
Hierarchical Algorithms for Assessing Probabilistic Constraints on System
Performance�

G. de Veciana, M. Jacome and J.-H. Guo
Department of Electrical and Computer Engineering
University of Texas at Austin, Austin, Texas 78712

Tel: (512) 471-2051 Fax: (512) 471-5532
E-mail: fgustavo,jacome,jianhueig@ece.utexas.edu

Abstract

We propose an algorithm for assessing probabilistic performance
constraints for systems including components with uncertain de-
lays. We make a case for designing systems based on a probabilistic
relaxation of performance constraints, as this has the potential for
resulting in lower silicon area and/or power consumption. We con-
sider a concrete example, an MPEG decoder, for which we discuss
modeling and assessment of probabilistic throughput constraints.

1 Introduction

This paper discusses models and algorithms to support statistical
relaxations of worst case constraints on system performance. Con-
sider, for example, a system which is designed to meet a delay con-
straintd and suppose the critical path’s delayDp is in fact ran-
dom. A design based on aworst case analysiswould ensure that
P(Dp > d) = 0: In our view, for a number of application domains,
such designs may be unnecessarily conservative. For example, sup-
pose the design constraintd can be relaxed in the sense that it can
be violated but only rarely, sayP(Dp

� d) � 10�6: Such a re-
laxation of design constraints will in turn allow for a larger set of
acceptable design solutions with hopefully less demanding perfor-
mance requirements and/or power consumption. Note that even
when performance constraints are truly worst case, in the sense
that the system malfunctions if they are not met, it is reasonable,
and possibly beneficial, to still relax the performance constraints
– say, to the same level of certainty as the probability of failure
of the system’s components. The examples inx4 suggest that one
might expect to benefit significantly from a probabilistic relaxation
of worst case constraints for systems comprising a large number of
non-deterministic components.

Uncertainty in the performance of a system’s components may
have a variety of origins. For example, for high-level system repre-
sentations, such as those used in system level and hardware/software
codesign, uncertainty may be due to a looping index whose exact
initial value is unknown,e.g.,data dependent [1, 3, 6, 11]. A num-
ber of current system-level models use hierarchy and aggregation
as a means of controlling complexity [3, 11]. If such approaches are

�This work was supported by NSF Career Grants NCR-9624230 and MIP-9624321
and a Texas Higher Education Coordinating Board Grant ATP-088.

to succeed, and one is to reason efficiently about the required per-
formance of such systems during design space exploration, it will
become increasingly critical to capture the performance variability
of aggregated system elements.

We propose to use probability distributions to model uncer-
tainty. The distributions may either be derived from statistical mod-
els for the underlying source of variability, estimated based on ex-
perimental data, or gathered through simulation/profiling. Realiz-
ing that characterizing distributions is in itself a challenging and
expensive task, inx3.1 we propose a crude model based on know-
ing the mean and upper and lower bounds on delay. This simple
characterization of non-determinism is shown to be conservative
for assessing system performance and eliminates (in some cases)
the need for obtaining detailed statistical information on compo-
nent delays.

In x2 we formulate aprobabilistic critical pathproblem, and
propose an approximate algorithm for assessing probabilistic con-
straints on systems represented by directed acyclic graphs (DAGs)
with random edge weights. Therein we discuss related work. In
x3 we discuss modeling distributions as well as a set of transfor-
mations (reductions) of typical high-level system models to obtain
DAGs which are in turn amenable to analysis with the proposed
algorithm. Synthetic examples exhibiting significant differences
between worst case and probabilistic requirements are presented
in x4. In x5 we discuss a concrete example, showing how our ap-
proach might be applied to modeling and assessing throughput con-
straints for an MPEG decoder. We conclude with a discussion of
research/implementation directions we are currently pursuing.

2 Algorithm for Assessing Probabilistic Constraints

Consider a weighted directed acyclic graphG(V; E): Suppose a
source nodes 2 V is selected and letPs denote the set of paths
starting ats: Naturally, a pathp is an ordered set of adjacent edges
in the graph,i.e., p � E : The standardcritical path problem as-
sumes that edges have fixed weights, and determines the longest
path, in terms of cumulative weight, inPs. Algorithms to solve
this problem are well known and have a runtime complexity of
�(jVj + jEj): Suppose random weights (delays)De, with arbi-
trary distributions, are associated with edgese 2 E of the graph.
We pose an analogousprobabilistic critical pathproblem as fol-
lows: given a delay constraintd, identify which path ismost likely
to violate the constraint and what is its probability of failure.

