
Wireplanning in Logic Synthesis�

Wilsin Gosti Amit Narayan+ Robert K. Brayton Alberto L. Sangiovanni-Vincentelli
Dept. of EECS, University of California, Berkeley, CA 94720

+ Monterey Design Systems, Sunnyvale, CA 95139
Email: fwilsin, anarayan, brayton, albertog@eecs.berkeley.edu

Abstract

In this paper, we propose a new logic synthesis methodology to deal
with the increasing importance of the interconnect delay in deep-
submicron technologies. We first show that conventional logic syn-
thesis techniques can produce circuits which will have long paths even
if placed optimally. Then, we characterize the conditions under which
this can happen and propose logic synthesis techniques which produce
circuits which are “better” for placement. Our proposed approach still
separates logic synthesis from physical design.

1 Introduction

Conventional logic synthesis assumes that the delay of a circuit de-
pends only on the delays of the gates in the circuit and mostly ig-
nores the effect of interconnect delay. However, as we move to-
wards smaller geometries, interconnect delay is becoming an increas-
ingly larger fraction of the total delay. In fact, Semiconductor Indus-
trial Alliance’s National Technology Roadmap for Semiconductor for
1997 [1] predicts that interconnect delay will start dominating the total
gate delay as we move down to 0:15µ technology and below. Another
study by Keutzer, et al [5] shows that for 0:25µ technology and below,
interconnect delay can contribute anywhere from 50% to 80% of the
total delay. Therefore, logic synthesis can no longer afford to ignore
the effect of interconnect delay during optimization.

In this paper, we adopt a diametrically opposite approach to that of
conventional logic synthesis. We perform logic synthesis to optimize
only for interconnect delay, ignoring the effect of gate delays. Our
approach is based on the simple observation that if an outputodepends
on an inputi, then the best way to connecti too is through a path which
is monotonic fromi to o, that is, there are no diversions in the path
from i to o. We first show, by means of an example, that conventional
logic synthesis can produce a circuit for which it is impossible to find a
placement with no diversions in the input-output paths. Therefore, no
matter how good a place & route tool is, it may not be able to produce
a circuit which is optimal in terms of interconnect delay.

We define the notion ofillegal nodes. Intuitively speaking, a node
is illegal if it introduces a diversion in the circuit no matter where it is
placed. We characterize the condition under which a node is illegal and
give a procedure to convert an arbitrary circuit into a circuit which has
only legal nodes. We call such a circuit alegal circuit. We show that
for a legal circuit, there always exists a point placement of the nodes
such that every input-output path is monotonic. We also provide a set
of logic synthesis transformations which are guaranteed to preserve
the “legality” of a circuit.

�This work was supported in part by SRC-98-DC-324.

The proposed approach has the advantage that it still maintains a
distinction between the logic synthesis and place & route stages. It
does not need to tightly couple synthesis and placement by frequently
alternating between the two which can be inefficient and may not con-
verge at all.

2 Previous Work

So far very little work has been done to model the effect of intercon-
nect delay at the logic level. This is mainly due to the fact that at the
logic level, very little information is available about the interconnect.
Most of these approaches [9, 8, 14] use a rough companion placement
to estimate the cost of various logic synthesis operations and make de-
cisions based on this cost. In [13] an iterative approach to combine
synthesis and placement is presented. Instead of using a companion
placement to guide synthesis, they use actual placement which can be
modified incrementally based on the netlist changes. In [15] a heuris-
tic to minimize the layout cost is proposed which doesn’t employ a
companion placement solution. The method in [15] is based on mini-
mizing the average fanout range and evenly distributing fanouts in the
chip. It was shown that the chip delay could be reduced by this ap-
proach if all the input pins are located on one side of the chip and all
the output pins on the opposite. Like [15], our approach also does not
employ a companion placement. We analyze conditions under which
a netlist is not “good” for placement given the locations of i/o pins and
try to transform it into one which is.

3 Preliminaries

Definition 1 A logic circuit L is a 3-tuple(I ;O;F). I is a set of
primary input pins or simply primary inputs.O is a set of primary
output pins or simply primary outputs. Each element ofI and O is a
binary variable. An element fj 2 F is a function fj : BjI j 7! B. Each
f j is called the global function of the primary output oj .

A logic circuit is represented by a Boolean network [3]. Ifnk is an
immediate fanout ofnj in the Boolean network, we writenj ! nk.
A logic circuit is pin-assignedif each primary inputi is labeled with
a position(xi ;yi) and each primary outputo with position (xo;yo).
A logic circuit L is placed if every noden of the Boolean network
representingL has a position, i.e. every noden is labeled with(xn;yn),
and the resulting placement is denoted byPL . A point placement ofL
is a placement ofL where each node is represented as a point. Given a
point-placed circuit, a path,p(i;o), from a primary inputi to a primary
outputo is a sequence of connected nodes fromi to o, and the length
of the path,d(i;o), is the length of all the wires along the path fromi
to o. The pathp(i;o) is calledmonotonicif its length is equal to the

Manhattan distance fromi to o. The placementPL of L is optimal if
there is no other placement ofL whose length of the longest path is
shorter than that ofPL.

The coordinate system that we use in the paper assumes that the
x-axis goes from left to right and they-axis goes from top to bottom.

