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Abstract— We present a Petri net theoretic approach to the software
synthesis problem that can synthesize ordinary C programs from process-
based concurrent specifications without the need for a run-time multi-
threading environment. The synthesized C programs can be readily retar-
geted to different processors using available optimizing C compilers. Our
compiler can also generate sequential Java programs as output, which can
also be readily mapped to a target processor without the need for a multi-
threading environment. Initial results demonstrate significant potentials for
improvements over current run-time solutions.

I. I NTRODUCTION

S
OFTWARE is playing an increasingly important role in embedded
systems. While high-level language compilers exist for implement-

ing sequential programs on embedded processors [17]. e.g. starting
from C [10], many embedded software applications are more naturally
expressed as concurrent programs, specified in terms of communicat-
ing processes. This is because typically actual system applications are
composed of multiple tasks.

Currently, the most widely deployed solution is to use an embed-
ded operating system to manage the run-time scheduling of processes
and to handle the inter-process communication. However, this solution
tends to add significant overhead in program size, run-time memory
requirements, and execution time.

Several alternative high-level approaches have been proposed. Static
data-flow solutions [2], successfully used to design DSP-oriented sys-
tems, achieve compile-time scheduling at the expense of disallow-
ing conditional and non-deterministic execution. Other researchers
have considered hybrid approaches [7], [18] that generate application-
specific run-time schedulers to handle the multi-tasking of conditional
and non-deterministic computations. Reactive approaches, e.g. Es-
terel [1], rely on a strong synchrony hypothesis that makes two fun-
damental assumptions: the existence of a global clock abstraction to
discretize computation over instances, and computation takes no time
within each instance. This hypothesis is difficult to satisfy for dis-
tributed implementations and may not match naturally to many appli-
cations from a specification standpoint.

In contrast, our work is based on a model ofasynchronywhere the
concurrent parts can evolve independently and only synchronize where
specified. Recently, we introduced a new Petri net theoretic software
synthesis method based on a new Petri net theoretic technique that can
synthesize efficient embedded software implementations from asyn-
chronous process-based specifications without the need for a run-time
scheduler [11]. This approach has been implemented in a system under
development calledPicasso. In this paper, we further develop on our
approach. We also briefly describe a new Java-based implementation,
in addition to our earlier C-based implementation.

The remainder of this paper is organized as follows: Our specifica-
tion model is introduced in Section II. The Petri net intermediate rep-
resentation is introduced in Section III. The software synthesis method
is detailed in Section IV. Initial results from an encryption example are
presented in Section V.

II. SPECIFICATION

Our programs are hierarchically composed of processes that com-
municate through synchronizing channels. The semantics is based on

the CSP formalism [9], but the syntax is similar to C. Consider the fol-
lowing simple example composed of two processes calledping and
pong .

1 ping (input chan(int) a, output chan(int) b) f
2 int x;
3 for (;;) f
4 x = <-a; /* receive */
5 if(x < 100) x = 10 - x;
6 else x = 10 + x;
7 b <-= x; /* send */
8 g g

9 pong (input chan(int) c, output chan(int) d) f
10 int y, z = 0;
11 for (;;) f
12 d <-= 10;/* send */
13 y = <-c; /* receive */
14 z = (z + y) % 345; /* send */
15 gg

16 system ( ) f
17 chan(int) c1, c2;
18 par f
19 ping (c2, c1);
20 pong (c1, c2);
21 g g

Channels are declared using thechan statement, as exemplified in
Line 1 . The unary receive operator,<- , receives data on the channel
specified as its right operand. The received value may then be manipu-
lated by other operators, e.g. it can be assigned to a variable, as exem-
plified in Line 4 . The send operator,<-= , transmits the result of the
expression provided as its right operand on the channel specified as its
left operand, as exemplified inLine 7 . Basic control-flow constructs,
like if-then-else , for-loops , andwhile-loops , and basic arith-
metic and relational operators, like+, - , * , %, and>, >=, ==, != , are the
same as in C. There is also analt construct [9], not used here, that pro-
vides a mechanism for non-deterministic execution. Finally, processes
can be hierarchically composed to form larger systems, as exemplified
by the processsystem . The par statement executes the statements
in its body in parallel and joins the threads of execution at the end by
waiting for all processes to terminate before proceeding.