Assuming edge delays are mutually independent, a path’s de-
lay, denoted byDp =

P
e2p

De, has a distribution given by the
convolution of its edge’s delay distributions. The probability that a
pathp fails to meet the delay constraintd is denoted by

�d(p) = P(Dp
� d):

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

We state the probabilistic critical path problem as follows:

Problem 1 Find p� 2 Ps, not necessarily unique, such that

�d(p
�) � �d(p) for all p 2 Ps;

and determine the probability�d(p�) that the constraint will be
violated.

In general this problem is difficult to solve, primarily because the
edge weights of a path are not additive (due to the convolution) and
thus cannot be decomposed along the path as is usual when using
dynamic programming approaches. In fact, by adapting a Lemma
2 in [5], one can show that Problem 1 is NP-hard, suggesting that
one should seek good heuristics.

A word of warning is in order. There are two reasons why the
probabilistic critical path problem should not be interpreted as the
equivalent of the standard critical path problem when the weights
are random. First, the problem is predicated on specifying a con-
straintd with respect to which a probabilistic critical path is iden-
tified. Second, and more subtly, we compare the performance of
individual paths with each other, rather than assessing the maxi-
mum of the delays across all paths. Whereas in the case with de-
terministic weights these two problems are equivalent, in a graph
with random weights they certainly are not. The discussions on
modeling inx3 and examples inx4 further elucidate this point.

2.1 Previous Work

To our knowledge there is no previous work addressing the above
problem. Our work was inspired from recent work in network rout-
ing considering the uncertainty in the delay or bandwidth availabil-
ity at remote links [5]. The flavor of the approach, in particular
our use of the Chernoff bound to perform constraint analysis for
a simple example, can be found in [6][page 112]. However, both
our formulation of the probabilistic critical path problem as well
as the proposed systematic algorithm are new. We also note that
there are efficient algorithms for determining the most reliable path
through a network with unreliable links, a problem which arises in
voice recognition and Viterbi decoding applications. However such
problems are significantly easier (can be reduced to a the traditional
shortest paths problems) than the problem we address here.

2.2 Approximate Algorithm

We propose an algorithm to solve the probabilistic critical path
problem based on an approximate formulation as a convex opti-
mization problem. The edge weight distributionsDe on the DAG
are represented via a parametric weight�e(�) = log E exp[�De]
for � � 0; i.e., the moment generating function of the delay distri-
bution on the edge. This results in a collection of DAGs with deter-
ministic weights�e(�) parameterized by�: Our algorithm solves
an optimization problem over this set of parameterized DAGs by
using the standard critical path algorithm. The derivation of the
algorithm can be found in [2]

Initialization: check that the problem is “well posed” by verifying
that:

1. the constraintd exceeds the critical path delay for the
graph where the weights are given by the mean edge
delays;

2. and, the constraintd is bounded by the critical path de-
lay for the graph with weights given by the maximum
(possibly infinite) delay on each edge.

Optimization: determine the maximumf�(d) and the optimizers
�̂ andp̂ for the following optimization problem

f
�(d) = sup

��0

(�d� max
p2Ps

X

e2p

�e(�)) = �̂d�
X

e2p̂

�e(�̂):

(1)
Note that evaluatingmaxp2Ps

P
e2p

�e(�) for some� re-
quires determining the critical path in a graph with edge weights
�e(�):

Result: a guaranteedupper bound on the probability of failure,
�d(p

�) � exp[�f�(d)], and a candidate patĥp most likely
to violate the constraint.

Standard line search methods, seee.g.,[9], can be used to deter-
mine the supremum, which will be achieved in the cases of interest,
in (1). However some care should taken in selecting an efficient al-
gorithm since each evaluation off(�) = maxp2Ps �

p(�) requires
solving a standard critical path problem incurring a runtime cost
�(jVj + jEj). Note that, whatever optimization algorithm is se-
lected, any stopping criterion will yield anupperbound on the fail-
ure probability. Given a solution one can use refined asymptotics to
improve the estimate and explore thesensitivityof the probability
of failure to the constraintd, see [2].

3 Modeling Issues

3.1 Modeling edge delay distributions

In practice it may be difficult to characterize the edge delay dis-
tributions, or equivalently the corresponding functions�e(�) =
log E exp[�De]: Fact 3.1 below shows that one can find a simple
uniform bound on�e(�) � ��e(�); given aminimal amountof
information on the distribution ofDe: This in turn allows us to re-
place the weights on such edges by an upper bound, resulting in a
conservative estimate for the probability of failure.

Fact 3.1 (Seee.g.,[10]) Suppose that bounds,le � De � ue, are
known for the edge (or path) delay, as well as an upper boundme

on the average delayEDe � me � ue: Let �De be a Bernoulli
random variable onfle; ueg with meanme, i.e.,P(�De = ue) =
me�le
ue�le

; and P(�De = le) = 1 � me�le
ue�le

; then8� we have that

�e(�) � ��e(�) = log E exp[� �De]:

3.2 Hierarchical representations and reductions to directed
acyclic graphs

p p1 2

γ 1−γ

branching

looping
p p1 2

synchronization

p
reductionp1

N-1 times

Figure 1: Probabilistic branching, looping, and synchronization re-
ductions.