4 Problem Description

Given a logic circuitL, the goal is to find a placed circuitNL such
that the interconnect delay of the circuit is minimized. Due to effi-
ciency reasons, we want to maintain the decoupling of the problem
into a separate synthesis phase followed by a place & route phase as
in the conventional approach. Given a logic circuitL = (I ;O;F), we
address the problem of finding a Boolean networkNL , which when
placed optimally, leads to a circuit with minimum interconnect delay.
It is up to the placement tool to find the optimal placement for such
a network. Intuitively speaking, we are trying to create a circuit for
which a “good” placement exists.

We assume that the die is represented by a rectangleR with width
wR and heighthR and the given logic circuit is pin-assigned. We as-
sume that the delay of a path is a linear function of its length. In
general, the interconnect delay depends quadratically on the length of
the interconnect. However, it can be made linear by buffer insertion
and wire sizing, as shown in recent studies by Otten and Brayton [7]
and Cong and Pan [4]. A circuit is said to be optimal in terms of inter-
connect delay if the length of a path from any primary inputi to any
primary outputo is its Manhattan distance (monotonic), i.e.

d(i;o) = jxi �xoj+ jyi �yoj

This definition is motivated by the pin-to-pin delay model of Kuki-
moto and Brayton [6]. Under this model, a delay number is assigned
for every input-output pair. This model is particularly suited for in-
tellectual property (IP) blocks where the arrival time of the pins are
not known in advance. Consequently, any input-output path can end
up being a critical path. Therefore, to minimize the delay, we have to
minimize the delay for all input-output paths. We call this problem the
IP-based synthesisproblem.

We will also be addressing a slightly different problem called the
slack-based synthesisproblem, where the only difference from the IP-
based problem is the objective function. Instead of minimizing the
length of the path from any primary input to any primary output, we
minimize the longest path of the circuit, i.e.

minf max
(i2I ;o2O)

d(i;o)g

In this paper, we will mainly focus on theIP-based synthesisprob-
lem. However, the approach can be modified to address theslack-
basedproblem as well. We will very briefly discuss this in Section 7.

5 Approach

To understand the problem better, let us first look at an example where
the conventional logic synthesis which considers only gates during op-
timization may not be able to find a circuit with minimum interconnect
delay.

d

y1 = z e + z’ f y2 = z + a’

y1 y2

z = (a + b) c dz

y1 z y2

b a c

Figure 1: NetworkNmin and its optimal placement.

5.1 Logic Synthesis and Interconnect Delay: An Ex-
ample

Let us consider a minimum literal boolean networkNmin with 10 lit-
erals as shown in Figure 1 on the left. Assuming that the pin positions
are given, the optimal placement ofNmin is shown in Figure 1 on the
right. Pinse and f are not shown and are assumed to be close toy1.
In this solution, there are two longest paths of equal length, i.e. one
path fromb to y1 and the other fromb to y2. This circuit is not optimal
in terms of both the IP-based and the slack-based synthesis problems
because there is a better decomposition of the circuit that produces
shorter longest paths. The better decomposed network with 11 literals
is shown in Figure 2 together with its optimal placement. Although
networkNmin has fewer literals thanN 0, it has an extra path fromb
to y2. Consequently, the placement tool places nodez to minimize the
longest paths fromb to y1 andy2. However, as we see in Figure 2,y2
is independent ofb and therefore,b can be removed from the support
of y2. This leads to the network in Figure 2 whose optimal placement
has shorter longest path as compared toNmin.

d

y1 = z e + z’ f y2 = x + a’

y1 y2

z z = (a + b) x

x x = c d

y1 z y2

b a c

Figure 2: NetworkN 0 and its optimal placement.

Although networkN 0 is better thanNmin in terms of both IP-based
and slack-based synthesis problems, there is yet a better decomposi-
tion for the IP-based synthesis problem. InN 0, the path fromc to y1
is greater than its Manhattan distance. The same is true for the path
from d to y2. A better decomposed circuitN 00 with 11 literals and its
optimal placement are shown in Figure 3.

d

y1 = z e + z’ f y2 = c d + a’

y1 y2

z z = (a + b) c d

y1 z y2

b a c

Figure 3: NetworkN 00 and its optimal placement.

From the example above, we see that sometimes the output of a
logic synthesis is not “good” for placement, i.e. no matter how we
place the nodes, there is at least one path which is longer than its Man-
hattan distance. In our approach, the aim is to guide logic synthesis
such that it produces a circuit which is good for placement. It is up to
the placement tool to find the optimal placement for the decomposed
circuit in the placement phase.

In this section we define what we mean by a circuit which is “good”
for placement and then give a set of transformation rules which can
find such a circuit. Our approach can be divided into two broad stages:
constraint generation and constraint driven synthesis. In the constraint
generation step, we partition the die into regions and identify the types

of functions that are allowed to fill them. We define the notion of
illegal nodes. Intuitively speaking, a node is illegal if it can not be
placed somewhere on the die without causing a diversion in the circuit.
We show that if a circuit consists of only legal nodes then there exists
a point placement of the nodes such that every input-output path is
monotonic. We call such a circuit alegal circuit. We characterize the
condition under which a node is illegal and give a procedure to convert
an arbitrary circuit into a legal circuit.

Since nodes have areas, in the constraint driven synthesis step, we
synthesize the legal circuit to find another legal circuit with mini-
mum area. We extend the algebraic transformations and don’t care
minimization such that they operate on legal nodes and produce legal
nodes. As in the conventional logic synthesis case, we use the number
of factored-form literals as our area estimates since it has been proven
to be a good indication of the size of a Boolean network.

5.2 Constraint Generation

Since the length of every path from a primary input to a primary output
is restricted to its Manhattan distance (monotonic), there is a well de-
fined region where a Boolean node can be placed. Let us define region
formally.