III. I NTERMEDIATE REPRESENTATION

A. Petri nets

LetG = hP; T; F;m0i be a Petri net [14], whereP is a set of places,
T is a set of transitions,F � (P � T ) [ (T � P ) is the flow relation,
andm0 : P ! N is the initial marking, whereN is the set of natural
numbers. The symbols�t andt� define, respectively, the set of input
places and the set of output places of transitiont. Similarly, �p and
p� define, respectively, the set of input transitions and the set of output
transitions of placep. A placep is called aconflict placeif it has more
than one output transition. Two transitions,ti andtj are said to be in
conflict if and only if �ti \ �tj 6= ;. A state, or marking,m : P ! N ,
is an assignment of a non-negative number to each place.m(p) denotes
the number of tokens in the placep. A transitiont can fire at marking
m1 if all its input places contain at least one token. The firing oft

removes one token from each of its input places and adds a new token
to each of its output places, leading to a new markingm2. This firing

is denoted bym1

t
! m2. Given a Petri netG, the reachability set of

G is the set of all markings reachable inG from the initial marking
m0 via the reflexive transitive closure of the above firing relation. The
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corresponding graphical representation is called a reachability graph.
A Petri netG is said to belive if 8t 2 T , 9m reachable from the initial
markingm0 such thatt is enabled. It is said to besafe if in every
reachable marking, there is at most one token in any place. In this case,
we can simply represent each markingm : P ! f0; 1g as a binary
assignment.

B. Intermediate construction

In [4], [19], a process algebra was developed for constructing a Petri
net model from a program of communication processes. Consider again
the example presented in Section II. The derived Petri net models for
processesping andpong are shown in Fig. 1(a) and Fig. 1(b), respec-
tively, along with their initial markings.
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c: x=10-x f: z=(z+y)%345 c: x=10-x
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c1: b<-=x c1: y=x;

f: z=(z+y)%345

Fig. 1. (a)ping (b) pong (c) system = ping k pong

Concurrent processes can be composed viaparallel composition. In
parallel composition, communication actions in fact formsynchroniza-
tion pointsand are joined together at their common transitions. This is
illustrated in Fig. 1(c).

IV. SOFTWARE SYNTHESISMETHOD

A. Classes of Petri nets

A Marked Graph (MG)is a netG = hP; T; F;m0i such that8p 2
P : j�pj = 1 = jp�j. MGs cannot model conficts.

A State Machine (SM)is a netG = hP; T; F;m0i such that8t 2
T : j�tj = 1 = jt�j. SMs cannot model concurrency.

A Free-Choice Net (FC-net)is a netG = hP; T; F;m0i such that
8t1t2 2 T; t1 6= t2 : �t1 \ �t2 6= ; ) j�t1j = 1 = j�t2j, or
8p1p2 2 P; p1 6= p2 : p1� \ p2� 6= ; ) jp1�j = 1 = jp2�j. Every
MG and SM is a FC-net. For FC-nets, all conflicts can be decided
locally.

Let G0 be a subset of a netG generated by anon-emptysetX �

P [ T . G0 is aMG-Componentof G if �t [ t� � X for everyt 2 X,
andG0 is a strongly connected MG.

Let G0 be a subset of a netG generated by anon-emptysetX �

P [ T . G0 is aSM-Componentof G if �p [ p� � X for everyp 2 X,
andG0 is a strongly connected SM.
G is said to becoveredby a set of MG-Components if every transi-

tion of the net belongs to some MG-Component.G is said to becovered
by a set of SM-Components if every place of the net belongs to some
SM-Component. Hack [8] proved that a live safe FC-net can always be
coveredby a set of MG-Components or a set of SM-Components.

B. Expansions

Definition IV.1(Expansion) Anexpansionis an acyclic Petri net
with the following properties:

� There is one or more places without input transitions.
� There is one or more places without output transitions.
� There are no transitions without at least one input place or one

output place.
The places without input transitions are calledinitial places. The places
without output transitions are calledcut-off places.

Definition IV.2(Maximal expansion) LetG be a Petri net and letm
be a marking ofG. Themaximal expansionof G with respect tom,E,
is an acyclic Petri net with the following properties:

� The initial places correspond tom.
� The cut-off places correspond to the set of places encountered

when a cycle has been reached.
� E is transitively closed: for eacht 2 E or p 2 E, all preceding

places and transitions reachable fromm are also inE.
m is referred to as theinitial marking.