In general a hierarchical high-level system models are respre-
sented by control/data flow graphs (CDFGs) [3]. Such graphs allow
the represention of flow of control constructs, including branch-
ing, looping, and possible synchronization requirements, seee.g.,
[3, 1, 11]. Rather than formally defining such a modeling frame-
work we will exhibit some cases that arise and the manner in which
they are reduced to a corresponding DAG. Below we show how the

delay weights associated with traversing the nodes in Fig. 1 can be
reduced toequivalent path weights. Generalizations of these cases
to more than two non-intersecting (independent) sub-paths should
be clear from the discussions below.

3.2.1 Reducing nodes with probabilistic branches.

Consider the left node in Fig. 1. Within the node, a branch is mod-
eled probabilistically, in the sense that one of the two sub-paths,
p1 or p2, is selected at random. Suppose the branching probability
is then the weight for the sub-pathp through this node is given
by �p(�) = �p1(�) + (1 �)�p2(�): Note that if a branch is
not modeled probabilistically (due to lack of information) then both
paths would be kept in the eventual DAG.

3.2.2 Reducing nodes with iterations or feedback loops.

Consider the middle node in Fig. 1. It represents a node in which
there is an uncertain number of iterations through pathp1, which
can be modeled via a loop index random variable, sayN > 0.
Let D(n); denote the delay for thenth loop execution. Suppose
these delays have a common distribution,D(n) � Dp1 , and are
mutually independent and independent of the loop indexN .

The delayDp for a sub-path through this node is

Dp =

NX

n=1

D(n);

i.e., a random sum of random variables. The weight for the node
can be computed by conditioning onN to obtain

�p(�) = log E[exp �Dp] = logMN (E[exp �D
p1]);

whereMN(z) = E[zN] is the probability generating function of
the loop index’s probability mass function.

For example, suppose the loop index,N , is modeled by a ge-
ometric distribution with parameter, i.e.,after completion of any
iteration the probability of looping back is1 � : In this case
MN (z) = z

1�z(1�)
: Of course if the loop index is determinis-

tic, i.e.,P(N = n) = 1, then the corresponding DAG would un-
ravel the loop,i.e., the weight for a path through this node would
be�p(�) = n � �p1(�).

3.2.3 Reducing nodes with synchronization constraints.

In general synchronization is the most difficult abstraction to han-
dle, particularly in a setup with random delays. Consider the right-
most example in Fig. 1, where two pathsp1 andp2 must synchro-
nize prior to leaving the node. The delay incurred in this node,
Dp, is given byDp = max[Dp1 ; Dp2]; the maximum of the delay
along the two paths. The weight for this node would be�p(�) =
log E exp[�max[Dp1 ; Dp2]]:Unfortunately there is no general way
to compute this metric, without explicitly computing the distribu-
tions for the maximum of the delays for the two paths.

Notice that whereas for graphs with deterministic delays we
need only consider the worst case path to deal with synchroniza-
tion, in the case of random path delays, both paths contribute to the
characteristics of the synchronization time – it is this coupling that
makes such nodes difficult to address. In special cases of interest
ad hoc approximations can deal with a limited amount of synchro-
nization, see [2] – some of these are discussed below.

Paths with delays on bounded intervals and known means.
Suppose the delays onp1 andp2 have upper and lower bounds and
known means,i.e., lpi � Dpi � upi with EDpi = dpi for i =

m n = 10 n = 20 n = 80

Exact 1=2 1:07� 10
�2

2:01� 10
�4

2:69� 10
�14

Chernoff 1=2 2:52� 10
�2

6:35� 10
�4

1:63� 10
�13

Exact 1=4 2:96� 10
�5

1:61� 10
�9

1:35� 10
�34

Chernoff 1=4 7:38� 10
�5

5:45� 10
�9

8:81� 10
�34

Table 1: Constraint violation for synthetic example.

1; 2: In this case the synchronization time satisfies the following
inequalities:

lp = max[lp1 ; lp2] � Dp
� max[up1 ; up2] = up;

andEDp = dp � dp1 + dp2 . Based on Fact 3.1 a conservative ap-
proximation for the weight ofDp is that of a Bernoulli random
variable �Dp with P(�Dp = up) = min[dp1+dp2 ;up]

up
= �; and

P(�Dp = lp) = 1 � �: More explicitly we have that�p(�) �
��p(�) = log E exp[� �Dp] where

��p(�) = log fexp[�lp](1 + �(exp[�(up � lp)]� 1))g :

By using the delay metric��p(�) for this node we can proceed
safely knowing we will still obtain an upper bound on performance.
Note that ifdp1+dp2 � up then this reduces to using the worst case
upper bound on synchronization. However whendp1 + dp2 < up

we can still glean some information on the probabilistic behavior
of that node.