Definition 2 A region r= fxl ;yt ;xr ;ybg, where xl � xr and yt � yb,
is the set of all points in the rectangle bounded at opposite corners by
the points(xl ;yt) and (xr ;yb). Mathematically, r= f(x;y) j xl � x�
xr and yt � y� ybg.

Definition 3 Given two points p1 = (x1;y1) and p2 = (x2;y2), the
region defined by p1 and p2 is region r(p1;p2) = fmin(xp1;xp2);
min(yp1 ;yp2);max(xp1 ;xp2);max(yp1 ;yp2)g.

With these definitions, we go back to analyze why nodez of the
Boolean networkN 0 in Figure 2 is “good” but notx. Because nodez
fans out toy1 and its support set isfa;b;c;dg, zshould be placed in the
regionr(y1;b), which isrz in Figure 4, so that the path from any primary
input in the support set, i.e.a, b, c, or d, to y1 is monotonic. For the
same example, there is no good region to place nodex because there
are two conflicting requirements. One requirement says that nodex
should be placed in regionr(y1;c), which isr1 in Figure 5, for the path
from c to y1 to be monotonic; while the other says that nodex should
be placed in regionr(y2;d), which isr2 in Figure 5, for the path fromd
to y2 to be monotonic. As shown in the figure,x can not be placed in
bothr1 andr2. Hence,x is not a desirable factor.

����
����
����

����
����
����

y1 y2

b a c d

rz

Figure 4: Legal region of nodez.

�
�
�

�
�
�

��������
��������
��������

��������
��������
��������

������
������
������

������
������
������

2
y1 y2

b a c d

r1 r

Figure 5: Conflicting legal region requirements forx.

5.2.1 Region Placement Constraints

The example above illustrates that if there is a path from a primary
input i to a primary outputo, then for the path to be monotonic, all the
logic gates along the path should be placed in the regionr(i;o). This
leads us to first partition the die into rectangles along the pin positions
and label each region with functions that can be placed in it. Continu-
ing with our example, the die area associated withy1;y2;a;b;c, andd
is partitioned into regionsR = fr1; r2; r3; r4; r5g as shown in Figure 6.
Regionr1 is labeled withfa;b;c;dgy1 to mean that factors whose sup-
ports are a subset offa;b;c;dg and transitively fan out only toy1 are
allowed to be placed inr1. Regionr3 is labeled withfc;dgy1 and
fa;bgy2 to mean that factors whose supports are a subset offc;dg and
transitively fan out only toy1 or factors whose supports are a subset
of fa;bg and transitively fans out only toy2 are allowed to be placed
in r3. Other regions are labeled in a similar fashion. Refering back to
Boolean networkN 0, we see that nodez is a “good” node and can be
placed inr1 because its support set isfa;b;c;dg and it transitively fans
out only toy1. This matches the label ofr1. Nodex is not a “good”
node because there is no region whose label contains its support set
fc;dg and both of its transitive fanouts arey1 andy2.

r1 r2 r3 r4 r5

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

a c

y1

d

y2

b

y2

{a, b, c, d} {a, c, d}

{b}

{c, d}

{a, b}

{d}

{a, b, c} {a, b, c, d}
y1

y2

y1

y2

y1 y1

y2

Figure 6: Regions and labels of regions.

Definition 4 A placement constraint d is a 2-tuple(Od;σd), where
Od � O, andσd � I . Od is called the output set andσd the support
set of d. We also write d asfi1; i2; : : :go1;o2;:::

, whereσd = fi1; i2; : : :g
and Od = fo1;o2; : : :g.

Each region is labeled with a set of placement constraints, e.g.r1 is
labeled withfa;b;c;dgy1 andr3 is labeled withfc;dgy1 andfa;bgy2

as shown in Figure 6. A placement constraint on a regionr is called
its region placement constraint.

Hence, each region placement constraintdr = (Or ;σr) in a regionr
denotes that Boolean nodes that fan out only to a subset of the primary
outputs inOr and have at mostσr in their support can be placed inr.

5.2.2 Node Placement Constraints

We see that given a regionr, only certain types of nodes can be placed
in r and this is captured in itsregion placement constraint. We now
define the dual for nodes. Given a noden, it can only be placed in cer-
tain regions. For example, nodez of Boolean networkN 0 in Figure 2
can only be placed in regionr1 as shown in Figure 6. Hence, we label
each node with a placement constraint and it is called itsnode place-
ment constraint. The node placement constraint of noden denotes the
support ofn and its transitive primary outputs. For example, the node
placement constraint ofz of Boolean networkN 0 is fa;b;c;dgy1 .

The node placement constraints of nodes of a Boolean network can
be easily computed by traversing the Boolean network in a breadth-
first manner from the primary inputs to compute the support sets and
from the primary outputs to compute the output sets.

5.2.3 Properties of Placement Constraints on Boolean Networks

In this section, we show what “good” nodes mean and having a
Boolean Network with only “good” nodes can lead to a monotonic
point placement of the network.

Intuitively, a “good” node is one that can be placed in a region. We
define such “good” nodes as legal. However, before we can formally
define the legality of a node, we need the definition of containment of
placement constraints.

Definition 5 Placement constraint da = (Oa;σa) is contained in
placement constraint db = (Ob;σb), denoted as da � db, if Oa � Ob

andσa � σb.

Definition 6 Boolean node n with node placement constraint dn is
legal with respect to region r with region placement constraints
fdr1 ;dr2; : : :g, denoted as n# r, if there exists a j such that dn � dr j .

Definition 6 says that noden is legal with respect to regionr if n
can be placed inr.

