
Approximate Reachability Don’t Cares for CTL Model Checking �

In-Ho Moony Jae-Young Jangy Gary D. Hachtely Fabio Somenziy Jun Yuanyy Carl Pixleyyy

yDept. of ECE yyDesign Verification
University of Colorado, Boulder, CO Motorola Inc., Austin, TX

fmooni,jjang,hachtel,fabiog@vlsi.colorado.edu fjun yuan,carlpixleyg@email.mot.com

Abstract

RDCs (Reachability Don’t Cares) can have a dramatic im-
pact on the cost of CTL model checking [18]. Unfortunately,
RDCs, being a global property, are often much more diffi-
cult to compute than the satisfying set of typical CTL for-
mulas. We address this problem through the use of Approx-
imate Reachability Don’t Cares (ARDCs), computed with the
algorithms developed for the VERITAS sequential synthesis
package [4, 5]. Approximate Reachable states represent an
upper bound on the set of true reachable states, and thus a
lower bound on the set of unreachable (Don’t Care) states.
ARDCs can be 10X to 100X (or much more for very large
circuits) cheaper to compute than RDCs, and in some cases
have the same dramatic effect on CTL model checking as the
real RDCs. We also discuss the application of ARDCs to the
problem of exact computation of the RDCs themselves. Exper-
iments on industrial benchmarks show that order of magnitude
speedups are possible, and occur frequently. The experimental
results presented strongly support our claim that ARDCs play
a safe and important way out of a serious dilemma: RDCs
are necessary for tractable model checking of many large cir-
cuits, but the computation of the RDCs themselves is often
intractable. We include, and theoretically justify, significant
extensions of the VERITAS algorithms, and show that they
can be up to an order of magnitude faster, while computing a
virtually identical upper bound.

1 Introduction

Although the effects are well known and intuitive, scant at-
tention has been paid to RDCs (Reachability Don’t Cares) in
the prominent literature of traversal techniques for CTL model
checking [7, 17, 3, 2, 8]. However, recent quantitative studies
have shown that RDCs can have a dramatic impact on the cost
of CTL model checking. For example, the Ethernet benchmark
was shown [18] to model check more than 10X faster with the
help of RDCs than without. Unfortunately, RDCs, being a
global property, are often much more difficult to compute than
the satisfying set of typical CTL formulas. In fact, command
help in the VIS verification package [1] advises users not to
use RDCs for large circuits. Unfortunately, larger circuits are
often the ones for which RDCs are most beneficial.

We address this problem through the use of Approximate
Reachability Don’t Cares (ARDCs) in the VIS model check-
ing package [15]. Approximate reachable states represent an
upper bound on the set of true reachable states, and thus a
lower bound on the set of unreachable (Don’t Care) states.
ARDCs can be 10X to 100X (or much more, simply be-
cause exact reachability analysis is intractable on many cir-

�This work was supported in part by NSF grant MIP-94-22268 and
SRC contract 96-DJ-560.

cuits) cheaper to compute than RDCs, and in some cases have
the same dramatic effect on CTL model checking as the real
RDCs. We further propose to investigate applying the cheaply
generated ARDCs as a means of significantly reducing the
cost of computing the (exact) RDCs. Results on several in-
dustrial benchmarks, of moderate size (hundreds of latches)
have demonstrated that speedups of 8X-10X are attainable in
some circuits, whereas ARDCs make the difference between
intractability and tractability in other circuits.

The experimental results presented strongly support our
claim that ARDCs play a safe, robust, and important way out
of a serious dilemma: RDCs are necessary for tractable model
checking of large circuits, but the computation of the RDCs
themselves is often intractable.

We include, and theoretically justify, significant exten-
sions of the VERITAS algorithms.We demonstrate that our
extension of the VERITAS MBM algorithm, which we call
FastMBM, can be up to an order of magnitude faster, while
computing a virtually identical upper bound. We present a
comprehensive theory that was able to satisfactorily explain
several seemingly anomalous characteristics of our approxi-
mations.

In Section 2, we briefly recapitulate the VERITAS ARDC
generation algorithms, and our extensions thereof. In Section
3, we discuss the general problem of exploiting RDCs in CTL
model checking and reachability analysis (we generally follow
the approach of [15], but show that some departures are nec-
essary to obtain significant speedup). In Section 4, we discuss
our experimental results, and then we conclude with some rec-
ommendations for future work.

2 Preliminaries

The approximate reachability analysis of a large FSM (circuit)
M has two steps: (1) State Space Decomposition ofM intom
sub-FSMsM j , and (2) Approximate Traversal ofM , based
on exact traversal of the individualM j , while approximating
their interaction. The set of reachable stateseRj(sj) is com-
puted for each submachine, and the upper bound on the set
of reachable states forM is taken as the cartesian product of
the eRj(sj). Large machines may be treated by increasing the
severity of the overapproximation. In the extreme, the subma-
chines don’t interact at all. In this case, the upper bound is
easily computed even for largem.

We first discuss the state space decomposition [5]. Suppose
the overall FSMM is described by transition relation

T (s; x; t) =

nSY

i=1

Ti(s; x; ti) =

nSY

i=1

(ti � �i(s; x)):

wheres andt are the overall vectors ofnS binary state vari-
ables (latches),�i is the state transition function for theith



latch, andx is the vector ofnX primary inputs1. M may
be decomposed into the following product ofm sub-FSMs by
simply grouping the state variables (latches), as follows.

