Wireplanning in Logic Synthesis

Wilsin Gosti Amit Narayarn Robert K. Brayton Alberto L. Sangiovanni-Vincentelli
Dept. of EECS, University of California, Berkeley, CA 94720
* Monterey Design Systems, Sunnyvale, CA 95139
Email: {wilsin, anarayan, brayton, albef@eecs.berkeley.edu

Abstract The proposed approach has the advantage that it still maintains a
))) distinction between the logic synthesis and place & route stages. It
In this paper, we propose a new logic synthesis methodology to dggés not need to tightly couple synthesis and placement by frequently

with the increasing importance of the interconnect delay in deg@ternating between the two which can be inefficient and may not con-
submicron technologies. We first show that conventional logic syfsrge at all.

thesis techniques can produce circuits which will have long paths even

if placed optimally. Then, we characterize the conditions under whi Previous Work

this can happen and propose logic synthesis techniques which produce

circuits which are “better” for placement. Our proposed approach s8l far very little work has been done to model the effect of intercon-

separates logic synthesis from physical design. nect delay at the logic level. This is mainly due to the fact that at the
logic level, very little information is available about the interconnect.
1 Introduction Most of these approaches [9, 8, 14] use a rough companion placement

to estimate the cost of various logic synthesis operations and make de-

Conventional logic synthesis assumes that the delay of a circuit ggions based on this cost. In [13] an iterative approach to combine
pends only on the delays of the gates in the circuit and mostly iynthesis and placement is presented. Instead of using a companion
nores the effect of interconnect delay. However, as we move fgacement to guide synthesis, they use actual placement which can be
wards smaller geometries, interconnect delay is becoming an increasdified incrementally based on the netlist changes. In [15] a heuris-
ingly larger fraction of the total delay. In fact, Semiconductor Indusic to minimize the layout cost is proposed which doesn’'t employ a
trial Alliance’s National Technology Roadmap for Semiconductor f@ompanion placement solution. The method in [15] is based on mini-
1997 [1] predicts that interconnect delay will start dominating the totaizing the average fanout range and evenly distributing fanouts in the
gate delay as we move down td6u technology and below. Anotherchip. It was shown that the chip delay could be reduced by this ap-
study by Keutzer, et al [5] shows that for28 technology and below, proach if all the input pins are located on one side of the chip and all
interconnect delay can contribute anywhere from 50% to 80% of i@ output pins on the opposite. Like [15], our approach also does not
total delay. Therefore, logic synthesis can no longer afford to ignaseploy a companion placement. We analyze conditions under which
the effect of interconnect delay during optimization. anetlist is not “good” for placement given the locations of i/o pins and

In this paper, we adopt a diametrically opposite approach to thatigfto transform it into one which is.
conventional logic synthesis. We perform logic synthesis to optimize
only for interconnect delay, ignoring the effect of gate delays. O8r Preliminaries
approach is based on the simple observation that if an oatgepends
on an input, then the best way to connecb ois through a path which Definition 1 A logic circuit L is a 3-tuple(l,0,F). I is a set of
is monotonic fromi to o, that is, there are no diversions in the patArimary input pins or simply primary inputsO is a set of primary
fromi to 0. We first show, by means of an example, that conventiorfftput pins or simply primary outputs. Each element aindO is a
logic synthesis can produce a circuit for which it is impossible to findnary variable. An element; = F is a function f : B!l — B. Each
placement with no diversions in the input-output paths. Therefore, fid's called the global function of the primary outpyt o
matter how good a place & route tool is, it may not be able to produce)
a circuit which is optimal in terms of interconnect delay. A logic circuit is represented by a Boolean network [3].nkfis an

We define the notion dflegal nodes. Intuitively speaking, a noddMmediate fanout ofij in the Boolean network, we writaj — n.
is illegal if it introduces a diversion in the circuit no matter where it {& |0iC circuit is pin-assignedf each primary input is labeled with
placed. We characterize the condition under which a node is illegal &BOSition (xi,¥i) and each primary output with position (xo, o).
give a procedure to convert an arbitrary circuit into a circuit which hAs/0dic circuit L is placedif every noden of the Boolean network
only legal nodes. We call such a circuiteal circuit. We show that "ePresentind. has a position, i.e. every nodés labeled with(xn, yn),
for a legal circuit, there always exists a point placement of the nod&¥! the resulting placement is denotecPpy A point placement ok
such that every input-output path is monotonic. We also provide a Sét Placement of. where each node is represented as a point. Given a

of logic synthesis transformations which are guaranteed to presdi@iit-placed circuit, a patipy; o), from a primary input to a primary
the “legality” of a circuit. outputo is a sequence of connected nodes ficimo, and the length

of the path,d;;). is the length of all the wires along the path from
*This work was supported in part by SRC-98-DC-324. to 0. The pathp; o) is calledmonotonicif its length is equal to the

Manhattan distance frointo o. The placemen® of L is optimal if yizzerzf - y2zz+d

there is no other placement bf whose length of the longest path is %ﬁ?
shorter than that d?,_. \@/(rhed

The coordinate system that we use in the paper assumes that the))) .
x-axis goes from left to right and theaxis goes from top to bottom. Figure 1: NetworNpi and its optimal placement.