Definition 7 A Boolean node n islegal if there is a region r such that
n # r.

Definition 7 says that noden is legal if there is a regionr wheren
can be placed. This definition and Definition 6 are about the legality
of a Boolean node. Now given a node, the next definition defines the
region in which the node is legal.

Definition 8 The legal regions of a node n, denoted as R(n), is the set
of regionsR = fr1; r2; : : : ; rlg such that for any region rj 2 R , n# r j .

For clarity purposes, we denote the legal region of a noden with
node placement constraintdn asR(dn). We will then assume that given
a node placement constraint, the node is implicitly defined.

It can be easily seen thatR(fikgol) is the regionr(ik;ol). If we define
R(d1)\R(d2) to be the overlapping region betweenR(d1) andR(d2),
then it is easy to see thatR(fi1; i2; : : : ; imgo1;o2;:::;on) is equal to:

R(fi1go1)\R(fi2go1)\�� �\R(fimgo1)\

R(fi1go2)\R(fi2go2)\�� �\R(fimgo2)\

�� �\

R(fi1gon)\R(fi2gon)\�� �\R(fimgon):

This is called theintersection rule. For example, as shown in Figure 7,
for nodez of Boolean networkN 0,

R(z) = R(fa;b;c;dgy1)

= R(fagy1)\R(fbgy1)\R(fcgy1)\R(fdgy1)

= rz1 \ rz2 \ rz3 \ rz4

= rz

Based on Definition 7, the legality of a noden with node placement
constraintdn = (On;σn) can be checked by traversing all regions and
check ifn is legal for each region. AssumingjI j> jOj, the complex-
ity for this algorithm isO(jI j2 jOj) because the number of regions is
O(jI j jOj) and the number of region placement constraints in a region
is O(jI j+ jOj). A better algorithm would be to check if the legal re-
gion of n is empty or not. This can be done by using the intersection
rule defined above. The complexity is thenO(jOnj jσnj), which can be

rz1
rz2

rz3
rz4

rz

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

����������
����������
����������

����������
����������
����������

��������
��������
��������

��������
��������
��������

y1 y2

b a c d

y1 y2

b a c d

y1 y2

b a c d

y1 y2

b a c d

y1 y2

b a c d

Figure 7: Region intersection for nodezof N 0.

much smaller. However, there is a linear algorithm with complexity
O(jOnj+ jσnj) according to the next three lemmas.

Lemma 1 below says that nodes that transitively fan out to only one
output are always legal.

Lemma 1 For a node placement constraintfi1; i2; : : : ; imgo1;o2;:::;on

with n= 1, R(fi1; i2; : : : ; imgo1;o2;:::;on) 6= 0.

Proof: For fi1; i2; : : : ; imgol , the point (xol ;yol) is in
R(fi1; i2; : : : ; imgol).

Lemma 2 below enumerates the cases when nodes that transitively
fan out to two outputs are legal.

Lemma 2 For a node placement constraintfi1; i2; : : : ; imgo1;o2;:::;on

with m� 2 and n= 2, R(fi1; i2; : : : ; imgo1;o2;:::;on) 6= 0 iff

1. (8i8o xi � xo^ yi � yo)_ (8i8o xi � xo^ yi � yo)_ (8i8o xi �
xo^yi � yo)_ (8i8o xi � xo^yi � yo), or

2. R(fi1; i2; : : : ; imgol) is a point, i.e. xo1 = xo2 ^8i yi =C, or yo1 =
yo2 ^8i xi =C, for some C2N .

Proof: If part :

1. Let us assume without loss of generality that(8i8o xi �
xo ^ yi � yo), and let imin = (minfxig;minfyig) and omax =
(maxfxog;maxfyog), then the legal region isr(imin;omax) and it
is not empty.

2. If the legal region is a point, then it is not empty.

Only if part: Without loss of generality assume that the legal region
is not empty and it is not a point, butxi1 < xo1 < xi2 , i.e. o1 is on the
top side of the die, thenR(fi1; i2go1) is a point if bothi1 and i2 are
on the top side as well (Figure 8a); it is a line otherwise (Figure 8b).
SinceR(fi1; i2go1;o2) =R(fi1; i2go1)^R(fi1; i2go2), it is not empty iff
yi1 = yi2 andxo1 = xo2, i.e. o1 ando2 are at opposite side (Figure 8c).
If we have more than two inputs, then they all have to be either on
the top or the bottom side of the chip for the legal region to be non-
empty and the legal region has to be a point (Figure 8d). Hence, it is a
contradiction.

1i

o

1 o i2

(a)

i1

1

i2

i1

1

i2

2

o

o

o i1 i2 i3 i4

2

(b) (c) (d)

1o

Figure 8: Figure for proof of Lemma 2.

The following lemma says if a node transitively fans out to more
than two outputs, then there can only be one case where it is legal.

Lemma 3 For a node placement constraintfi1; i2; : : : ; imgo1;o2;:::;on

with m� 2, and n> 2, R(fi1; i2; : : : ; imgo1;o2;:::;on) 6= 0 iff (8i8o xi �
xo^ yi � yo)_ (8i8o xi � xo^ yi � yo)_ (8i8o xi � xo^ yi � yo)_
(8i8o xi � xo^yi � yo).

