Software Synthesis of Process-Based Concurrent Programs
Bill Lin

Electrical and Computer Engineering Department, University of California, San Diego, La Jolla, California, 92093-0407

Abstract— We present a Petri net theoretic approach to the software the CSP formalism [9], but the syntax is similar to C. Consider the fol-

synthesis problem that can synthesize ordinary C programs from process- |owing simple example composed of two processes caliegl and
based concurrent specifications without the need for a run-time multi-

threading environment. The synthesized C programs can be readily retar- pong.
geted to different processors using available optimizing C compilers. Our 1 ping (input chan(int) a, output chan(int) b) {
compiler can also generate sequential Java programs as output, which can 2 int x;
also be readily mapped to a target processor without the need for a multi- 3 for (;;) {
threading environment. Initial results demonstrate significant potentials for 4 X = <-a; [* receive */
improvements over current run-time solutions. 5 if(x < 100) x = 10 - x;
6 else x = 10 + x;
I. INTRODUCTION g by b <-=Xx; /* send */

SOFTWARE is playing an increasingly important role in embedded)))

systems. While high-level language compilers exist for implemerit- Pong (input chan(int) ¢, output chan(int) d) {

ing sequential programs on embedded processors [17]. e.g. stariing 'fgtr 3(’,',)2 =0

from C [10], many embedded software applications are more natur

L ; d <-= 10;/* send */
expressed as concurrent programs, specified in terms of communigat- y = <-c; /* receive */
ing processes. This is because typically actual system applicationsiare z=(z +Y) % 345, /* send *
composed of multiple tasks. 15 }}

Currently, the most widely deployed solution is to use an embed-
ded operating system to manage the run-time scheduling of proce#@sctﬁ; (i(nt)) Cl{ o
and to handle the inter-process communication. However, this solutli)g\ par T
tends to add significant overhead in program size, run-time memaqgy ping (c2, cl);
requirements, and execution time. 20 pong (cl, c2);
Several alternative high-level approaches have been proposed. Sgitic }
data-flow solutions [2], successfully used to design DSP-oriented sys- . -
tems, achieve com[pi]le-time scheéluling at the gxpense of disallo)\//v-Channels are declare_d using ten statement, as exemplified in
ing conditional and non-deterministic execution. Other researchets. L. The_ unary receive operatot; , receives data on the channe_l
have considered hybrid approaches [7], [18] that generate applicati ecified ar? its right operand. The received value may then lbe manipu-
specific run-time schedulers to handle the multi-tasking of condition ed by other operators, e.g. it can be assigned to a variable, as exem-

and non-deterministic computations. Reactive approaches, e.g. xgl?gsgcl_énergvidggz;ﬁgdri Oﬁf(r)atg;:d gﬁ?ﬁ?gﬁ;gﬁ‘;essugcﬁ{etgzs its
terel [1], rely on a strong synchrony hypothesis that makes two fu 'po erandp as exemplified ?n‘ne F; Basic control-flow co%structs
damental assumptions: the existence of a global clock abstractior];at% ifghen-elée forr-)loo < and;NhiIe—Ioo < and basic arith-’
discretize computation over instances, and computation takes no tlﬁe ic and relationa{l opera?ors ‘Iike— s o an?:b . are the
within each instance. This hypothesis is difficult to satisfy for dis- me as in C. There is alsoain construct [9], not used here, that pro-

tributed implementations and may not match naturally to many app\ﬁ%es a mechanism for non-deterministic execution. Finally, processes
cations from a specification standpoint. : Y, P

In contrast, our work is based on a modelasinchronywhere the can be hierarchically composed to form larger systems, as exemplified

- : the processystem . Thepar statement executes the statements
concurrent parts can evolve independently and only synchronize Whgyets bopdy in payrallel and joiﬁs the threads of execution at the end by

specified. Recently, we introduced a new Petri net theoretic software. for all) bef di
synthesis method based on a new Petri net theoretic technique thatvc\%'ll‘lmg or all processes to terminate before proceeding.
synthesize efficient embedded software implementations from asyn-
chronous process-based specifications without the need for a run-time

scheduler [11]. This approach has been implemented in a system urtlePetri nets

development calle@®icasso In this paper, we further develop on our LetG = (P, T, F, mo) be a Petri net [14], wher® is a set of places
approach. We also briefly describe a new Java-based implementat'bgrﬂs a set of t;an’sitionsF C(PxT)u(T >< P) i the flow relation,,

in addition to our earlier C-based implementation. andmg : P — N is the initial marking, wheréV is the set of natural