T (s; x; t) =

mY

j=1

T
j(s; x; tj) =

mY

j=1

(

n
j

SY

i=1

(tji � �
j
i (s; x))):

Heretj is a vector ofnjS state variables, where thenjS satisfies

nS =

mX

j=1

n
j
S ; f0; 1gnS =

mY

j=1

(f0; 1gn
j

S ):

Thus the overall state spacef0; 1gnS is decomposed into the
Cartesian product ofm state spaces. We perform state space
decomposition with the algorithms of [5]. These algorithms
are based on the functional dependencies of the transition
functions�i(s; x), and on the functional correlations between
these functions. So, from a given latch (seed), a latch with
bigger dependency and correlation weight is aggregated.

Given the decomposition, we then use modifications of the
basic procedures of [4] for computing the ARDCs. One of
these modified procedures, called FastMBM (Fast Machine
By Machine), is shown in Figure 1. We refer the reader to
[4] for detailed descriptions of MBM and the other associated
algorithms. Here, we limit ourselves to briefly characteriz-
ing FastMBM, and showing how MBM and a related variant,
called TightMBM, are different from Procedure FastMBM.

ProcedureFastMBM(fT j ; j = 1; : : :mg,I(s)) f
1 for (j = 1; : : : ;m) f

eIj(sj) = ProjectInitial(I(s); j)
eRj(sj)= BDD ONE

g /*Note eRj(sj) depends only on(sj).*/
2 do f

Changed =FALSE
3 for (j = 1; : : : ;m) f

Previous
j(sj) = eRj(sj)

4 eT j(s; x; tj) = T j(s; x; tj)
5 for (i = 1; : : : ;m; i 6= j)
6 if(i 2 FanIn(j)) eT j = eT j y eRi

for (i = 1; : : : ;m; i 6= j)
7 if(i 2 FanIn(j)) eT j = 9si eT j
8 eRj(sj) =FsmTraversal(eT j; eIj(sj))

if (Previousj(sj) 6= eRj(sj))Changed =TRUE
g

9 g while (Changed )
10 return (f eRj(sj) g)
g

Figure 1: FastMBM procedure for computing the ARDCs.

Procedure FastMBM begins with afor loop which calls
subprocedure ProjectInitial, for each of the submachinesM j .
This projects the initial state setI(s), with full support, to the

overapproximationeIj(sj), which has only local support. This
is done by existential abstraction of the non-local present state
variablessi; i 6= j. Then the reachable states sets for each
submachine is initialized to tautology(Line 1).

1Note ([6]) that even nondeterministic machines can be handled in
this way by adding extra primary inputs.

Then ado-while loop is entered, in which current approx-
imations are refined. This loop is exited only when two suc-
cessive passes produce the same overapproximation. Inside
this loop (Line 3), afor loop is entered, which performs FSM
traversal of the submachines in turn. This is done in a heuristic
order determined by a “minimum feedback edge set” heuristic,
as part of the state space decomposition step. This order tries
to closely approximate a serial decomposition for the original
overall FSM.

This mainfor loop begins by recording the previous version
of the reachable state seteRj(sj) of M j . The boolean variable
Changed is processed so that thedo-while loop is not exited if
eRj(sj) is changed for any one of them submachines. In Line
4, the local transition relationseT j(s; x; tj) are initialized to
their original state, and then modified in thefor loop of Line
5, which considers every other fanin submachine beside the
one being traversed.

In Line 6, eT j(s; x; tj) is restricted to the states reached pre-
viously by fanin submachines. The dagger stands for an arbi-
trary generalized cofactor operation. In this paper it will either
refer to the down arrow, signifying the CONSTRAIN algo-
rithm, or the double down arrow, signifying the RESTRICT
algorithm [7]). SubmachineM i is considered to be in the
fanin of submachineM j if any of the variables ofsi is in the
support of any of the�j of submachineM j .

In Line 7, all state variables of other submachines behave
like pseudo primary inputs and are existentially abstracted.
This introduces a further overapproximation wheneT j is parti-
tioned transition relation.

The MBM algorithm may be obtained from FastMBM by
deleting the existential abstraction of Line 7, and assigning
the dagger to the down arrow and not allowing dynamic BDD
variable ordering in Line 6 wheneT j is partitioned transition
relation, whereas FastMBM allows. TightMBM can be made
by using the initial states(I(s)) of total machine instead of
ProjectInitial(eIj(sj)) from MBM, in order to get tighter upper

bound. SinceeIj(sj) of jth submachine is not always subset
of the reachable states(eRi) of ith submachine(i 6= j), we may
have extra reachable states. Therefore, by using I(s) we can
get tighter upper bound. All of these algorithms are greatest
fixed point procedures, with the embedded, essentially stan-
dard least fixed point of FsmTraversal.

We now present a theory which shows that all two nested
fixed point procedures converge to valid overapproximations
of the actual reached set of the given FSM.

Lemma 2.1 Procedure FastMBM converges to the same re-
sult it would achieve if the generalized cofactor of Line 6 were
replaced by its original form as a conjunction inside the image
computations of Line 8.

Proof. The first image computation of FsmTraversal is the
following.