o 5.1 Logic Synthesis and Interconnect Delay: An Ex-
4 Problem Description ample

Given a logic circuitL, the goal is to find a placed circud, such Let us consider a minimum literal boolean netwdkn with 10 lit-

that the interconnect delay of the circuit is minimized. Due to efferals as shown in Figure 1 on the left. Assuming that the pin positions
ciency reasons, we want to maintain the decoupling of the problafg given, the optimal placement Ny, is shown in Figure 1 on the

into a separate synthesis phase followed by a place & route phasé®¥. Pinseand f are not shown and are assumed to be closg to

in the conventional approach. Given a logic cirduit= (I,0,F), we In this solution, there are two longest paths of equal length, i.e. one
address the problem of finding a Boolean netwblk, which when path frombtoy; and the other frombtoy,. This circuit is not optimal
placed optimally, leads to a circuit with minimum interconnect delaij? terms of both the IP-based and the slack-based synthesis problems
It is up to the placement tool to find the optimal placement for sui§cause there is a better decomposition of the circuit that produces
a network. Intuitively speaking, we are trying to create a circuit fehorter longest paths. The better decomposed network with 11 literals
which a “good” placement exists. is shown in Figure 2 together with its optimal placement. Although

We assume that the die is represented by a recta®glizh width network Nimin has fewer literals thall /, it has an extra_p_ath frorn
wg and heighthg and the given logic circuit is pin-assigned. We ad® Y2- Consequently, the placement tool places notteminimize the
sume that the delay of a path is a linear function of its length. fAngest paths frotoy; andy,. However, as we see in Figure,
general, the interconnect delay depends quadratically on the lengti$ gfdependent ab and thereforeb can be removed from the support
the interconnect. However, it can be made linear by buffer insertiBhy2- This leads to the network in Figure 2 whose optimal placement
and wire sizing, as shown in recent studies by Otten and Brayton 7S Shorter longest path as comparebig.
and Cong and Pan [4]. A circuit is said to be optimal in terms of inter-
connect delay if the length of a path from any primary inptd any
primary outpufo is its Manhattan distance (monotonic), i.e.

yl=ze+Z f y2=x+a

dio) = X —Xol +1¥i — Yol

This definition is motivated by the pin-to-pin delay model of Kuki-
moto and Brayton [6]. Under this model, a delay number is assigned

for every input-output pair. This model is particularly suited for in- ’ o i
tellectual property (IP) blocks where the arrival time of the pins areAlthough networkN " is better tharNmip in terms of both IP-based

and slack-based synthesis problems, there is yet a better decomposi-

not known in advance. Consequently, any input-output path can €0 for the IP-based synthesis problem.NH, the path fron to y;

up pelpg a critical path. Therefore, to minimize the dellay, we haVeiéogreater than its Manhattan distance. The same is true for the path
minimize the delay for all input-output paths. We call this problem tr??om dtoy. A better decomposed circit ” with 11 literals and its
IP-based synthesisroblem.)

) . .) optimal placement are shown in Figure 3.
We will also be addressing a slightly different problem called the

Figure 2: NetworkN ' and its optimal placement.

slack-based synthegisoblem, where the only difference from the IP- ylzze+Zf y2zcd+d

based problem is the objective function. Instead of minimizing the vl z 2
length of the path from any primary input to any primary output, we I I I I
minimize the longest path of the circuit, i.e. z=(a+b)cd boa ¢ d

Figure 3: NetworkN " and its optimal placement.
min{ max_d o)}
(iel,0€0) .
From the example above, we see that sometimes the output of a
In this paper, we will mainly focus on tHe-based synthesisrob- Iolglc synthesis is not _good for placement, i.e. no matter hc_)W we
lem. However, the approach can be modified to addressitux- place the_ nodes, there is at least one path WhICh is Ipngert_han its Ma_n-
basedproblem as well. We will very briefly discuss this in Section 7hattan dls_tance. In our "?‘ppf°acr_" the aim is to guide logic synthe3|s
) such that it produces a circuit which is good for placement. It is up to
the placement tool to find the optimal placement for the decomposed
5 Approach circuit in the placement phase.
In this section we define what we mean by a circuit which is “good”
To understand the problem better, let us first look at an example whiereplacement and then give a set of transformation rules which can
the conventional logic synthesis which considers only gates during &ipd such a circuit. Our approach can be divided into two broad stages:
timization may not be able to find a circuit with minimum interconneconstraint generation and constraint driven synthesis. In the constraint

delay. generation step, we partition the die into regions and identify the types

of functions that are allowed to fill them. We define the notion &.2.1 Region Placement Constraints

lllegal nodes. Intuitively sp_eakl_ng, a nod(_a IS |IIe_gaI 'T It can not_ bjIehe example above illustrates that if there is a path from a primary
placed somewhere on the die without causing a diversion in the C|rc|u|t.uti t0 & primary outpub. then for the path to be monotonic. all the
We show that if a circuit consists of only legal nodes then there exi (R P y outpud, b !

a point placement of the nodes such that every input-output pathO%C gates along the path should be placed in the regigy). This