The remainder of this paper is organized as follows: Our specificr%mbers The symbolet andte define, respectively, the set of input
tion model is introduced in Section Il. The Petri net intermediate re laces aﬁd the set of output places O‘f transitiorSirﬁiIarly op and

resentation is intreduced in Section lll. The software synthesis methoc define, respectively, the set of input transitions and the set of output
is detailed in Section IV. Initial results from an encryption example a%ansitions of place. A placep is called aconflict placeif it has more
presented in Section V. than one output transition. Two transitiorg,and¢; are said to be in

Il. SPECIFICATION conflictif and only if e¢; N e¢; # (. A state, or markingsn : P — N,

. . is an assignment of a non-negative number to each plage) denotes
Our programs are hierarchically composed of processes that cqfis number of tokens in the plage A transitiont can fire at marking
municate through synchronizing channels. The semantics is based,pnit gl its input places contain at least one token. The firing of
removes one token from each of its input places and adds a new token
to each of its output places, leading to a new marking This firing
is denoted bymn, % mo. Given a Petri ne@, the reachability set of

DAC 98, San Francisco, California G is the set of all markings reachable @ from the initial marking
© 1998 ACM 1-58113-049-x/98/06 $3.50 myp Via the reflexive transitive closure of the above firing relation. The

I1l. | NTERMEDIATE REPRESENTATION

corresponding graphical representation is called a reachability graph.Expansions
A Pet.“ netG is said to b_d|ve ifvteT, El.m re_achable fro_m_the initial Definition IV.1(Expansion) Anexpansionis an acyclic Petri net
marking mo such thatt is enabled. It is said to bsafeif in every : ; P
: . . Y with the following properties:
reachable marking, there is at most one token in any place. In this case

ol t h King: P 0.1 bi « There is one or more places without input transitions.
\;vsesicgir:nselmpy represent each marking: P — {0,1} as a binary « There is one or more places without output transitions.

» There are no transitions without at least one input place or one
B. Intermediate construction output place.

i The places without input transitions are calieitial places The places
In [4], [19], a process algebra was developed for constructing a P%‘ithout output transitions are callet-off places

net model from a program of communication processes. Consider agaifhefinition IV.2(Maximal expansion) Le6 be a Petri net and let
the example presented in Section Il. The derived Petri net models o 4 marking of3. Themaximal expansionf G with respect tan, E
processeping andpong are shown in Fig. 1(a) and Fig. 1(b), respecis an acyclic Petri net with the following properties:

tively, along with their initial markings. . The initial places correspond i.

« The cut-off places correspond to the set of places encountered
p2 @7 —(®) Pt when a cycle has been reached.
p2@<— « E is transitively closed: for eache E orp € E, all preceding
c2

pl

c2 2

places and transitions reachable fratrare also inE.
m is referred to as thmmitial marking.
Intuitively, the maximal expansion dF with respect to a marking
b cl m corresponds to the largastrolling of G from m before a cycle has

been encountered. Consider the example shown in Fig. 2(a). The corre-
°_€i: :>}_d f _i:gggi c d

sponding maximal expansion with = (p1, p2) is shown in Fig. 2(b).

j? cl cl
@ (b) ©
-T f
@ (b) (©)
c2: x=<-a c2: d<-=10 c2: x=10
b: (x<0) cl: y=<-c b: (x<0)
c: x=10-x f: z=(z+y)%345 c: x=10-x
d: Xx=10+x d: X=10+x
cl: b<-=x cl: y=x;

f: z=(z+y)%345

Fig. 1. (a)ping (b) pong (c) system = ping || pong

Concurrent processes can be composegarallel compositionIn
parallel composition, communication actions in fact f@ymchroniza-
tion pointsand are joined together at their common transitions. This is
illustrated in Fig. 1(c).