(eRj)1 = Img(T j; eIj � eR); where eR =
Y

i6=j

eRi
:

From [13] Theorem 6,fA�B = (fA)BA ,

(eRj)1 = Img((T jeR)eIjeR
; 1):

Now if A and B are disjoint,fA�B = (fA)B. So,

(eRj)1 = Img((T jeR)eIj ; 1) = Img(T jeR;
eIj)



Therefore, by induction,

eRj = FsmTraversal(T j; eIj �eR) = FsmTraversal(T jeR;
eIj)

2

Lemma 2.2 If C(s) � R(s), thenImg(T (s; x; t); C(s)) =

Img(eT(s; x; t); C(s)), where eT (s; x; t) =
Q

(Ti(s; x; t) y
R(s)).

Proof. Let T(s,x,t) be original partitioned transition relation,
and eT (s,x,t) be minimized transition relation with reachable
states as follows. Again the dagger stands for generalized co-
factor.

T (s; x; t) =
Q

Ti(s; x; t)
eT (s; x; t) =

Q
(Ti(s; x; t) yR(s));

Since C(s)� R(s),

Img(T (s;x; t); C(s)) = 9s;x[T (s; x; t) � C(s)]
= 9s;x[T (s; x; t) yC(s)]
= 9s;x[[

Q
(Ti(s; x; t) yC(s))] � C(s)] ::::: (a)

= 9s;x[[
Q

(Ti(s; x; t) yR(s))] � C(s)] ::::: (b)

= 9s;x[eT (s; x; t) � C(s)]

= Img(eT(s; x; t); C(s))

The reason for (b) from (a) is that if h� g, then

g � (f y g) = g � (f y h):

2

Lemma 2.3 LetM = Img(T; g�h), andF = Img(T yg; h).
ThenM � F . If h � g, M = F .

Proof. Img(T; g � h) = Img(T y g; g � h) � Img(T y g; h),
sinceg �h � h, and Img is monotonic. Now ifh � g,g �h = h,
so in this caseF = M . 2

We now show how this lemma can be developed into a proof
that FastMBM converges to an upper bound of the result of
MBM, which is in turn an upper bound on true set of reachable
states.

First however, note that this means that any generalized co-
factor operation, in particular RESTRICT, and not just CON-
STRAIN, can be used to minimize the transition relation while
(conservatively) preserving the image. Ifh � g, the image is
exactly preserved. This may not have been previously known.
Further, it proves that this holds in the presence of dynamic
BDD reordering, which again was not previously known.

Theorem 2.1 Procedure FastMBM converges to an upper
bound

eR =
Y

j

eRj � R;

whereeRj � R; 8j.

Proof. We first consider the case where the abstraction of Line
7 is excluded. By Lemma 2.3, and Lemma 2.1, it follows that
eacheRj computed in Line 8 is a valid upper bound ofR, re-
gardless of whethery =# or y =+. For the same reason, it
follows that the bound produced is an upper bound if that is
produced by FastMBM.

Now, consider the case where the abstraction of Line 7 is
included. In this case a further upper bound approximation is
imposed on the transition relation, which in turns leads to a
further upper bound on the final resulteR =

Q
j
eRj .

Finally, we have to prove convergence, considering the
aforementioned two upper bound effects, due to use of RE-
STRICT (without satisfyingh � g in the application of
Lemma 2.3), and due to the abstraction of Line 7. Since these
were not part of MBM, the convergence proof for MBM does
not carry over directly.

In fact, we have observed experimentally that the func-
tional of the greatest fixed point is not monotonic in general,
although it is in a strong majority of cases. Thus to prove
convergence, we need the following additional lemma.2

Lemma 2.4 FastMBM is monotonic if in the greatest fixed
point computation we correct any non-contractions by a tech-
nique similar to that of [14]. Thus we use IteConstant to check
whether each successive iterate is contained in the previous
one. If this condition is violated, containment is restored by
intersecting the new iterate with previous one.

Proof. This “RestoreContainment” operation is guaranteed to
produce a contraction by the elementary properties of conjunc-
tion. 2

Note that this is somewhat informal in the sense that a con-
traction would be produced independent of all other previous
considerations.

As a final point, note that the pseudo code of Figure 1
oversimplifies what was actually implemented in two respects.
First, instead of updating every submachine on each pass
through the refinement loop, the actual code implements an
“event driven” procedure in which only the fanout machines
of submachines whose reached sets have changed are sched-
uled for updating. This is the technique used in VERITAS,
and significantly reduces the number of calls to FsmTraversal
(Line 8).

Another oversimplification is the fact that theT j have been
treated as if they were monolithic transition relation blocks.
In fact, the VIS “IWLS95” heuristic was used, in which each
submachine is scheduled for early quantification in the parti-
tioned transition relation approach [15]. So in actuality, the
RESTRICT operations are done to the individual transition
subrelations of the submachines.

3 Exploitation of ARDCs in CTL Model
Checking and Reachability Analysis

In this section we discuss the deployment of ARDCs in both
exact reachability analysis and CTL model checking. Since
reachability analysis, often called FSM traversal, is actually
“past tense” CTL model checking we will present just one pro-
cedure, even though VIS actually has separate procedures for
these two activities.

VIS uses syntactic identities to parse arbitrary CTL for-
mulas into parse trees containing calls to eitherEXp, EGp
or EU(p; q). The CTL formula EFp is interpreted as
EU(TRUE,p). However, for our purposes it suffices, and is
most expedient, to discuss onlyEFp. In VIS, the actual pro-
cedures implemented use the ARDCs in exactly the way we
show here.

The basic procedure for model checking with ARDCs is
shown in Figure 2. The procedure we used for exact reacha-



bility analysis is just the very same procedure, with the PreImg
subprocedure of Line 6 replaced by an Img subprocedure.