Proof: The proof is similar to the proof of Lemma 2.
If part : This is the same as the first case of the if part of Lemma 2

proof.
Only if part : Without loss of generality assume that the legal region

is not empty butxi1 < xo1 < xi2 , i.e. o1 is on the top side of the die,
thenR(fi1; i2go1 is a point if bothi1 andi2 are on the top side as well
(Figure 8a); it is a line otherwise (Figure 8b). SinceR(fi1; i2go1;o2) =
R(fi1; i2go1)^R(fi1; i2go2), it is not empty iffyi1 = yi2 andxo1 = xo2,
i.e. o1 ando2 are at opposite side (Figure 8c). There is no way to add
a third output tofi1; i2go1;o2 with a non-empty legal region. Hence, it
is a contradiction.

By the input-output symmetric nature of legal regions, the above
three lemmas apply with the role ofm andn interchanged.

Let the condition(8i8o xi � xo^yi � yo)_(8i8o xi � xo^yi � yo)_
(8i8o xi � xo^ yi � yo)_ (8i8o xi � xo^ yi � yo) be called thenon-
overlappingcondition. Then, with these three lemmas, the legality of
a node with node placement constraintfi1; i2; : : : ; imgo1;o2;:::;on can be
checked with the following algorithm:

1. If n is 1, then the node is legal.

2. If the non-overlapping condition is true, then the node is legal.
This can be checked inO(m+n) by first finding the largest and
smallestx andy coordinates of both inputs and outputs and then
check for the overlapping condition using these values.

3. If the node placement constraint satisfies Condition 2 of
Lemma 2, then it is legal.

4. If none of the above are satisfied, then the node is illegal.

It is obvious that this legality checking algorithm isO(m+n). Hence,
it is very efficient.

Corollary 5.1 There exists a corner point pc of
R(fi1; i2; : : : ; imgo1;o2;:::;on) that is closest in distance to all out-
puts, and a corner point pf furthest from all outputs. The point pc is
called the closest point of the region and pf the furthest point.

Lemma 4 1. If R(fi1; i2; : : : ; imgo1;o2;:::;on) \ R(fikgo1;o2;:::;on),
where ik 62 fi1; i2; : : : ; img, is not empty, then it contains the
closest point of R(fi1; i2; : : : ; imgo1;o2;:::;on).

2. If R(fi1; i2; : : : ; imgo1;o2;:::;on) \R(fi1; i2; : : : ; imgok , where ok 62
fo1;o2; : : : ;ong, is not empty, then it contains the furthest point
of R(fi1; i2; : : : ; imgo1;o2;:::;on).

Proof: Assume thatm� 2 andn> 2. The proof is similar for other
cases.

1. Assume(8i8o xi > xo^ yi > yo) (the proofs of the other cases
are the same), thenxk > xo^yk > yo. If xk is greater than thex-
coordinates of any other input, thenR(fi1; i2; : : : ; imgo1;o2;:::;on)\
R(fikgo1;o2;:::;on) = R(fi1; i2; : : : ; imgo1;o2;:::;on). If xk is less than
the x-coordinate of all other inputs, then the vertical line going
throughik partitionsR(fi1; i2; : : : ; imgo1;o2;:::;on) into two regions
andR(fi1; i2; : : : ; imgo1;o2;:::;on)\R(fikgo1;o2;:::;on) is the partition
that includes the closest point.

2. The proof is similar to case 1.

Lemma 4 says that:

1. Adding inputs to a node placement constraint will not change the
closest point of its legal region.

2. Adding outputs to a node placement constraint will not change
the farthest point of its legal region.

At this point, we have defined what legal nodes are and how to
check for legality of nodes. We now put the legal context into Boolean
networks and discuss the implication of legality of Boolean network
on placement.

Definition 9 A Boolean network islegal is every node in the network
is legal.

There is a nice property of a legal Boolean network as described by
the following theorem.

Theorem 5.1 Given a legal boolean network, there exists a mono-
tonic point placement for the network.

Proof:
This is an induction proof. We traverse the Boolean network in a

reverse topological order, i.e. a node is visited only after all its fanouts
have been visited.

The base case is where we have all primary outputs. Leto be an
arbitrary primary output, then placeo at its pin location. Foro, its pin
location is its closest point. The induction hypothesis is that fanouts of
a noden are placed at their closest points and still maintaining mono-
tonicity, i.e. the distances from their closest points to their primary
outputs are their Manhattan distances. we show thatn can also be
placed at its closest point while still maintaining monotonicity.

Let nf be an arbitrary fanout ofn. Let c0 be the node placement
constraint ofnf with all fanins exceptn removed. Also let the node
placement constraints ofn and nf be c and cf . Thencf is derived
from c0 by adding the primary inputs of fanins ofnf other thann and
c is derived fromc0 by adding the primary outputs of fanouts ofn
other thannf . We know thatR(c0) 6= 0 becausec0 � c andR(c) 6= 0
by the assumption thatn is legal. By applying Lemma 4 for each
primary input added toc0 to form cf , R(cf) includes the closest point
of R(c0). SinceR(c) � R(c0), the distance from the closest point of
R(c) to a primary outputo is the same as the sum of the distance from
the closest point ofR(c) to the closest point ofR(cf) and the distance
from the closest point ofR(cf) ando. Hence, the monotonic property
is maintained andn can be placed at the closest point ofR(c).

Theorem 5.1 reduces our problem of finding a monotonic point
placement of a circuit into the problem of finding a legal Boolean
network. The logic synthesis transformations we use to convert an
illegal Boolean network into a legal one is calledmakelegal, and it is
explained below.

5.2.4 MakeLegal

The makelegal operation takes a Boolean network as its input and
produces a legal Boolean network. In the effort of producing a legal
Boolean network, it attempts to minimize the number of new Boolean
nodes created.