IV. SOFTWARE SYNTHESISMETHOD
A. Classes of Petri nets

A Marked Graph (MG)is a netG = (P, T, F, mo) such that'p €
P : |ep| =1 = |pe|. MGs cannot model conficts.

A State Machine (SMi a netG = (P, T, F, mo) such thatvt €
T : |et| = 1 = |te|. SMs cannot model concurrency.

A Free-Choice Net (FC-nei} a netG = (P,T, F,mo) such that ™
Vit € Tty 7& to : ety N ety 75 0= |.t1| =1= |.t2|, or
Vpip2 € P,p1 # p> : pre Np2e # 0 = |pre| = 1 = |p2e|. Every
MG and SM is a FC-net. For FC-nets, all conflicts can be decid
locally.

Let G’ be a subset of a n&t generated by aon-emptyset X C
PUT. G'is aMG-Componentf G if ot Ute C X for everyt € X,

F(i]g. 2. (a) Petri net example. (b) Its maximal expansion. (c) A cut-off marking.
€d" (d) Another cut-off marking.

Definition 1V.3(Cut-off markings) LetG be a Petri net, and lef
. be a maximal expansion ¢f with respect to the initial marking:. A
!
anﬁG CIJS’ %stronglgl conr;ecteéifMG. db ¥ C markingm.. is said to be &ut-off markingf it is reachable frommn and
et , € a subset of a nék generated by aon-emplysetX C .,y ansitions are enabled to fire. The set of cut-off markings is denoted
PUT. G'"isaSM-Componenf G if ep U pe C X for everyp € X, by CM(E)
! .
angG 1S z_ads;[rotr)\gly congscted Sth MG-C ts if ¢ . Forthe example shown in Fig. 2, there are two possible cut-off mark-
~ G is said to becoveredby a set 0 -Components if every ran5|-ingS me, = (pl',p2?) andme, = (p3,pd), shown respectively in
tion of the net belongs to some MG-Componef#its said to beovered Fig. 2(c) and Fig. 2(d)
by a set of SM-Components if every place of the net belongs to somegyr synthesis procedure works by generating code from a maximal

SM-Component. Hack [8] proved that a live safe FC-net can always 8gpansion segmetf obtained by using the initial marking, as the
coveredby a set of MG-Components or a set of SM-Components. initial marking for the expansion. Then from each cut-off marking

for the MG case. That is, the initial markingo corresponds to both

the initial places and cut-off places if we maximally expa#ravith re-

spect tamg. Thus, convergence is guaranteed after one expansion since
“ the set of cut-off markings contains ontyy.

. D. Static scheduling

Give an expansion segmeht, represented as an acyclic Petri net
fragment, our software synthesis method perfornssatic scheduling
of the operatiorfsin that segment. During schedulings&epassigned
to every operation itE!. More formally, static scheduling is defined as
follows:

Definition 1V.4(Static scheduling) LeE be an expansion segment.
t; is said toprecedet; in E, denoted ag; < t;, if there is a directed
path fromt¢; to¢;. Letw : T — N, be aschedule functiothat assigns
a non-negative integer(t) € N to everyt € E. A schedule is said to

Fig. 3. (a) Maximal expansion. (b) Cut-off marking. bevalid iff it satisfies the following condition¥t;,t; € E, if t; < t;,
thenm(t;) < w(t;).
To illustrate this process, consider the expansion segment shown in

m., € CM(E), a new maximal expansion segmdhit is generated Fig. 4(a) (corresponding to the example depicted in Fig. 4). Two valid
using m.; as the initial marking. This iteration terminates when akchedules are shown in Fig. 4(b) and Fig. 4(c). It is not the intention of
cut-off markings have already been visited. The pseudo-code for g5 paper to discuss in details the different possible scheduling heuris-
overall algorithm is shown below. tics. The interested reader can refer to [3], [5] for a survey of example

B

o

soft-synt (G, mo) { techniques.
EM = {mo};
push (mo);
while ((m = pop()) #0) { "
E = maximal-expansion (G, m); a
static-scheduling (E, m), pet

foreach m. € CM(E) {
if meg EM {

EM = EM Umg,

push (me); N

Foror ol O

The static-scheduling step is applied to each expansion segment ©7£
to produce the actual code. f

In the example shown in Fig. 2, only two expansion segments are w QO O
needed. From the initial marking = (p1, p2), the only cut-off mark-
ings reachable ara. = (p1,p2) andm. = (p3, p4). However, from
m = (p3, p4), the only cut-off marking reachable is. = (p3, p4)
itself, as shown in Fig. 3.