Procedure EFp(fTi; i = 1; : : : ng; p;fR+

i ; i = 1; : : :mg; I) f
1 for (i = 1; : : : ; n) f

~Ti = Ti
for (j = 1; : : : ;m) f

~Ti = ~Ti + R+

j ; j = 1; : : : ;m
g

g
2 L = U = p; Current = ;
3 do f

Previous = Current
4 To(t) =BddBetween(L; U )
5 From(s) = PreImg(f ~Ti; i = 1; : : : ; ng; T o(t); fR+

i g )
6 New(s) = From(s)� Previous(s)
7 Current(t) = Previous(t) +New(t)
8 U = Current; L = New
9 gwhile (Previous 6= Current)
10 if (I(s) � Current(s))return (TRUE)

else return(FALSE)
g

Figure 2: Procedure for DecidingEFp.

In Line 1, the partitioned transition relation clusters are re-
stricted with respect to the reached states of each submachine
formed by state space decomposition. This BDD minimiza-
tion is responsible for a large part of the savings compared
to model checking without reachability don’t cares. Thedo-
while loop of Lines 3-9 compute the least fixed point of the
EFp predicate transformer, using the method of [15].

Notice that the Approximate rechable states are passed as a
care set to the PreImg computation of Line5. Thus unreach-
able states can be used as Don’t Cares in the PreImg com-
putation. The call to BddBetween tries to return the smallest
Bdd among all sets which containNew and are contained in
Current .

4 Experimental Results

4.1 ARDC-Accelerated Model Checking

Table 1 and Table 2 show the result of model checking with
ARDCs. In these two tables, the column headers may be un-
derstood as follows. #Latches is the number of latches in each
design, #CTLs is the number of CTL formulas, and #ARDCs
is the number of approximate unreachable states, #reached is
the number of exact or approximate reachable states depend-
ing on dcLevel option in VIS, #bdd is the size of the bdd of ex-
act or approximate reachable states, #peak is the peak bdd size
during model checking, Trch is the time for exact or approx-
imate reachability analysis, Tmc is the time for model check-
ing.

For each circuit we decomposed the original machine into
submachines with 8 latches each. This is arbitrary, and indi-
cates that we have not tried to tune the state space decomposi-
tion to the particular problems at hand.

In the data tables that follow, the circuit names are qual-
ified by a suffix indicating the VIS runtime options used to
obtain the data. The “n”, “r”, and “a” suffixes indicate the
VIS model check command don’t care options. The circuit
name followed by the letter “n” signifies VIS computations
without DCs(Don’t Cares), whereas the “r” suffix denotes with

exact reachability analysis and the “a” suffix denotes with ap-
proximate reachability analysis. In both “r” and “a” cases, the
unreachable states are used as don’t cares in the fixed point
computations of model checking. Here we use the FastMBM
method as the reference method for ARDC computations.

The data was compiled on the following machines. An Ul-
tra Sparc 1 (167Mhz, with 192MB RAM) was used for circuits
cps, ethernet, exam1, model Table 1. A Pentium-pro (200Mhz,
with 256MB RAM) was used for cps in Table 3. A DEC Alpha
(300Mhz, with 256MB RAM, using 32-bit pointers) was used
for fabric and hwtop in Table 1, and for s3271 and s3330 in
Table 3. Finally, in Table 2, a second Ultra Sparc 1 (167Mhz,
with 128MB RAM) was used for design1, design2, design3,
and design4.

Most model checking examples are industrial examples,
and they are divided into two groups. Those of the first group
(Table 1) were obtained and run at our site (but most are not
redistributable), whereas those of the second group (Table 2)
were proprietary and run on-site by our industrial co-authors.
This required us to write a BLIF-MV translator from the inter-
nals of the industrial verifier. Thus the Verilog description was
translated into an intermediate form by the industrial verifier,
and then the intermediate form was translated into BLIF-MV
for input into VIS.

We can say something about some of the Group 1 examples.
Circuit cps is a model of the control circuitry of the landing
gear of an aircraft. The ethernet circuit is a model of the Eth-
ernet protocol to communication between a set of processors.
The definition of this system includes several parameters that
can be used to scale up the size of the design. The specification
consists of 6 CTL formulas. Production cell is a control circuit
for automated manufacturing with 61 memory elements [12].
The specification contains 38 formulas.

The circuits of Table 1 with only 1 CTL formula to be
checked were circuits that got to us without CTL formulae,
like cps. For these circuits, we used the “dead-lock free” prop-
erty AG(EFreset). However, all the circuits of Table 2 had
“Industrial” CTL formulas.

The salient features of this table are illustrated in Figure 3.
Here the two data series representTmcV IS=TmcARDC with

Figure 3: Accelerating Model Checking for Group 1 Industrial
Designs.

total time that is the sum of Trch and Tmc, the last two
columns in tables. The series are for VIS model checking with
and without DCs. Note that 2 of the 10 cases results in space-
out (256MB), 4 of 10 had a speedup of more than 10X, and 6
of 10 had a speed up of more than 6X.