. S L - leads us to first partition the die into rectangles along the pin positions
monotonic. We call such a circuitlegal circuit. We characterize the . . . ST .
" . S . and label each region with functions that can be placed in it. Continu-
condition under which a node is illegal and give a procedure to convert - : : .
an arbitrary circuit into a legal circuit ing with our example, the die area associated witly, a, b, ¢, andd
. . ' . . . is partitioned into regionR = {rq,r2,rs,rs,rs} as shown in Figure 6.
Slnce. nodes have areas, in the constraint driven S yn.theslls stepR &onrl is labeled with{a, b, c,d}y, to mean that factors whose sup-
synthesize the legal circuit to find _another legal .CII’CUIt with min Sorts are a subset ¢, b, c,d} and transitively fan out only tg, are
mum area. We extend the algebraic transformations and don't cafe - o pe placed imy. Regionrs is labeled with{c,d},, and

m|n|m|zat|qn such that they opere_lte on Ieggl nodes and produce | ab}yz to mean that factors whose supports are a subsit df and
nodes. As in the conventional logic synthesis case, we use the nu i?{

. . . . sitively fan out only tgy; or factors whose supports are a subset
of factored-form literals as our area estimates since it has been proa/fa?a b} and transitively fans out only tg, are allowed to be placed
to be a good indication of the size of a Boolean network. ’

in r3. Other regions are labeled in a similar fashion. Refering back to
Boolean networlN ’, we see that nodeis a “good” node and can be
placed inr; because its support set{ig, b, c,d} and it transitively fans
Since the length of every path from a primary input to a primary outgit Only toy:. This matches the label of. Nodex is not a “good”

is restricted to its Manhattan distance (monotonic), there is a well i€ because there is no region whose label contains its support set
fined region where a Boolean node can be placed. Let us define rediofl} and both of its transitive fanouts ayeandy,.

formally.

5.2 Constraint Generation

Definition 2 A region r= {x,¥t,%,Yp}, where x < x and y < yp,

is the set of all points in the rectangle bounded at opposite corners by y1 o & ; 7 P y2
the points(x;,yt) and (X, yp). Mathematically, = {(x,y) | ¥ <x< {ab.c.dq (ac dy {c,3d}y1 (@ 5
X andy <y<yp}. {byy | {abyp | {abcy; {abcds

b a c d

Definition 3 Given two points p= (x1,y1) and p = (X2,y2), the
region defined by pand p is region rp, p,) = {MiN(Xp,,Xp,),
min(ypu)/pz)ama)‘(xppxpz)ama)‘(ypuypz)}-

Figure 6: Regions and labels of regions.

. I Definition 4 A placement constraint d is a 2-tup[©Y,09), where
B Wllth theste dekglnllt.lor;s_, we go k?‘ack(;?barlalyie I;vhy nads tZe 09 C 0, ando? C I. O is called the output set ana the support
oolean networkN " in Figure 2 is “good” but nok. Because node "« 4’ \ve also write d &81,i2,.- - }oy,05,.., Wherea® = {i1,iz,...}

fans out toy; and its support set i, b, ¢, d}, zshould be placed in the .
; | > SHPPT “and 0 = {01,0y,...}.
regionry, v), Which isrz in Figure 4, so that the path from any primary

input in the support set, i., b, ¢, ord, toy; is monotonic. For the gach region is labeled with a set of placement constraintsr gig.
same exampl.e,.there is no good region to p!ace ndolecause there |5peled with{a,b,c,d}y, andr is labeled with{c,d}y, and{a,b}y,

are two conflicting requirements. One requirement says that ROdgg shown in Figure 6. A placement constraint on a regi@called
should be placed in regiany, ¢y, which isrq in Figure 5, for the path ;;4 region placement constraint

from cto 1 to bg monotonic_; While t_he cher says that nadshould Hence, each region placement constraiint (O, a") in a regionr

be placed in regiony, 4), which isrz in Figure 5, for the path frond yogtes that Boolean nodes that fan out only to a subset of the primary

to y» to be monotonic. As shown in the figupecan not be placed in outputs inO" and have at mosi' in their support can be placediin
bothrq andr,. Hencexis not a desirable factor.

5.2.2 Node Placement Constraints

il v2 We see that given a regiononly certain types of nodes can be placed

% in r and this is captured in iteegion placement constrainiWe now

b 2 c define the dual for nodes. Given a nagét can only be placed in cer-
tain regions. For example, nod@f Boolean networlN ' in Figure 2
can only be placed in regian as shown in Figure 6. Hence, we label
each node with a placement constraint and it is calleddte place-
ment constraintThe node placement constraint of naddenotes the
‘ support ofn and its transitive primary outputs. For example, the node
placement constraint afof Boolean networlN " is {a, b, c,d}y, .

The node placement constraints of nodes of a Boolean network can
be easily computed by traversing the Boolean network in a breadth-
first manner from the primary inputs to compute the support sets and
from the primary outputs to compute the output sets.

Figure 4: Legal region of node

b a ¢ d
Figure 5: Conflicting legal region requirements for

5.2.3 Properties of Placement Constraints on Boolean Networks

In this section, we show what “good” nodes mean and having a S A

Boolean Network with only “good” nodes can lead to a monotonic | . | .

point placement of the network. " %g - %z
Intuitively, a “good” node is one that can be placed in a region. We b a c d b a ¢ d

define such “good” nodes as legal. However, before we can formally

define the legality of a node, we need the definition of containment of ale y2

placement constraints. AR

—_ Figure 7: Region intersection for nodef N '.
Definition 5 Placement constraint (= (O? ¢?) is contained in

placegwentbconstraintuk (O°,aP), denoted as £IC dp, if O C O° mych smaller. However, there is a linear algorithm with complexity
ando® C o®. O(]O"| + |o"|) according to the next three lemmas.