However, in the example shown in in Fig. 1, ordye expansion
segment is needed since the only cut-off marking reachable from the-———{=}xr———-—+
initial marking is the initial marking itself (i.em = (p1, p2))*.

C. Properties
The expansion procedure described in Section IV-B is guaranteed to

converge since the number of possible markings in a Petri net is finite.
Hence, the number of expansions or iterations is also finite. Typically,
very few expansions are required. ~ TTTTTT
For certain classes of Petri nets, the convergence property is even
stronger. In the case of a strongly connected live safe MG, the number |
of expansions is exactly one. This is because in the case of a strongly
connected live safe MG, the initial markimg, forms a minimal feed-
back arc set. The number of tokens along any directed cycle in the NHg. 4. (a) An expansion segment. (b) A valid static schedule. (c) Another valid
in the initial marking is exactly one. Thus, according to Definition IV.2, static schedule.
the maximal expansion of a MG with respect to its initial marking
my is exactly defined as the acyclic Petri fétwhere both the initial ~ Given a scheduler, a control-flow-graph fragment is constructed.
places and the cut-off places correspond exactly to the places markedontrast to the traditional scheduling problem, where typically only
by mo. Thus, the set of cut-off markings fd# contains only the initial data-flow blocksare considered, the control-flow-graph mapping step
markingmeo. is much less straightforward. This is because we can have complex
In the case of a strongly connected live safe FCéidhat can cov- concurrent conditionals where tFigng of atransitionis dependent on
ered by a set of strongly connected live safe MG compor@nts . G, the concurrent conflow flow and must obey Petri net firing rules. Es-
such that the initial markingno of G restricted taZ; is also a live safe sentially, the control-flow-graph generation step is based on a traveral
initial marking for the MG componen®;, the number of expansions isof E, but we modify the Petri net firing rules so that we proceed in ac-
also exactly one. The argument follows a similar line as the argumaardance to the levels defined by For example, the schedule shown

in Fig. 4(b) will result in the control-flow-graph fragment depicted in
1Here, we do not distinguish betwegn andp), because they simply denote
different instances of the same place. 2Previously called pre-ordering [11].

(b)

Fig. 5(a). Similarly, Fig. 5(b) shows the resulting control-flow-graph core
for the schedule shown in Fig. 4(c).
pt0 —
pcl pcl pcl pcl
pc2 pc2 pc2 pc2 ptl —
a Fig. 6. RCS5 encryption chain example.
a B | size| threads| synthesis]
& oapa e g2 40K 2.6 0.04
() 400K 26.0 0.33
@ aM 256.6 3.30
0 [rate] 15.4KB/s| 1.21IMB/s |
TABLE |
COMPARATIVE RESULTS ON ASUN/SOLARIS ULTRA-1.

(b) 0 © Pt

Fig. 5. (a) Control-flow-graph fragment. (b) Another control-flow-graph frag-
ment.
on a Sun Ultra-1 workstation running Solaris. The row labeled “rate”
summarizes the execution of the two solutions in terms of bytes per
second. Comparing CPU-times, the Solaris thread based implementa-
Once the overall control-flow-graph has been generated, it cantlum is significantly slower than our software code synthesis approach,
syntactically translated into plain C or sequential Java code for imue to the significant overhead introduced by Solaris threads.
plementation. This last code generation step can leverage upon well-

E. Code generation

studied standard code optimization techniques [17]. REFERENCES
[1] G. Berry et al. “The synchronous approach to reactive and real-time sys-
V. IMPLEMENTATION AND RESULTS tems”, IEEE Proceedings1991.
. [2] J. T. Buck et al. “Ptolemy: A framework for simulating and prototyping
A. Implementation heterogeneous systemsinternational Journal on Computer Simulation