In only 2 of the 10 cases (cps and hwtop without DCs),
VIS without DCs was faster in total time. In circuit cps, model



design #Latches #CTLs #ARDCs

cps 231 1 3.45087e+69
ethernet 78 6 3.02231e+23
exam1 115 34 4.15384e+34
production cell 61 38 3.08140e+16
fabric 190 1 1.10239e+57
hw top 356 1 1.46784e+107

Model Checking with ARDCs–Group 1
name #reached #bdd #peak Trch Tmc

cpsn 6.00e+05 637.8
cpsr 1.11e+10 36685 1.90e+06 8311.0 264.5
cpsa 1.27e+50 203 1.40e+06 1297.9 38.7
eth n 2.50e+06 57293.3
eth r 8.62e+02 2974 6.64e+04 15.0 23.1
eth a 5.22e+16 183 6.15e+05 4.1 835.3
exm n 3.98e+05 1224.2
exm r 1.44e+17 113388 4.14e+05 1450.0 536.7
exm a 1.19e+27 104 3.61e+05 16.0 139.2
mod n 2.10e+06 8515.0
mod r 3.41e+04 7804 6.64e+04 3.2 536.9
mod a 3.70e+08 543 6.77e+05 7.6 582.8
fab n 8.48e+05 139.5
fab r Memory out 256MB
fab a 5.45e+56 46 4.13e+05 22.7 77.1
top n 3.14e+05 317.3
top r Memory out 256MB
top a 5.35e+81 182 8.85e+05 216.6 274.4

Table 1: Model Checking with ARDCs–Group 1 Industrial
Designs

checking with ARDCs was much (6X) faster than with RDCs.
However, in this case, model checking without ARDC or RDC
was 2X faster than with ARDCs. This is explained by the fact
that of the2231 = 3e + 69 total states, very few, only1e +
10 were reachable. This circuit is known to have significant
latch redundancies. However, if we focus only on the time for
model checking (Tmc), model checking with ARDCs is the
best. Also, this Tmc is only for one CTL property. So, if we
assume that we have many CTL properties, then the total times
may change a lot.

Circuit ethernet was similar in this respect but the results
were very different. Of the278 = 3e + 23 total states, ex-
tremely few, only862, were reachable. This means that vir-
tually every state was unreachable, and therefore don’t care.
Thus it is not surprising that model checking with RDCs (suf-
fix “r”) is three orders of magnitude faster than without (suffix
“n”). Even though model checking with RDCs is 20X faster
than with ARDCs, model checking with ARDCs is still 70X
faster than without DCs.

In terms of circuit exam1, model checking with ARDCs is
the best, by almost an order of magnitude. Note that though
RDC reached only on the order of1017 states (out of 4e+34),
ARDC obtained a superset that was about 10 orders of magni-
tude larger.

In case of “production cell”, model checking with ARDCs
is very comparable to model checking with RDCs. Both with
RDCs and with ARDCs is 15X faster than without Don’t
Cares.

Circuits fabric and hwtop highlight the operational
dilemma faced by verification engineers. If they have seen cir-
cuits like ethernet or production cell, they might be seriously
inclined to keep the RDC option on. But then they get ham-
mered on circuits like fabric and hwtop for which reachability
analysis is essentially intractable. This gives verification a bad
name. In fact the VIS help facility advises designersnot to

use reachability don’t cares for large circuits. Clearly ARDCs
provide a way out of this dilemma.

design #Latches #CTLs #ARDCs

design1 217 1 2.106250e+65
design2 158 1 3.100960e+47
design3 172 1 5.939540e+51
design4 115 56 4.153840e+34

Model Checking with ARDCs–Group 2
name #reached #bdd #peak Trch Tmc

des1n 7.95e+05 1788.5
des1r Memory out 256MB
des1a 1.49e+57 137 9.03e+05 31.4 1007.2
des2n 1.60e+06 3142.4
des2r Time out 48000sec
des2a 1.61e+47 54 1.20e+06 6.8 1612.5
des3n Memory out 128MB
des3r Memory out 128MB
des3a 4.68e+49 2472 4.63e+05 88.8 500.4
des4n 1.30e+06 20089.8
des4r 1.44e+17 78360 8.50e+05 613.0 440.5
des4a 1.10e+27 462 8.82e+05 13.8 2225.7

Table 2: Model Checking with ARDCs–Group 2 Industrial
Designs

Table 2 has similar results. For designs 1-3, reachability
analysis is intractable. For designs 1 and 2 model checking
is tractable without RDCs, but the results with ARDCs are
faster. For design 3, model checking is intractable without
RDCs (128MB memory out), and, exact reachability analysis
is also intractable for the same reason. But model checking
with ARDCs completes in under 10 minutes on an UltraSparc
1. This result is to be emphasized, because the circuits of
Group 2 are not the full scale circuits but “reduced” versions,
for which exact reachability analysis is much more intractable.

Comparing designs 3 and 4, note the aforementioned
dilemma re-emerging. Design 4 cries out for reachability don’t
cares, while design 3 suggests the impossibility of obtaining
them exactly. Again, ARDCs offer a robust way out of the
dilemma.

Figure 4: Accelerating Model Checking for Group 2 Industrial
Designs.

The salient features of this table are illustrated in Figure 4
and Figure 5. These are ratio tables, with the 1 (breakeven)
lines indicated in bold for each series. In the acceleration ta-
ble, 5 out of the 8 cases show spaceout or timeout, and hence
could be regarded as an infinite speedup. However the figure



Figure 5: Compressing Model Checking for Group 2 Indus-
trial Designs.

just truncates these to show a 10X speedup. In only 1 case,
Des4, does VIS (with exact RDCs) beat VIS with ARDCs, in
this case by about a factor of 2 in total time. The minimum
speedup in the remaining 7 out of 8 cases was 1.8. In the
compression table we compare the ratio of peak overall mem-
ory requirements The results were roughly similar to those for
acceleration. ARDC won in every case, except for 2 narrow
losses (.88 and .95).