. . Lemma 1 below hat n hat transitively fan nly on
Definition 6 Boolean node n with node placement constraiptisl N a1 below says that nodes that transitively fan out to only one
output are always legal.

legal with respect to region r with region placement constraints
{dr,,dr,,...}, denoted as i, if there exists a j such thatd“ dr;. Lemma 1 For a node placement constraiffiy,iz,...,im}o,.0....0

with n=1, R({ig,iz, ..,i) #0. '
Definition 6 says that node is legal with respect to regionif n ({iz,T2 m}0:.0z...00) 7

can be placed in. Proof: For ({i1,i2,...,im}q, the point (Xo,¥o) is in

. R({i17i27'-'7im}01)' u
Definition 7. A Boolean node n ikegalif there is a region r such that | emma 2 below enumerates the cases when nodes that transitively
nir. fan out to two outputs are legal.

Definition 7 says that node is legal if there is a region wheren | emma 2 For a node placement constraifis,is,...,im}o,.0....0,
can be placed. This definition and Definition 6 are about the legaliith m> 2 and n= 2, R({i, i2,...,im}o, 05....0,) 7 O iff o
of a Boolean node. Now given a node, the next definition defines the _ o _
region in which the node is legal. 1. (ViVox = Xo AYi > Yo) V (VIVO X > Xo AYi < Yo) V (ViVO % <

XoAYi > Yo) V (ViVO X <X AYi < Yo), OF
Definition 8 The legal regions of a node n, denoted ds)Ris the set 2. Riini imbo) S & POINL, i.6. %, = Xo, AViyi =C, or y
of regionsR = {rq,rs,...,r } such that for any regionjrc R, n} r;. ‘ 1,725+, 1myo S0 = =% 00 =
9 {rur 1} y region; i Yo, AViX; =C, for some G= N .
For clarity purposes, we denote the legal region of a noaéth

node placement constraitit asR(dn). We will then assume that given Proof: If part -

a node placement constraint, the node is implicitly defined. 1. Let us assume without loss of generality tHativo x >
It can be easily seen thR{{ix}q) is the regiorr;, 4. If we define Xo AYi > Yo), and letimin = (min{x},min{yi}) and omax =
R(d1) NR(dy) to be the overlapping region betweR(d;) andR(dy), (max{Xo},max{yo}), then the legal region is , o..) and it
then it is easy to see thR{{i1,i2,...,im}o,.0,...0,) iS €qual to: is not empty.
R({i1}o,) "R({i2}0,) N---NR{im}o,) N 2. Ifthe legal region is a point, then it is not empty.
R({i1}o,) NR({i2}0,) N+~ NR{im}o,) N Only if part: Without loss of generality assume that the legal region
N is not empty and it is not a point, byt < xo, < X,, i.e. 01 is on the
R({i1}o,) NR{iz}o,) M-+~ R({im}o,). top side of the die, theR({i1,i2}o,) is a point if bothi; andi, are

on the top side as well (Figure 8a); it is a line otherwise (Figure 8b).
This is called théntersection rule For example, as shown in Figure 7SINCeR({i1,i2}o,,0,) = R({i1,i2}0,) AR({i1,i2}0,), it is not empty iff

for nodez of Boolean network\ /, Yi, =Yi, andXo, = Xo,, i.€. 01 ando are at opposite side (Figure 8c).
If we have more than two inputs, then they all have to be either on
R(zz = R({ab,c,d}y,) the top or the bottom side of the chip for the legal region to be non-
= R({aly,)NR({b}y,) NR({cly,) NR({d}y,) empty and the legal region has to be a point (Figure 8d). Hence, itis a
contradiction.]
= rzlr]rszrZ?‘er4
- by % % iz s
i - k---Ha :
Based on Definition 7, the legality of a nodevith node placement B
constraintd, = (O",0") can be checked by traversing all regions and | |
check ifn is legal for each region. Assumiry| > |O], the complex- o2 o2
ity for this algorithm isO(|1]2 |O|) because the number of regions is @ ®) © @
O(/1]/0]) and the number of region placement constraints in a region Figure 8: Figure for proof of Lemma 2.

is O(|I|+1]0]). A better algorithm would be to check if the legal re-
gion of nis empty or not. This can be done by using the intersectionThe following lemma says if a node transitively fans out to more
rule defined above. The complexity is th&(/O"| |c"|), which can be than two outputs, then there can only be one case where itis legal.

Lemma 3 For a node placement constraitfiy,ip,...,im}o,,0.,..,0n 2. The proof is similar to case 1.
with m> 2, and n> 2, R({i1,i2,...,im}0;,0,..,0,) # Oiff (Vivox >
Xo AYi > Yo) V (ViVO X > X AYi < Yo) V (ViVO X < Xo AYi > Yo) V
(ViYo X <X AYi < Yo).

Proof: The proof is similar to the proof of Lemma 2.