Intuitively, the maximal expansion ofG with respect to a marking
m corresponds to the largestunrolling of G fromm before a cycle has
been encountered. Consider the example shown in Fig. 2(a). The corre-
sponding maximal expansion withm = hp1; p2i is shown in Fig. 2(b).
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Fig. 2. (a) Petri net example. (b) Its maximal expansion. (c) A cut-off marking.
(d) Another cut-off marking.

Definition IV.3(Cut-off markings) LetG be a Petri net, and letE
be a maximal expansion ofG with respect to the initial markingm. A
markingmc is said to be acut-off markingif it is reachable fromm and
no transitions are enabled to fire. The set of cut-off markings is denoted
byCM(E).

For the example shown in Fig. 2, there are two possible cut-off mark-
ingsmc1 = hp10; p20i andmc2 = hp30; p4i, shown respectively in
Fig. 2(c) and Fig. 2(d).

Our synthesis procedure works by generating code from a maximal
expansion segmentE obtained by using the initial markingm0 as the
initial marking for the expansion. Then from each cut-off marking
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Fig. 3. (a) Maximal expansion. (b) Cut-off marking.

mci 2 CM(E), a new maximal expansion segmentEi is generated
usingmci as the initial marking. This iteration terminates when all
cut-off markings have already been visited. The pseudo-code for the
overall algorithm is shown below.

soft-synt ( G, m0) f
EM = fm0g;
push ( m0);
while (( m = pop()) 6= ;) f

E = maximal-expansion ( G, m);
static-scheduling ( E, m);
foreach mc 2 CM(E) f

if mc 62 EM f
EM = EM [mc;
push ( mc);

g g g g

The static-scheduling step is applied to each expansion segment
to produce the actual code.

In the example shown in Fig. 2, only two expansion segments are
needed. From the initial markingm = hp1; p2i, the only cut-off mark-
ings reachable aremc = hp1; p2i andmc = hp3; p4i. However, from
m = hp3; p4i, the only cut-off marking reachable ismc = hp3; p4i

itself, as shown in Fig. 3.
However, in the example shown in in Fig. 1, onlyone expansion

segment is needed since the only cut-off marking reachable from the
initial marking is the initial marking itself (i.e.m = hp1; p2i)1.

C. Properties

The expansion procedure described in Section IV-B is guaranteed to
converge since the number of possible markings in a Petri net is finite.
Hence, the number of expansions or iterations is also finite. Typically,
very few expansions are required.

For certain classes of Petri nets, the convergence property is even
stronger. In the case of a strongly connected live safe MG, the number
of expansions is exactly one. This is because in the case of a strongly
connected live safe MG, the initial markingm0 forms a minimal feed-
back arc set. The number of tokens along any directed cycle in the MG
in the initial marking is exactly one. Thus, according to Definition IV.2,
the maximal expansion of a MGG with respect to its initial marking
m0 is exactly defined as the acyclic Petri netE where both the initial
places and the cut-off places correspond exactly to the places marked
bym0. Thus, the set of cut-off markings forE contains only the initial
markingm0.

In the case of a strongly connected live safe FC-netG that can cov-
ered by a set of strongly connected live safe MG componentsG1 : : : Gn

such that the initial markingm0 of G restricted toGi is also a live safe
initial marking for the MG componentGi, the number of expansions is
also exactly one. The argument follows a similar line as the argument

1Here, we do not distinguish betweenpi andp0
i

because they simply denote
different instances of the same place.

for the MG case. That is, the initial markingm0 corresponds to both
the initial places and cut-off places if we maximally expandG with re-
spect tom0. Thus, convergence is guaranteed after one expansion since
the set of cut-off markings contains onlym0.

D. Static scheduling

Give an expansion segmentE, represented as an acyclic Petri net
fragment, our software synthesis method performs astatic scheduling
of the operations2 in that segment. During scheduling, astepassigned
to every operation inE. More formally, static scheduling is defined as
follows:

Definition IV.4(Static scheduling) LetE be an expansion segment.
ti is said toprecedetj in E, denoted asti � tj , if there is a directed
path fromti to tj . Let� : T ! N , be aschedule functionthat assigns
a non-negative integer�(t) 2 N to everyt 2 E. A schedule is said to
bevalid iff it satisfies the following condition:8ti; tj 2 E, if ti � tj ,
then�(ti) < �(tj).