4.2 ARDC-Accelerated Reachability Analysis

In this section we present some results of using ARDCs to ac-
celerate exact reachability analysis. The results are similar to
those obtained for ARDC accelerated model checking. While
this may seem surprising, similar results should actually be
expected because the dominant mechanism for improvement
derives from the BDD minimization in innerfor -loop of Line
1 in ProcedureEFp. The only difference between reachabil-
ity analysis (past tenseEFp) and model checking eventualities
(future tenseEFp) is the substitution of Img computations for
PreImg computations.

We might expect some degradation because we usually
think of reachability don’t cares in terms of PreImg compu-
tations, which routinely try to bring large numbers of un-
reachable states into the fixed point computations. This ef-
fect doesn’t really occur in Img computations (all image states
are by definition reachable), and could affect and limit the de-
gree of speedup in cases when exact reachability analysis is
tractable. However, the results show that ARDCs can defi-
nitely make the difference between tractability and intractabil-
ity.

Table 3 shows the results of exact reachability analysis with
ARDCs. In this table, Depth is FSM depth of design, #Latches
is the number of latches in each design, #Reached is the num-
ber of reachable states, #ARDCs is the number of approximate
unreachable states, #BddAr is the bdd size of approximate
reachable states, #BddEx is the bdd size of exact reachable
states, #BddPk is the peak bdd size during reachability anal-
ysis, Tarch is the time for computing approximate reachable
states, Trch is the time for computing exact reachable states.
Here cps is as discussed above, and s1269, s3271 and s3330
are ISCAS89 FSM benchmarks.

The salient features of this table are illustrated in Figure 6.
The data of Table 3 shows speedups of almost a factor of 2
for cps and a factor of 3 for s1269. Reachability analysis was
intractable for s3330 and s3271 within the available memory.
So in the large circuits, the data for exact reachability analysis

design Depth #Latches #Reached #ARDCs

cps 10 231 1.10834e+10 3.45087e+69
s1269 10 37 1.13134e+09 1.76161e+10
s3271 17 116 1.31768e+31 4.15384e+34
s3330 9 132 7.27780e+17 5.44396e+39

Exact Reachability Analysis with ARDCs
name #BddAr #BddEx #BddPk Tarch Trch

cpsEx 41640 2.4e+06 11396.4
cpsAr 203 41740 2.2e+06 518.8 6370.5
s1269Ex 1652 1.4e+08 58818.7
s1269Ar 25 1376 8.6e+07 6.6 18501.8
s3271Ex Memory out 256MB
s3271Ar 17 189182 2.3e+06 12.8 5481.4
s3330Ex Memory out 256MB
s3330Ar 62 54842 3.0e+06 5.4 8287.5

Table 3: Exact Reachability Analysis with ARDCs

Figure 6: Accelerating Exact Reachability Analysis.

using ARDCs is quite analogous to the the results for model
checking with ARDCs. This was to be expected.

However, in a separate investigation, it was found that by
using non-standard BDD techniques in VIS (enabling variable
reordering only after the partitioning step, which is not con-
sistent with standard usage), s3330 could be traversed exactly.
This emphasizes again the gross dependence of the quality of
the results on the vagaries of dynamic reordering. It is clear
that verification engineers need robust tools that do not require
the user to fiddle combinatorially with all the options, param-
eters and operation sequences that are possible.

4.3 Comparison between MBM and FastMBM

Table 4 shows the comparison between MBM and FastMBM.
In the table, Am2901 is 4-bit ALU slice, Am2910 is a micro-
program sequencer, soap is a model of a token-passing mu-
tual exclusion algorithm for networks with arbitrary topology,
and s5378, s13207, and s15850 are ISCAS89 FSM bench-
marks. According to this table, FastMBM is up to 9X faster
than MBM without losing much accuracy. There were a few
accuracy degradations in only 2 designs(cps and s13207) out
of 13. This speedup and some accuracy degradations come
from Line 7 in Procedure FastMBM, using RESTRICT oper-
ation instead of CONSTRAIN, and enabling variable reorder-
ing during Line 6 in Procedure FastMBM. However, in some
designs, FastMBM was slightly(less than 1.4X) slower than
MBM. This might be because RESTRICT operations are not
always faster than CONSTRAIN. In terms of peak BDD size,
FastMBM uses mostly less peak BDD nodes than MBM, even
when FastMBM loses in time. This is mainly because of



Line 7 in Procedure FastMBM that makes transition relation
smaller in terms of BDD size, and since RESTRICT does not
introduce a BDD node of new variable that is not in the support
of transition relation(while CONSTRAIN does), RESTRICT
produces smaller BDDs than CONSTRAIN, in general.