If part : This is the same as the first case of the if part of Lemma 2
proof. 2. Adding outputs to a node placement constraint will not change

Only if part : Without loss of generality assume that the legal region the farthest point of its legal region.
is not empty buii, < Xo, < X,, i.. 01 is on the top side of the die,
thenR({i1,i2}o, is @ point if bothi; andi, are on the top side as well At this point, we have defined what legal nodes are and how to
(Figure 8a); it is a line otherwise (Figure 8b). SiRi1,i2}o,0,) = Ccheck for legality of nodes. We now put the legal context into Boolean
R({i1,i2}o,) AR({i1,i2}e,), it is not empty iffyi, = yi, andxo, = Xo,, networks and discuss the implication of legality of Boolean network
i.e. 0; ando, are at opposite side (Figure 8c). There is no way to a@d placement.

a third output to{i1,i2}o,.0, With a non-empty legal region. Hence, i
is a contradiction. h

By the input-output symmetric nature of legal regions, the abo\?e'egal'
three lemmas apply with the role nfandn interchanged.

Let the conditionViVo X > X AYi > Yo) V (VIVOX > X AY; < VYo)V
(ViVOo X <X AYi > VYo) V (ViIVO X < X AYi < Yo) be called thenon-
overlappingcondition. Then, with these three lemmas, the legality gheorem 5.1 Given a legal boolean network, there exists a mono-
a node with node placement constrafit, iz, ..., im}o;,0,.....0, €8N b€ tonic point placement for the network.
checked with the following algorithm:

|
Lemma 4 says that:

1. Adding inputs to a node placement constraint will not change the
closest point of its legal region.

t
Definition 9 A Boolean network itegal is every node in the network

There is a nice property of a legal Boolean network as described by
the following theorem.

. . Proof:
1. Ifnis 1, then the node is legal. This is an induction proof. We traverse the Boolean network in a
2. If the non-overlapping condition is true, then the node is legEgVerse topological order, i.e. anode is visited only after all its fanouts
This can be checked i@(m-+ n) by first finding the largest and have been visited.)
smallestx andy coordinates of both inputs and outputs and then 1he base case is where we have all primary outputs. olle an

check for the overlapping condition using these values. arbitrary primary output, then pla@eat its pin location. Fop, its pin
location is its closest point. The induction hypothesis is that fanouts of

3. If the node placement constraint satisfies Condition 2 gfhoden are placed at their closest points and still maintaining mono-
Lemma 2, then itis legal. tonicity, i.e. the distances from their closest points to their primary
outputs are their Manhattan distances. we show nthedn also be
placed at its closest point while still maintaining monotonicity.
It is obvious that this legality checking algorithm@m+n). Hence, Let n; be an arbitrary fanout ofi. Let ¢’ be the node placement
it is very efficient. constraint ofns with all fanins excepn removed. Also let the node
. . placement constraints af andns be c andc;. Thencs is derived
Cor_ollgry 5'1 There exists . a corr_1er) point cp of from ¢’ by adding the primary inputs of fanins of other tham and
R({is,i2,---;im}o,.07,...0,) that is closest in distance to all out-¢ i gerived fromc’ by adding the primary outputs of fanouts wof
puts, and a corner pplnt fpfurthes_t from all outputs. The_ poink s iher thamy. We know thatR(c') # 0 because’ C ¢ andR(c) # 0
called the closest point of the region ang e furthest point. by the assumption that is legal. By applying Lemma 4 for each
Lemma4 1. If R({iniz...,imlo100..00) N R({ik}or.on...00): primary input added td’ to formct , R(cy) includes the closest point
where & {i1,ip,...,im}, is not empty, then it contains thef R(c). SinceR(c) < R(_c’), the distance from the closest point of
closest point of R{i1, i2,. .- ,im}op.0s....00)- R(c)toa primary outpub is the same as the sum of the distance from
the closest point oR(c) to the closest point dR(cs) and the distance
2. If R({i1,i2,...,im}os,0z,...00) N R({i1,i2,-..,im}a, Where @ € from the closest point dR(cf) ando. Hence, the monotonic property
{01,02,...,0n}, is not empty, then it contains the furthest point maintained and can be placed at the closest poiniR{t).
of R({i1,i2,... 7im}01,02,...,on)- [|
Theorem 5.1 reduces our problem of finding a monotonic point
placement of a circuit into the problem of finding a legal Boolean
network. The logic synthesis transformations we use to convert an
1. Assume(VivVo % > X AYi > Vo) (the proofs of the other casesllegal Boolean network into a legal one is calledkelegal, and it is
are the same), thefy > Xo A Yk > Yo. If Xk is greater than the- explained below.
coordinates of any other input, th&{i1,i,...,im}oy,0.,...,00) N
R({iktor0s....00) = RUiL,i2:- s imboros..00)- If X¢ is less than 24 Makelegal
the x-coordinate of all other inputs, then the vertical line goinghe makelegal operation takes a Boolean network as its input and
throughiy partitionsR({i1,i2,...,im}o; 0,,...,0,) INtO two regions produces a legal Boolean network. In the effort of producing a legal
andR({i1,i2,...,im}o;,05.....00) TR({ik}o1,05.....0,) IS the partition Boolean network, it attempts to minimize the number of new Boolean
that includes the closest point. nodes created.

4. If none of the above are satisfied, then the node is illegal.

Proof: Assume tham > 2 andn > 2. The proof is similar for other
cases.

The following lemma and corollary guarantee that a Boolean nét3.1 FastExtract

work can always be made legal.
y g Thefastextractalgorithm is explained in [16]. It basically looks for

Lemma5 If n— ng, and nis illegal but i is legal, then collapsing n a two-cube divisor or a two-literal cube that reduces the most number
into ns will not make n illegal. of literals in every iteration.