To illustrate this process, consider the expansion segment shown in
Fig. 4(a) (corresponding to the example depicted in Fig. 4). Two valid
schedules are shown in Fig. 4(b) and Fig. 4(c). It is not the intention of
this paper to discuss in details the different possible scheduling heuris-
tics. The interested reader can refer to [3], [5] for a survey of example
techniques.
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Fig. 4. (a) An expansion segment. (b) A valid static schedule. (c) Another valid
static schedule.

Given a schedule�, a control-flow-graph fragment is constructed.
In contrast to the traditional scheduling problem, where typically only
data-flow blocksare considered, the control-flow-graph mapping step
is much less straightforward. This is because we can have complex
concurrent conditionals where thefiring of a transition is dependent on
the concurrent conflow flow and must obey Petri net firing rules. Es-
sentially, the control-flow-graph generation step is based on a traveral
of E, but we modify the Petri net firing rules so that we proceed in ac-
cordance to the levels defined by�. For example, the schedule shown
in Fig. 4(b) will result in the control-flow-graph fragment depicted in

2Previously called pre-ordering [11].



Fig. 5(a). Similarly, Fig. 5(b) shows the resulting control-flow-graph
for the schedule shown in Fig. 4(c).
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Fig. 5. (a) Control-flow-graph fragment. (b) Another control-flow-graph frag-
ment.

E. Code generation

Once the overall control-flow-graph has been generated, it can be
syntactically translated into plain C or sequential Java code for im-
plementation. This last code generation step can leverage upon well-
studied standard code optimization techniques [17].

V. I MPLEMENTATION AND RESULTS

A. Implementation

The synthesis method presented in this paper has been implemented
in a system calledPicasso. The compiler is implemented as a pre-
processor that generates either plain C [10] or Java [6]. Both solutions
are highly portable.

In the case of the C output, any available optimizing C compiler
can be used to produce the target machine code. For comparisons, we
have also implemented a multi-threading approach that uses the Solaris
thread library to implement the processes. In principle, any real-time
multi-threading packages may be used.

In the case of the Java output, the Java produced by our synthe-
sis method issequentialin that it does not make use of any multi-
threading feature in Java. Thus, a much lighter weight Java Virtual
Machine without multi-threading support may be used. Also, any Just-
In-Time compiler or Java-To-C translator (e.g. [12], [15]) can be used to
produce native executables, again without the need for multi-threading
support. For comparisons, we have also implemented a multi-threading
approach in Java by mapping processes to Java threads.

B. Results

We have applied our C implementation to an example derived from
the RC5 encryption algorithm. RC5 is widely used by RSA Data Se-
curity in a range of Internet security products [16]. A novel feature of
RC5 is the heavy use of data-dependent rotations. The top-level view of
the example is shown in Fig. 6. It consists of two encryption/decryption
chains that are merged together by a monitor process.

We chose this example because it contains both data-dependent
loops as well as non-deterministic choices. Table I compares the re-
sults of our method with a multi-threading library approach. The table
compares the execution times of both approaches on different size input
streams. The first row corresponds to a 40K bytes input file, the second
row corresponds to a 400K byte input file, and the third row corre-
sponds to a 4M byte input file. The CPU-times are reported in seconds

  core
system

   rc5
decrypt

   rc5
encrypt

   rc5
decrypt

   rc5
encrypt
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ct0

ct1

dt0

dt1
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Fig. 6. RC5 encryption chain example.

size threads synthesis

40K 2.6 0.04
400K 26.0 0.33

4M 256.6 3.30

rate 15.4KB/s 1.21MB/s

TABLE I
COMPARATIVE RESULTS ON ASUN/SOLARIS ULTRA-1.

on a Sun Ultra-1 workstation running Solaris. The row labeled “rate”
summarizes the execution of the two solutions in terms of bytes per
second. Comparing CPU-times, the Solaris thread based implementa-
tion is significantly slower than our software code synthesis approach,
due to the significant overhead introduced by Solaris threads.
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