Even though FastMBM is not always faster than MBM,
there are many big wins(Am2901, cps, and soap), but no big
lose in time and accuracy in the table, and mostly FastMBM
uses smaller BDDs. This seems that FastMBM has more pos-
sibility to deal with larger designs than MBM.

name method #reached Tarch #peak

Am2901 mbm 2.95148e+20 816.6 1.3M
fast 2.95148e+20 93.6 0.3M

Am2910 mbm 1.16057e+26 23.8 0.2M
fast 1.16057e+26 18.2 0.2M

cps mbm 3.29911e+53 2245.8 1.9M
fast 3.22907e+56 444.0 1.5M

exam1 mbm 7.03245e+33 23.9 0.1M
fast 7.03245e+33 16.8 0.1M

fabric mbm 1.17696e+57 23.3 0.1M
fast 1.17696e+57 26.2 0.1M

hw top mbm 2.44726e+85 244.7 0.9M
fast 2.44726e+85 283.2 1.0M

soap mbm 1.06458e+36 74.5 0.1M
fast 1.06458e+36 38.6 0.1M

s1269 mbm 7.51619e+09 5.3 0.1M
fast 7.51619e+09 6.2 0.0M

s3271 mbm 6.23076e+34 8.7 0.1M
fast 6.23076e+34 11.8 0.0M

s3330 mbm 3.16020e+23 5.6 0.1M
fast 3.16020e+23 7.0 0.1M

s5378 mbm 4.35038e+46 69.8 0.3M
fast 4.35038e+46 54.4 0.3M

s13207 mbm 8.94121e+116 1916.9 1.4M
fast 6.17119e+117 1892.1 1.3M

s15850 mbm 6.04910e+100 1408.4 1.5M
fast 6.04910e+100 1320.8 1.5M

Table 4: MBM vs. FastMBM Comparison

We also have experimented TightMBM for all exam-
ples in Table 4. We got the reachable states(and time) by
TightMBM as follows: 1.88265e+53(3479.9 secs) in cps(43%
decreased), 4.67157e+116(2017.1 secs) in s13207(48% de-
creased), 5.21505e+46(113.1 secs) in s5378(16% increased),
and the rest got the same upper bound. However, as in s5378,
this method may give looser upper bound because generalized
cofactor operations depend on variable orders.

4.4 Forward vs. Backward Model Checking
with ARDCs

We have implemented forward model checking by Iwashita
[11, 10] to see the correlation between forward model check-
ing and using don’t cares in model checking, because they
are in common in that they try to avoid traversing unreach-
able states in fixpoint computation of model checking. For-
ward model checking is based on forward state traversal, while
backward model checking is based on backward state traver-
sal. Table 5 compares the performance of forward model
checking with the one of backward. In the methods of the
table, ndc means not using don’t cares, rdc means using exact
don’t cares, and ardc means using approximate don’t cares.

The design ethernet and production cell show this correla-
tion clearly. The exact reachable states of the two designs are
very small compared to total state space of those. This means

that most states of the designs are unreachable. Therefore,
the forward model checking of the two designs is always very
fast no matter what method was used. In case of ethernet, the
speed of forward model checking is very same as the best case
of backward model checking, and even much faster than the
best of backward model checking in production cell.

However, forward model checking is much slower than
backward in cps and exam1, and we observed this case in more
designs not shown in this table. Therefore, forward model
checking is not always faster than backward, however accord-
ing to our experiment forward model checking is the way to
go when the exact reachable states are relatively small com-
pared to total state space, and ARDCs seem more important in
backward model checking than in forward.

By using the Iwashita’s conversion method from future
tense CTLs to his past tense forward operators such as Fw-
dUntil and FwdGlobal, the first operation of all properties
we have used was FwdUntil(init,ture) that is to compute all
reachable states from initial states. This means that forward
model checking is available only when reachability analysis is
tractable, while ARDCs can be used regardless of reachability
analysis.

Forward Backward
name method #peak Tmc #peak Tmc

ndc 0.6e+06 9751.9 0.6e+06 637.8
cps rdc 5.5e+06 14919.2 1.9e+06 264.5

ardc 3.3e+06 14645.7 1.4e+06 38.7
ndc 0.1e+06 22.9 2.5e+06 57293.3

ethernet rdc 0.1e+06 23.9 0.1e+06 23.1
ardc 0.1e+06 35.2 0.1e+06 835.3
ndc 2.1e+06 19246.0 0.4e+06 1224.2

exam1 rdc 2.6e+06 22085.1 0.4e+06 536.7
ardc 1.8e+06 2986.3 0.4e+06 139.2
ndc 0.1e+06 29.1 2.1e+06 8515.0

model rdc 0.2e+06 27.7 0.1e+06 536.9
ardc 0.1e+06 33.5 0.7e+06 582.8

Table 5: Forward vs. Backward Model Checking with ARDCs

5 Conclusions and Future Work

Our basic conclusion is that ARDCs pay their way for both
reachability analysis and model checking. Although not a uni-
form win in every case, the data clearly show that for many
medium circuits, ARDCs will be an outright winner, and that
a package with ARDC capability will be significantly more
robust than one without it. The experimental results presented
strongly support our claim that ARDCs offer a safe and im-
portant way out of a serious dilemma: RDCs are necessary for
tractable model checking of large circuits, but the computation
of the RDCs themselves is often intractable.

Throughout our experiments there has been a persistent and
complex interplay between BDD reordering and minimization,
and the deployment of ARDC techniques. The results show
that our approach is convergent and gives good quality abstrac-
tions.

The absence of really large circuits from our data tables in-
dicate that there is much more to be done before circuits with
thousands of latches can be handled routinely. However, our
results to date, both published and too raw too publish, show
that very large circuits will require RDCs, and that exact RDCs
will be too expensive for large circuits. Unfortunately, to ad-
dress large problems, the verification and BDD packages have



to be improved across the board, and not just with respect to
model checking or reachability analysis.