The synthesis method presented in this paper has been implemefgf ?ngggp%i%to and W. Wolf (editorsJrends in High-Level Synthesis

in a system calledPicasso The compiler is implemented as a pre-— | wer Academic Publishers. 1993.
processor that generates either plain C [10] or Java [6]. Both solutiqap G. de Jong, B. Lin. “A communicating Petri net model for the design of
are highly portable. concurrent asynchronous modules®CM/IEEE Design Automation Con-

In the case of the C output, any available optimizing C compiler fereDnge Nllgr?“-F Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen
can be us_ed to produce the Wget m"%Ch'”e code. For comparisons; . Note, JA Huisken, “A’rch.itecture—driv,en'synthesis’ tei:hniques for VLSI ’
have also implemented a multi-threading approach that uses the Solarismplementation of DSP algorithmsProceedings of IEEEvol.72, no.2,
thread library to implement the processes. In principle, any real-time pp.319-335, February 1990.
multi-threading packages may be used. [6] J. Gosling, B. Joy, and G. SteeleThe Java Language Specification

In the case of the Java output, the Java produced by our synt _éd?(Isgtvygslﬁ}i/érld?sgfe-soﬂware cosynthesis of microcontrolleRfoc
sis method issequentialin that it does not make use of any multi- deés/CpASHElS)%. y oc.
threading feature in Java. Thus, a much lighter weight Java Virtyg] M. Hack. Analysis of production schemata by Petri nésS. Thesis, MIT,
Machine without multi-threading support may be used. Also, any Just- February 1972. o _ _

In-Time Comp”er or Java-To-C translator (eg [:]_2]l [15]) can be used[ﬁi C.A.R. Hoa_lre.Communlcatmg Sequential PI'OCQSSEBE‘HUCE-H&”, 1985.
produce native executables, again without the need for multi-threadgl B- W- Kerighan, D. M. RitchieThe C Programming Languag®rentice-
Hall, Englewood Cliffs, New Jersey, 1978.

support. For comparisons, we have also implemented a multi-threadiffy g_ | in. “Efficient compilation of process-based concurrent programs with-

approach in Java by mapping processes to Java threads. out run-time scheduling”Proc. of DATE’98 February 1998.
[12] B. Morgan.Visual J++ Unleashed Sams.Net, 1996.
B. Results [13] J. Morse, S. Hargrave. “The increasing importance of softwatgc-

. . . . tronic Design vol. 44, no. 1, Jan. 1996.
We have applied our C implementation to an example derived frqau] J.L. Peterson. Petri net Theory and Modeling of Systerfsentice Hall,
the RC5 encryption algorithm. RCS5 is widely used by RSA Data Se- 1981. _ _
curity in a range of Internet security products [16]. A novel feature 5] T. A. Proebsing, G. Townsend, P. Bridges, J. H. Hartman, T. Newshan, S.

: B : i : A. Watterson. “Toba: Java for applications, a way ahead of time (WAT)
RC5 is the heavy use of data-dependent rotations. The top-level view of compiler”, ftp-/fftp.cs. arizona. edu/sumatrafreportitoba.pef

the _example is shown in Fig. 6. It consists (_)f two encryption/decryptiq[ls] R. L. Rivest. “The RC5 Encryption Algorithm"Proceedings of the 1994
chains that are merged together by a monitor process. Leuven Workshop on AlgorithiSpringer-Verslag, 1994.

We chose this example because it contains both data-depend&fit R. M. Stallman,Using and porting GNU CCFree Software Foundation,
loops as well as non-deterministic choices. Table | compares the ire8 June 1993.

. - - -] F. Thoen et al. “Real-time multi-tasking in software synthesis for informa-
sults of our method with a multi-threading library approach. The tab% tion processing systemsProc. of ISSS'951995.

compares the execution times of both approaches on different size i@yt s. Vercauteren et al. “Derivation of formal representations from process-
streams. The first row corresponds to a 40K bytes input file, the second based specification and implementation mode®stic. of ISSS’'97Septem-

row corresponds to a 400K byte input file, and the third row corre- ber 1997.
sponds to a 4M byte input file. The CPU-times are reported in seconds

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