When dealing with legal Boolean network, this algorithm may re-
sult in illegal divisors. For example, assume that nade the best
divisor found and it divides nodes y, andz Then the output set of
the node placement constraintrofs the union of the output sets of the
node placement constraintsxfy, andz. From Section 5.2, we know
{ﬁat the legal region af may be empty and may therefore be illegal.
However, it may be the case tharemains legal if it only dividex
Corollary 5.2 An illegal Boolean network can always be made legaindy, or x andz, etc. Hence, the fasixtract algorithm is modified
by collapsing all nodes into the primary output nodes. such that the best legal divisor is chosen in every iteration.

If node n divides a set of nodeBl, then complexity of finding a
subsef\; of N which preserves the legality afand has the largest re-
Lemma 6 If n — n¢, n— ng, and n is illegal but both pand ry are duction in the number of literals is exponential in the sizBloHence,
legal, then duplicating n intoy— n¢ and rp, — ng makes pandn, @ heuristic is used to select an optimal subset. First the nod¢siia
legal. ordered in decreasing sizes of the legal regions to form disteq

ThenNsorteqis linearly traversed. Each node is added to the suiset

Proof: The support of is a subset of both the supportsrafand it he |egality ofn is preserved. Nodeis used as a divisor if it reduces
ng, but the output set of the node placement constraini®a superset o number of literals in the network.

of the node placement constraints of bathandng. By duplicating
ninto ny — n¢ andny — ng, node placement constraint vf is con-
tained in that ohy and thus, is legal. Similarly fom,. B 532 Resubstitution

Make_legal traverses the Boolean network in a reverse topological
order, i.e. a node is visited after all its fanouts have been visited. Dirthe conventional logic synthesis, a naulés resubstituted into an-
ing the traversal, if it sees an illegal node, it collapses the node intodtger nodex if n dividesx. This may affect the legality of bothand
fanouts until the node becomes legal. Hence, there is a frontier movind he following observation states wharmndx can become illegal.
from each primary output to primary inputs in its support where every
node is legal on the side of the frontier toward the primary output. bservation 1 If n divides x and both n and x are legal before resub-
the sum-of-product expression of the fanout, as a result of collapsirgjitution, then after resubstitution
node into one of its fanouts, exceeds a user-defined parametem-
ber of literals, the node is replicated for each fanout until it becomegt- X can become illegal if its support is not the superset of that of n.
legal. The intuition behind this parameter is that large nodes tend to) .)
have more common subfunctions with other nodes and thus allow fof- N ¢&n become illegal if its output set is not the superset of that of
sharing. However, the parameter should not be too large since it can *-
result in explosion in memory usage. i . o . .

As shown above, legality of a node can be checked efficiently, thafn this Papern can only be resubstituted inkdf the legality ofn is
is, it is linear in the size of the node placement constraint. Hence, BgServed. Hence, a check is made before every resubstitution.

makelegal operation is efficient. 533 FulLSimpfily

Proof: Collapsingnto n¢ does not change the supportmgf, nor does
it add any primary output to the transitive fanoutgf Therefore, the
node placement constraint nf does not change and hengcge stays
legal.

By the proof of Theorem 5.1, we know that every primary output
legal. Then it is easy to see the following corollary.

Beside collapsing, node duplication can also legalize a node.

In this paper, the fasextract implemented in SIS is used.

5.3 Constraint-Driven Synthesis There are two types afon't cares i.e. the observability don't cares

The constraint generation step takes a possibly illegal Boolean f&BbCs) and the satisfiability don’t cares (SDCs). Computing the exact
work and makes it legal. Theorem 5.1 guarantees that there ex®BCs of a node is computationally expensive. In practice, a subset of
a point placement for this network. However, by definition of thihe ODCs called the compatible ODCs (CODCs) are computed. These
point placement of a circuit, nodes are assumed to be a point; he@@PCs are expressed in terms of the primary inputs. Then together
they have no area. In reality, nodes have area and the length efith the external don't cares (XDCs) of the primary outputs, a don't
longest path depends strongly on the size of a Boolean network. Thee set in terms of the immediate fanins is computed using an im-
constraint-driven synthesis step is responsible for minimizing the asege computation. In computing the SDCs, a support filter is used. A
of an already legal Boolean network while preserving its legality. A®de is included in the SDCs if its support set intersects the support
mentioned in Section 5, we use the number of factored-form literalsset of the node being considered. Employing SDCs in the minimiza-
a Boolean network as a measure of the area of the circuit represetitedprocedure can result in boolean resubstitutions. The support filter
by the Boolean network. So this step is to optimize the network symocedure can also be used in the image computation of the CODCs
that we get a minimum literal legal Boolean network. and XDCs. Once the SDCs are computed and the XDCs and CODCs

We leverage the well developed algebraic transformations in tre expressed in terms of immediate fanins, a two-level minimization
conventional logic synthesis by extending them to deal with and pedgorithm is invoked to find an optimized expression. This is simply
duce legal Boolean nodes. Each of these operations is explainedeberief description of théull_simplify. For a more detail explanation,
low. we refer the readers to [10].