The following lemma and corollary guarantee that a Boolean net-
work can always be made legal.

Lemma 5 If n! nf , and n is illegal but nf is legal, then collapsing n
into nf will not make nf illegal.

Proof: Collapsingn to nf does not change the support ofnf , nor does
it add any primary output to the transitive fanout ofnf . Therefore, the
node placement constraint ofnf does not change and hencenf stays
legal.

By the proof of Theorem 5.1, we know that every primary output is
legal. Then it is easy to see the following corollary.

Corollary 5.2 An illegal Boolean network can always be made legal
by collapsing all nodes into the primary output nodes.

Beside collapsing, node duplication can also legalize a node.

Lemma 6 If n ! nf , n! ng, and n is illegal but both nf and ng are
legal, then duplicating n into n1 ! nf and n2 ! ng makes n1 and n2
legal.

Proof: The support ofn is a subset of both the supports ofnf and
ng, but the output set of the node placement constraint ofn is a superset
of the node placement constraints of bothnf andng. By duplicating
n into n1 ! nf andn2 ! ng, node placement constraint ofn1 is con-
tained in that ofnf and thusn1 is legal. Similarly forn2.

Make legal traverses the Boolean network in a reverse topological
order, i.e. a node is visited after all its fanouts have been visited. Dur-
ing the traversal, if it sees an illegal node, it collapses the node into its
fanouts until the node becomes legal. Hence, there is a frontier moving
from each primary output to primary inputs in its support where every
node is legal on the side of the frontier toward the primary output. If
the sum-of-product expression of the fanout, as a result of collapsing a
node into one of its fanouts, exceeds a user-defined parameter,t, num-
ber of literals, the node is replicated for each fanout until it becomes
legal. The intuition behind this parameter is that large nodes tend to
have more common subfunctions with other nodes and thus allow for
sharing. However, the parameter should not be too large since it can
result in explosion in memory usage.

As shown above, legality of a node can be checked efficiently, that
is, it is linear in the size of the node placement constraint. Hence, the
makelegal operation is efficient.

5.3 Constraint-Driven Synthesis

The constraint generation step takes a possibly illegal Boolean net-
work and makes it legal. Theorem 5.1 guarantees that there exists
a point placement for this network. However, by definition of the
point placement of a circuit, nodes are assumed to be a point; hence,
they have no area. In reality, nodes have area and the length of a
longest path depends strongly on the size of a Boolean network. The
constraint-driven synthesis step is responsible for minimizing the area
of an already legal Boolean network while preserving its legality. As
mentioned in Section 5, we use the number of factored-form literals of
a Boolean network as a measure of the area of the circuit represented
by the Boolean network. So this step is to optimize the network such
that we get a minimum literal legal Boolean network.

We leverage the well developed algebraic transformations in the
conventional logic synthesis by extending them to deal with and pro-
duce legal Boolean nodes. Each of these operations is explained be-
low.

5.3.1 FastExtract

The fast extractalgorithm is explained in [16]. It basically looks for
a two-cube divisor or a two-literal cube that reduces the most number
of literals in every iteration.

When dealing with legal Boolean network, this algorithm may re-
sult in illegal divisors. For example, assume that noden is the best
divisor found and it divides nodesx, y, andz. Then the output set of
the node placement constraint ofn is the union of the output sets of the
node placement constraints ofx, y, andz. From Section 5.2, we know
that the legal region ofn may be empty andn may therefore be illegal.
However, it may be the case thatn remains legal if it only dividesx
andy, or x andz, etc. Hence, the fastextract algorithm is modified
such that the best legal divisor is chosen in every iteration.

If node n divides a set of nodesN, then complexity of finding a
subsetNl of N which preserves the legality ofn and has the largest re-
duction in the number of literals is exponential in the size ofN. Hence,
a heuristic is used to select an optimal subset. First the nodes inN are
ordered in decreasing sizes of the legal regions to form a listNsorted.
ThenNsorted is linearly traversed. Each node is added to the subsetNl
if the legality ofn is preserved. Noden is used as a divisor if it reduces
the number of literals in the network.

In this paper, the fastextract implemented in SIS is used.

5.3.2 Resubstitution

In the conventional logic synthesis, a noden is resubstituted into an-
other nodex if n dividesx. This may affect the legality of bothn and
x. The following observation states whenn andx can become illegal.

Observation 1 If n divides x and both n and x are legal before resub-
stitution, then after resubstitution

1. x can become illegal if its support is not the superset of that of n.

2. n can become illegal if its output set is not the superset of that of
x.

In this paper,n can only be resubstituted intox if the legality ofn is
preserved. Hence, a check is made before every resubstitution.

5.3.3 Full Simpfily

There are two types ofdon’t cares, i.e. the observability don’t cares
(ODCs) and the satisfiability don’t cares (SDCs). Computing the exact
ODCs of a node is computationally expensive. In practice, a subset of
the ODCs called the compatible ODCs (CODCs) are computed. These
CODCs are expressed in terms of the primary inputs. Then together
with the external don’t cares (XDCs) of the primary outputs, a don’t
care set in terms of the immediate fanins is computed using an im-
age computation. In computing the SDCs, a support filter is used. A
node is included in the SDCs if its support set intersects the support
set of the node being considered. Employing SDCs in the minimiza-
tion procedure can result in boolean resubstitutions. The support filter
procedure can also be used in the image computation of the CODCs
and XDCs. Once the SDCs are computed and the XDCs and CODCs
are expressed in terms of immediate fanins, a two-level minimization
algorithm is invoked to find an optimized expression. This is simply
a brief description of thefull simplify. For a more detail explanation,
we refer the readers to [10].