Fortunately, there is still much room for improvement in
ARDC technology. For example, in cases where the RDC
computation is intractable, and yet the CTL formulas are
strongly aided by the RDCs, we could combine ARDC ac-
celerated RDC with model checking for possible further im-
provements. There is much room left for improving the ac-
curacy of the approximations. Approximations from different
algorithms can be intersected to produce tighter upper bounds,
techniques like those of Warwukiewicz (Berkeley 1994 unpub-
lished) and Govindaraju et al [9] show that overlapping sub-
ystems in the state space decomposition can be advantageous.

Another possibility is the cooperative deployment of other
upper bounding techniques such as BDD subsetting methods
[16], which constitute automatic abstraction methods that also
have significant impact on verification time and space require-
ments.

Also, despite the relative maturity of BDD dynamic re-
ordering technology, we believe that new methods will emerge
that will be necessary and productive for dealing with very
large circuits. We foresee that decomposition and factorization
methods will need to be incorporated into sifting and other or-
dering optimization strategies. We have yet to try static BDD
orderings in which the BDD variables in the respective sub-
systems are non-interleaved. Similarly, CUDD supports group
constrained sifting. This offers the possibility of significantly
reducing reordering times (which are, quite consistently, the
dominant component of the cpu consumption profile).

We also included the results of experiments which sup-
ported the hypothesis that ARDC effects offer the same bene-
ficial effects as converting CTL formulae from the future tense
to the past tense. Our experiments show that in a mature sys-
tem, both of these effects should be exploited.

References

[1] R. K. Brayton et al. VIS: A system for verification
and synthesis. Technical Report UCB/ERL M95/104,
Electronics Research Lab, Univ. of California, Decem-
ber 1995.

[2] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan,
and D. L. Dill. Symbolic model checking for sequen-
tial circuit verification.IEEE Transactions on Computer-
Aided Design, 13(4):401–424, April 1994.

[3] H. Cho, G. D. Hachtel, S.-W. Jeong, B. Plessier,
E. Schwarz, and F. Somenzi. ATPG aspects of FSM
verification. InProceedings of the IEEE International
Conference on Computer Aided Design, pages 134–137,
November 1990.

[4] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and
F. Somenzi. Algorithms for approximate FSM traversal
based on state space decomposition.IEEE Transactions
on Computer-Aided Design, 15(12):1465–1478, Decem-
ber 1996.

[5] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and
F. Somenzi. Automatic state space decomposition for ap-
proximate FSM traversal based on circuit analysis.IEEE
Transactions on Computer-Aided Design, 15(12):1451–
1464, December 1996.

[6] Y. Choueka. Theories of automata on!-tapes: A sim-
plified approach.Journal of Computer and System Sci-
ences, 8:117–141, 1974.

[7] O. Coudert, C. Berthet, and J. C. Madre. Verification of
sequential machines using boolean functional vectors. In
L. Claesen, editor,Proceedings IFIP International Work-
shop on Applied Formal Methods for Correct VLSI De-
sign, pages 111–128, Leuven, Belgium, November 1989.

[8] D. Geist and I. Beer. Efficient model checking by auto-
mated ordering of transition relation parititons. In D. L.
Dill, editor, Sixth Conference on Computer Aided Verifi-
cation (CAV’94), pages 299–310, Berlin, 1994. Springer-
Verlag. LNCS 818.

[9] S. Govindaraju, D. Dill, A. Hu, and M. Horowitz. Ap-
proximate reachability with bdds using overlapping pro-
jections. InProceedings of the Design Automation Con-
ference, pages 451–456, 1998.

[10] H. Iwashita and T. Nakata. Forward model checking
techniques oriented to buggy designs. InProceedings
of the International Conference on Computer-Aided De-
sign, pages 400–405, San Jose, CA, November 1997.

[11] H. Iwashita, T. Nakata, and F. Hirose. CTL model check-
ing based on forward state traversal. InProceedings
of the International Conference on Computer-Aided De-
sign, pages 82–87, San Jose, CA, November 1996.

[12] Thomas Lindner. Case Study ”Production Cell”: A
Comparative Study in Formal Software Development,
chapter 2, pages 9,21. FZI, 1994.

[13] K. L. McMillan. A conjunctively decomposed boolean
representation for symbolic model checking. In R. Alur
and T. A. Henzinger, editors,8th Conference on
Computer Aided Verification (CAV’96), pages 13–25.
Springer-Verlag, Berlin, August 1996. LNCS 1102.

[14] A. Pardo and G. D. Hachtel. Automatic abstraction tech-
niques for propositional�-calculus model checking. In
O. Grumberg, editor,Ninth Conference on Computer
Aided Verification (CAV’97). Springer-Verlag, Berlin,
1997. LNCS 1254.

[15] R. K. Ranjan, A. Aziz, R. K. Brayton, B. F. Plessier, and
C. Pixley. Efficient BDD algorithms for FSM synthesis
and verification. Presented at IWLS95, Lake Tahoe, CA.,
May 1995.

[16] K. Ravi and F. Somenzi. High-density reachability anal-
ysis. InProceedings of the International Conference on
Computer-Aided Design, pages 154–158, San Jose, CA,
November 1995.

[17] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit enumeration of fi-
nite state machines using BDD’s. InProceedings of the
IEEE International Conference on Computer Aided De-
sign, pages 130–133, November 1990.

[18] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combin-
ing formal and informal verification. In O. Grumberg,
editor, Ninth Conference on Computer Aided Verifica-
tion (CAV’97), pages 376–387. Springer-Verlag, Berlin,
1997. LNCS 1254.


	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index