Lemma 7 Throughout fullsimplify computation, the only steps thathe CPU time. The experiments were run on a DEC AlphaServer 8400
can introduce illegality into the network are the image computatiomith 2GB of memory. The runtime is for the technology independent
and the SDC computation. step.
_ As shown in this table, although the number of literalsénipt.wire

Proof. Let noden be the node we are computing don't cares fogpnroach is more than that séript.rugged the length of its longest
Legality of the Boolean network can only change if an edge is adq%fh is the same fad53and better in other circuits. The longest paths
to the network. During the whole fuBimplify process, only the fanin gre much shorter thaseript.delayresults. As seen from this table, the
edges ofn can be added. Edges of fanins of other nodes can pghtime is comparable. This is expected since the legality checking
change. Adding a fanin edge taneans that a resubstitution happeng Jinear in the size of the node placement constraints and hence its
and Observation 1 applies. Potential new fanin edgasart added ntime is a minor part of the total runtime.
only during the image computation and SDC computation through therapje 2 shows the delay computed by Ritual for the four circuits.
support filter, which basically says that a nodis a potential divisor cojumns 2, 3, and 4 show the cell delay for each script. The wire delay
of nif the support ok intersect the support of. B s shown in columns 5, 6, and 7. The total delay is listed in columns 8,

We therefore constrain this operation by allowing a nade be g9 and 10. Except for the total delay z#mirunningscript.delay the

in the support filter when computing fuimplify for noden if the tota) delay of all circuits is the best usisgript.wire
inclusion of nodex preserves the legality of the network according to

Observation 1. sdsrio 3 o e
5.3.4 Synthesis Flow o /

With all the above basic operations, a synthesis flow is then a script e /

similar to thescript.ruggedin SIS. An empirical study needs to be -

conducted to derive an optimal script. o

6 Experimental Results b

To see the effect of the proposed approach, we have implemented the o

basic operations descrlbe_d n Se_ctlon 53 An pptlmllzatlon script ri‘—alaure 9: Number of literals vs number of nodes legalized for C1355.
been created and we callsicript.wire which consists of:

make_legal
eliminate 5 7 Open Issues and Future Work

sweep; eliminate -1 . . .
Though the results in the previous section shows that the approach per-

forms satisfactorily, these circuits are fairly small. For bigger circuits,
the number of nodes in a legal network can be large and optimizing
such large networks using operations Ifkst extractandfull_simplify

can be very expensive.

To illustrate this, we plot the number of literals versus the number of
nodes in the constraint generation step for C1355 as shown in Figure 9.
On thex-axis is the number of illegal nodes that are legalized. On the
y-axis is the number of literals in the Boolean network. The network
increases from 1032 literals to 237009 literals after 216 nodes have been

Our experiment uses SIS and Ritual version 3.4, a timing-drivlagalized out of a total of 514 nodes in the network.
standard cell placer [12]. The input blif file and a randomly gener- There are three various directions that can be pursued to address this
ated pad assignment file is read into SIS. $bept.wireoptimization problem. The first one is to improve the area optimization algorithm
script is run in SIS to generate an optimized logic netlist. The opresented in this paper. Rewiring and redundancy removal is a tech-
timized netlist is mapped to the standard cell technology libségly nique that falls into this direction. SPFDs [2] can be used to minimize,
cell2.2.genlibof SIS. The mapped netlist is then placed by Ritual wittewire circuits, and potentially legalizing nodes. In this paper, we are
a fixed pad assignment. We measure the length of the longest patheesdiming that we are given a circuit represented as a Boolean network.
the delay of the Ritual output. The distance of two cells is measuM then apply makéegal and several algebraic transformations fol-
as the Manhattan distance from the center of both cells. The lengtfowfed by don’t care minimization. The final circuit depends on the
a path is the sum of all distances between consecutive cells alongainality of the initial Boolean network. Alternatively, the Boolean net-
path. work can first be collapsed as much as possible into a two-level circuit

Table 1 shows the results for four circuits. The cirbliaraComhbs where all primary outputs are expressed in terms primary inputs. Then
obtained from the sequential circbibaraby removing all latches and functional decomposition, like [11], can be used to decompose the net-
treating the outputs of the latches as primary inputs and the inputsvtok into a minimum literal legal Boolean network.
the latches as primary outputs of the network. Column 2, 3, and 4 showhe second direction which we believe is more promising is to relax
the number of literals in factored forms of the scripts script.ruggetie constraint that every path must be monotonic. In other words, this
script.delay, and script.wire respectively. Columns 5, 6, and 7 list ikebout solving the slack-based synthesis problem instead of the more
length of the longest path for each script. Columns 8, 9, and 10 shastrictive IP-based synthesis problem. This can be done by applying

simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx

resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp

Table 1: Path length comparisonsafript.rugged script.delay andscript.wirefor IP-based synthesis.

Number of Literals Length of Longest Path CPU Time
Name sc.rugged| sc.delay| sc.wire || sc.rugged| sc.delay| sc.wire || sc.rugged| sc.delay| sc.wire
z4ml 41 84 49 1324 1342 1025 0.2 0.3 0.3
rd53 42 62 50 1122 1624 1122 0.1 0.3 0.2
rd73 74 178 87 1689 2457 1680 0.8 1.8 12
bbaraComb 69 79 109 2021 1573 1464 0.5 0.5 0.3

Table 2: Delay comparison stript.rugged script.delay andscript.wirefor IP-based synthesis.