Lemma 7 Throughout fullsimplify computation, the only steps that
can introduce illegality into the network are the image computation
and the SDC computation.

Proof: Let noden be the node we are computing don’t cares for.
Legality of the Boolean network can only change if an edge is added
to the network. During the whole fullsimplify process, only the fanin
edges ofn can be added. Edges of fanins of other nodes can not
change. Adding a fanin edge ton means that a resubstitution happens
and Observation 1 applies. Potential new fanin edges ofn are added
only during the image computation and SDC computation through the
support filter, which basically says that a nodex is a potential divisor
of n if the support ofx intersect the support ofn.

We therefore constrain this operation by allowing a nodex to be
in the support filter when computing fullsimplify for noden if the
inclusion of nodex preserves the legality of the network according to
Observation 1.

5.3.4 Synthesis Flow

With all the above basic operations, a synthesis flow is then a script
similar to thescript.ruggedin SIS. An empirical study needs to be
conducted to derive an optimal script.

6 Experimental Results
To see the effect of the proposed approach, we have implemented the
basic operations described in Section 5.3. An optimization script has
been created and we call itscript.wire, which consists of:

make_legal

eliminate 5

sweep; eliminate -1

simplify -m nocomp

eliminate -1

sweep; eliminate 5

simplify -m nocomp

resub -a

fx

resub -a; sweep

eliminate -1; sweep

full_simplify -m nocomp

Our experiment uses SIS and Ritual version 3.4, a timing-driven
standard cell placer [12]. The input blif file and a randomly gener-
ated pad assignment file is read into SIS. Thescript.wireoptimization
script is run in SIS to generate an optimized logic netlist. The op-
timized netlist is mapped to the standard cell technology librarystd-
cell2 2.genlibof SIS. The mapped netlist is then placed by Ritual with
a fixed pad assignment. We measure the length of the longest path and
the delay of the Ritual output. The distance of two cells is measured
as the Manhattan distance from the center of both cells. The length of
a path is the sum of all distances between consecutive cells along the
path.

Table 1 shows the results for four circuits. The circuitbbaraCombis
obtained from the sequential circuitbbaraby removing all latches and
treating the outputs of the latches as primary inputs and the inputs to
the latches as primary outputs of the network. Column 2, 3, and 4 show
the number of literals in factored forms of the scripts script.rugged,
script.delay, and script.wire respectively. Columns 5, 6, and 7 list the
length of the longest path for each script. Columns 8, 9, and 10 show

the CPU time. The experiments were run on a DEC AlphaServer 8400
with 2GB of memory. The runtime is for the technology independent
step.

As shown in this table, although the number of literals inscript.wire
approach is more than that ofscript.rugged; the length of its longest
path is the same forrd53and better in other circuits. The longest paths
are much shorter thanscript.delayresults. As seen from this table, the
runtime is comparable. This is expected since the legality checking
is linear in the size of the node placement constraints and hence its
runtime is a minor part of the total runtime.

Table 2 shows the delay computed by Ritual for the four circuits.
Columns 2, 3, and 4 show the cell delay for each script. The wire delay
is shown in columns 5, 6, and 7. The total delay is listed in columns 8,
9, and 10. Except for the total delay ofz4mlrunningscript.delay, the
total delay of all circuits is the best usingscript.wire.

 # Literals x 10 3 C1355

 C1355.xg

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

 14.00

 16.00

 18.00

 20.00

 22.00

 24.00

 0.00 50.00 100.00 150.00 200.00

 # legalized nodes

Figure 9: Number of literals vs number of nodes legalized for C1355.

7 Open Issues and Future Work
Though the results in the previous section shows that the approach per-
forms satisfactorily, these circuits are fairly small. For bigger circuits,
the number of nodes in a legal network can be large and optimizing
such large networks using operations likefast extractandfull simplify
can be very expensive.

To illustrate this, we plot the number of literals versus the number of
nodes in the constraint generation step for C1355 as shown in Figure 9.
On thex-axis is the number of illegal nodes that are legalized. On the
y-axis is the number of literals in the Boolean network. The network
increases from 1032 literals to 23709 literals after 216 nodes have been
legalized out of a total of 514 nodes in the network.

There are three various directions that can be pursued to address this
problem. The first one is to improve the area optimization algorithm
presented in this paper. Rewiring and redundancy removal is a tech-
nique that falls into this direction. SPFDs [2] can be used to minimize,
rewire circuits, and potentially legalizing nodes. In this paper, we are
assuming that we are given a circuit represented as a Boolean network.
We then apply makelegal and several algebraic transformations fol-
lowed by don’t care minimization. The final circuit depends on the
quality of the initial Boolean network. Alternatively, the Boolean net-
work can first be collapsed as much as possible into a two-level circuit
where all primary outputs are expressed in terms primary inputs. Then
functional decomposition, like [11], can be used to decompose the net-
work into a minimum literal legal Boolean network.

The second direction which we believe is more promising is to relax
the constraint that every path must be monotonic. In other words, this
is about solving the slack-based synthesis problem instead of the more
restrictive IP-based synthesis problem. This can be done by applying

Table 1: Path length comparison ofscript.rugged, script.delay, andscript.wirefor IP-based synthesis.

