r(x)) < g(r(u); r(y))
7 repeat r(x) r(x) + 1
8 if r(x) > jV j
9 return fail

10 until f(r(x)) � g(r(u); r(y))
11 Q Q [ fall constraints with r(x) on r.h.s.g
12 return r

Figure 4: AlgorithmRSH for retiming to achieve a speci�ed
clock period c with no hold violations.

Proof. By contradiction. Let r be a minimum retiming,
and let v 2 V be a vertex with r(v) > jV j. Moreover,
let u be a vertex such that r(u) � r(v) for all v 2
V . Without any loss of generality, we can assume that
r(u) = 0. (Otherwise, the assignment r(v) � r(u) to
each v 2 V also satis�es Inequalities (15){(18), thus
contradicting the minimality of r.)

Now, consider a simple path v
p
; u with w(p) =

W (v; u). Adding Inequality (3) along p, we obtain

r(v)� r(u) � W (v; u) :

Since r(u) = 0, we have r(v) �W (v; u). From Inequal-
ity (10) it follows that r(v) � jV j, which contradicts our
original assumption.

Our Algorithm RSH for e�cient retiming with setup
and hold constraints is given in Figure 4. Initially,
all constraints corresponding to Inequalities (15){(18)
are inserted into a queue, and all variables r(v) are set
to zero. The algorithm proceeds by iteratively remov-
ing constraints from the queue. For each violated con-
straint, it increases the value of the variable on its left-
hand side and reinserts into the queue any constraints
that are violated as a result of this operation. This iter-
ative scheme continues until all constraints are satis�ed
or until the value of some variable exceeds jV j. In the
latter case, the algorithm concludes that the speci�ed
clock period cannot be achieved by retiming.

Theorem 9 Let G = hV; E; d; �; w;�i be an edge-trig-
gered circuit, let c be a target clock period, let S be the
register setup time, and let H be the register hold time.
In O(V 3E) time, Algorithm RSH determines a retiming
r such that the retimed circuit achieves c and is free of
any hold violations or determines that no such retiming
exists.

Proof. From Theorem 7 and Lemma 8, Algorithm RSH

computes a unique nonnegative solution for Inequalities
(15){(18) in which every variable r(v) attains its mini-
mum value that does not exceed jV j.

We now show that Algorithm RSH terminates in
O(V 3E) steps. The parameters D, �, and W in Step 1
can be computed in O(V E + V 2 lg V ) time using John-
son's algorithm for all-pairs shortest-paths [1]. The O(E2)
Inequalities (15){(18) can be computed in O(E2) time.



The functions f(r(x)) and g(r(u); r(y)) can be com-
puted in O(1) time. Since we have only V variables and
no variable can exceed jV j, the body of the while loop is
executed O(V 2) times. Since for each increment of vari-
able r(v), at most O(V E) constraints with r(v) on their
right-hand side are inserted in the queue, Step 11 takes
O(V E) time. Consequently, the total running time of
Algorithm RSH is O(V E + V 2 lg V + E2 + V 3E) =
O(V 3E).

Theorem 10 Let G = hV; E; d; �; w;�i be an edge-trig-
gered circuit, let c be a target clock period, let S be
the register setup time, and let H be the register hold
time. An optimal retming r such that the retimed circuit
achieves the minimum possible clock period and is free
of any hold violations can be determined in O(V 3E lg V )
time.

Proof. Algorithm RSH is applied O(lg V ) times in a
binary search among the O(V 2) possible clock periods
D(u; v).

7 Conclusion

We presented the �rst polynomial-time algorithm ever
reported for retiming with setup and hold constraints,
thus settling a long-standing open problem. Our algo-
rithm runs in O(V 3E) steps, where V is the circuit's
gate count and E is the number of wires in it. The
asymptotically e�cient operation of the algorithm re-
lies on an integer monotonic programming formulation
of the problem that comprises O(E2) inequalities and
takes into accout minimum/maximum propagation de-
lays and clock skew. Although the results in this paper
are stated in terms of edge-triggered circuits, they can
be adapted in a straightforward manner to encompass
the case of single-phase level-clocked circuits.

An interesting problem for further investigation is
the design of an asymptotically faster algorithm than
RSH. We conjecture that an O(V 2E)-time algorithm
can be designed using an approach similar to the one
described in [8]. From a practical standpoint, it is also
interesting to investigate schemes for reducing the num-
ber of constraints in the integer monotonic program.

The most fertile area for further research appears to
be the investigation of retiming in level-clocked circuits
that use multiple overlapping phases. In the presence
of level-clocked latches, the problem of optimal timing
with constraints on short and long paths is particularly
challenging even when latch locations are �xed [14]. The
insights we have developed for edge-triggered circuits
may result in e�cient retiming algorithms for multi-
phase level-clocked circuits.
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