Cell Delay Wire Delay Total Delay
Name sc.rugged| sc.delay| sc.wire || sc.rugged| sc.delay| sc.wire || sc.rugged| sc.delay| sc.wire
z4ml| 5.66 5.28 4.78 0.93 1.03 0.97 6.59 6.31 5.75
rd53 9.73 7.37 5.94 1.67 2.13 1.42 11.40 9.50 7.36
rd73 7.01 5.09 5.59 1.37 0.88 0.86 8.38 5.97 6.45
bbaraComb 8.18 6.22 4.90 2.19 1.72 1.08 10.37 7.94 5.98

the IP-based synthesis algorithm only to a subset of the paths. IntuFhe proposed approach still decouples logic synthesis phase and
itively, we can wireplan only the critical paths so that no diversioqdace & route phase. It consists of a constraint generation step which
are allowed in them; other paths can have diversions. One approaituces a legal Boolean network, which can be placed such that ev-
would be to modify the definition of legality so that legality is checkeery path is monotonic, and a constraint-driven synthesis step which
based on the primary inputs and outputs that are relevant only tottiaimizes the legal Boolean network while preserving legality. We
critical paths. Only the nodes on the critical paths are legalized. 8leow an example of how this approach can be extended to solve the
have done some preliminary experiment and our results show thatldick-based synthesis problem. Finally, we describe directions for fu-
you select top few longest paths and legalize all the nodes on thase work which includes an investigation into a new placement tool
paths, then the area penalty is not very high. However, at present thbeg works together with the proposed approach.

is no easy way to perform a meaningful comparison of this approach

(i.e. modified IP-based algorithm to solve the slack-based synthadgferences

problem) with the conventional approach. For that, we need a pladgt Semiconductor Industrial AlliancéVational Technology Roadmap for Semiconduc-

ment tool that uses the same delay model as ours and we have not beer?'s 1997.
successful at making Ritual use our model [2] R.K. Brayton. Understanding SPFDs: A new method for specifying flexibility.
9 ' IWLS May 1997.

One other |s§ue t_hat needs further attention 'S_that o_f pin as&_gnn_wg]th'K_ Brayton, A.L. Sangiovanni-Vincentelli, and G. Hachtel. Multi-level logic syn-
The approach in this paper assumes that the pin assignment is given.thesis.Proceedings of the IEEEoI. 78(no. 2):264-300, February 1990.
In the design process, usually only partial pin assignment is givel] J.Congand Z. Pan. Interconnect Performance Estimation Models for Synthesis and
However, the quality of the final solution strongly depends on the pin Design Planning. IWLS 98

: . ; :] K. Keutzer, A.R. Newton, and N. Shenoy. The future of logic synthesis and physical
locations. Therefore, we need to look into algorithms to find gooH’ design in deep-submicron process geometrieSRD, pages 218-224, 1997.

pin aSSignment during syntheSiS' Such an algorithm can also be u?%dY. Kukimoto and R.K. Brayton. Hierarchical functional timing analysis.DAC,

to extend this approach to handle sequential circuits by finding good 199s.

placement for the latches present. [71 R.H.J.M.Otten and R. K. Brayton. Planning for PerformanceDAC, June 1998.
The optimizations that we have shown are technology independef@. M. Pedram and N. Bhat. Layout Driven Logic Restructuring/Decomposition. In

We have not yet addressed the issue of technology mapping. Also, 'CCAD: pages 134-137, November 1991.

we have completed ignored gate delays. We are presently lookifi ';"dspﬁﬂfemlggi”' Bhat. Layout Driven technology Mapping.DIRC, pages 99—

!nto both of these |ssue§, 1.€. technology mapping and how to bﬁﬁ H. Savoj.Don't cares in multi-level network optimizatioPhD thesis, University of
incorporate gate delays in our approach. California, Berkeley, May 1992.
Finally we are also looking into extending the proposed approg{éﬁ C. Scholl and P. Molitor. Communication based FPGA synthesis for multi-output

to handle other interconnect issues, like crosstalk and reliability. boolean functions. IASP-DAG pages 279-288, August 1995. ,
[12] A. Srinivasan, K. Chaudhary, and E. S. Kuh. Ritual: a performance driven placement

algorithm.|EEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing39(11):825-840, November 1992.

[13] G. Stenz, B. M. Riess, B. Rohfleisch, and F. M. Johannes. Timing Driven Placement

. . . . in Interaction with Netlist Transformations. I8PD 97 Napa Valley, CA, 1997.
We have proposed a new approach to deal with the increasingly im- i N } - Nap _y'_ K
H. Vaishnav and M. Pedram. Routability-Driven Fanout Optimization.DAC,

. 14
portance of wire delays in deep submicron technologies. It is badtd pages 230235, June 1993.
on the fact that the shortest path between any two points in a Circui i . vaishnav and M. Pedram. Minimizing the Routing Cost During Logic Extraction.
the Manhattan distance between them. We showed an example of whyin DAC, pages 70-75, June 1995.

conventional logic synthesis may produce circuits where the minim{##j J. Vasudevamurthy and J. Rajski. A method for concurrent decomposition and fac-
distance can not be achieved torization of Boolean expressions. IBCAD, pages 510-513, November 1990.

8 Conclusions

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