Number of Literals Length of Longest Path CPU Time
Name sc.rugged sc.delay sc.wire sc.rugged sc.delay sc.wire sc.rugged sc.delay sc.wire
z4ml 41 84 49 1324 1342 1025 0.2 0.3 0.3
rd53 42 62 50 1122 1624 1122 0.1 0.3 0.2
rd73 74 178 87 1689 2457 1680 0.8 1.8 1.2
bbaraComb 69 79 109 2021 1573 1464 0.5 0.5 0.3

Table 2: Delay comparison ofscript.rugged, script.delay, andscript.wirefor IP-based synthesis.

Cell Delay Wire Delay Total Delay
Name sc.rugged sc.delay sc.wire sc.rugged sc.delay sc.wire sc.rugged sc.delay sc.wire
z4ml 5.66 5.28 4.78 0.93 1.03 0.97 6.59 6.31 5.75
rd53 9.73 7.37 5.94 1.67 2.13 1.42 11.40 9.50 7.36
rd73 7.01 5.09 5.59 1.37 0.88 0.86 8.38 5.97 6.45
bbaraComb 8.18 6.22 4.90 2.19 1.72 1.08 10.37 7.94 5.98

the IP-based synthesis algorithm only to a subset of the paths. Intu-
itively, we can wireplan only the critical paths so that no diversions
are allowed in them; other paths can have diversions. One approach
would be to modify the definition of legality so that legality is checked
based on the primary inputs and outputs that are relevant only to the
critical paths. Only the nodes on the critical paths are legalized. We
have done some preliminary experiment and our results show that if
you select top few longest paths and legalize all the nodes on those
paths, then the area penalty is not very high. However, at present there
is no easy way to perform a meaningful comparison of this approach
(i.e. modified IP-based algorithm to solve the slack-based synthesis
problem) with the conventional approach. For that, we need a place-
ment tool that uses the same delay model as ours and we have not been
successful at making Ritual use our model.

One other issue that needs further attention is that of pin assignment
The approach in this paper assumes that the pin assignment is given.
In the design process, usually only partial pin assignment is given.
However, the quality of the final solution strongly depends on the pin
locations. Therefore, we need to look into algorithms to find good
pin assignment during synthesis. Such an algorithm can also be used
to extend this approach to handle sequential circuits by finding good
placement for the latches present.

The optimizations that we have shown are technology independent.
We have not yet addressed the issue of technology mapping. Also,
we have completed ignored gate delays. We are presently looking
into both of these issues, i.e. technology mapping and how to best
incorporate gate delays in our approach.

Finally we are also looking into extending the proposed approach
to handle other interconnect issues, like crosstalk and reliability.

8 Conclusions

We have proposed a new approach to deal with the increasingly im-
portance of wire delays in deep submicron technologies. It is based
on the fact that the shortest path between any two points in a circuit is
the Manhattan distance between them. We showed an example of why
conventional logic synthesis may produce circuits where the minimum
distance can not be achieved.

The proposed approach still decouples logic synthesis phase and
place & route phase. It consists of a constraint generation step which
produces a legal Boolean network, which can be placed such that ev-
ery path is monotonic, and a constraint-driven synthesis step which
minimizes the legal Boolean network while preserving legality. We
show an example of how this approach can be extended to solve the
slack-based synthesis problem. Finally, we describe directions for fu-
ture work which includes an investigation into a new placement tool
that works together with the proposed approach.

References
[1] Semiconductor Industrial Alliance.National Technology Roadmap for Semiconduc-

tors. 1997.

[2] R.K. Brayton. Understanding SPFDs: A new method for specifying flexibility.
IWLS, May 1997.

[3] R.K. Brayton, A.L. Sangiovanni-Vincentelli, and G. Hachtel. Multi-level logic syn-
thesis.Proceedings of the IEEE, vol. 78(no. 2):264–300, February 1990.

[4] J. Cong and Z. Pan. Interconnect Performance Estimation Models for Synthesis and
Design Planning. InIWLS 98.

[5] K. Keutzer, A.R. Newton, and N. Shenoy. The future of logic synthesis and physical
design in deep-submicron process geometries. InISPD, pages 218–224, 1997.

[6] Y. Kukimoto and R.K. Brayton. Hierarchical functional timing analysis. InDAC,
1998.

[7] R. H. J. M. Otten and R. K. Brayton. Planning for Performance. InDAC, June 1998.

[8] M. Pedram and N. Bhat. Layout Driven Logic Restructuring/Decomposition. In
ICCAD, pages 134–137, November 1991.

[9] M. Pedram and N. Bhat. Layout Driven technology Mapping. InDAC, pages 99–
105, June 1991.

[10] H. Savoj.Don’t cares in multi-level network optimization. PhD thesis, University of
California, Berkeley, May 1992.

[11] C. Scholl and P. Molitor. Communication based FPGA synthesis for multi-output
boolean functions. InASP-DAC, pages 279–288, August 1995.

[12] A. Srinivasan, K. Chaudhary, and E. S. Kuh. Ritual: a performance driven placement
algorithm.IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 39(11):825–840, November 1992.

[13] G. Stenz, B. M. Riess, B. Rohfleisch, and F. M. Johannes. Timing Driven Placement
in Interaction with Netlist Transformations. InISPD 97, Napa Valley, CA, 1997.

[14] H. Vaishnav and M. Pedram. Routability-Driven Fanout Optimization. InDAC,
pages 230–235, June 1993.

[15] H. Vaishnav and M. Pedram. Minimizing the Routing Cost During Logic Extraction.
In DAC, pages 70–75, June 1995.

[16] J. Vasudevamurthy and J. Rajski. A method for concurrent decomposition and fac-
torization of Boolean expressions. InICCAD, pages 510–513, November 1990.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