Last resort conservative bound. If the paths in the node are
“short” relative to the critical path of the graph then a simple up-
per bound can be devised by noting that,Dp

� Dp1 +Dp2 ; so it
follows that�p(�) � �p1 (�)+�p2(�): This is likely to be conser-
vative in the probabilistic sense, yet may still be reasonable when
compared to the results obtained using the worst case edge delay.

4 Synthetic Examples: Why use probabilistic v.s. worst
case critical paths?

For simplicity let us assume that all edge delays are independent
and identically distributed Bernoulli random variables with mean
m, i.e.,P(De = 1) = m andP(De = 0) = 1�m: Suppose there
is a single path through the DAG representing a system and it has
n edges soDp =

Pn

i=1
Di: Clearly the worst case critical path

would have a length ofn. A probabilistic analysis might consider
the likelihood that the delay exceeds90 % of the worst case delay,
i.e.,P(Dp

� 0:9n): Table 1 exhibits some results for this setup,
where both the lengthn of the path and the meanm of the edge
delays are varied.

Whenm = 1=2 and the path is relatively long, sayn = 20; 80
the probability of failure areO(10�4) andO(10�14) respectively,
possibly small enough to be neglected. Thus a delay constraint
which is 90 % of the worst case, is very likely to be met. For
m = 1=4 even a path with a moderate number of elementsn = 10
has a small probability of failureO(10�5) again showing that a
probabilistic relaxation of the constraint is likely to be advanta-
geous.

Based on this simple example it should be clear that as we
consider increasingly large systems with many uncertain elements,
the gains of a probabilistic relaxation of constraints will accrue.
Moreover if the delay distributions are such that the average perfor-
mance is significantly smaller than the worst case bounds,e.g.,75
% smaller whenm = 1=4, then probabilistic constraints are likely
to allow a significant relaxation over the worst case critical path.
The failure probabilities in Table 1 were computed exactly based
on Bernoulli distributions and via the Chernoff bound used by our

algorithm. Clearly the results compare favorably, and as expected
the Chernoff bound gives an upper bound on the failure probability.
In summary these examples show that if indeed there is sufficient
uncertainty in the performance of elements on a reasonably large
graph, the proposed method is likely to pay off handsomely if one
can allow for a probabilistic relaxation of constraints.

1D ~ Bernoulli(1/2)

D ~ Bernoulli(1/2)2

D ~ Bernoulli(1/8)3

D = 1.24
p1 p2

Figure 2: Probabilistic versus worst case critical paths.

In general the probabilistic and conventional critical paths need
not coincide. Indeed, consider the graph in Fig. 2, where three
edges have independent Bernoulli distributions onf0; 1gwith means
1=2; 1=2; 1=8 and the fourth is deterministic with mean1:2. The
worst case critical path is obviouslyp2 with a delay of2:2. Now,
given a delay constraintd = 1:5 one can easily show that the prob-
ability of violation is largest onp1, i.e.,P(Dp1 � 1:5) = 1=4 >
1=8 = P(Dp2 � 1:5): This suggests that a designer optimizing
a system based on worst case informationmaybe addressing the
wrong path, at least when a probabilistic relaxation of system con-
straints is possible.

5 Probabilistic Constraints and MPEG Video Decoders

In this section we illustrate the practical interest of the proposed al-
gorithm for probabilistic constraint analysis by considering MPEG
video decoders [7, 4, 8]. The MPEG decoder was chosen due to
the presence of non-deterministic (data dependent) delays in some
of the key decoding sub-tasks. This example illustrates how the in-
herently variable nature of these tasks makes it interesting to assess
probabilistic throughput constraints.

5.1 Background on MPEG-2

A video stream consists of a sequence of pictures or frames sam-
pled at a given rate. Three basic types of pictures are defined:intra-
codedpictures, which are coded without reference to other pic-
tures;forward/backward predictively codedpictures, which can use
motion prediction from a past/future picture; andbidirectionally-
predictively codedpictures, which can use motion prediction from
both past and future pictures. These are referred to as I, P and B
pictures respectively.

Pictures are in turn subdivided into a number ofmacroblocks- a
16 by 16 pixel region. Depending on the picture type, a good match
might be sought between its macroblocks and other pictures in the
sequence, based on computingmotion vectors. Thus a macroblock
can be:

� causal (forward coded):defined from a previous picture, –
allowed for macroblocks within P and B-pictures;

� non-causal (backward coded):defined from a future picture
– allowed for macroblocks within B-pictures only;

� interpolative (bidirectionally coded):defined from a past and
a future picture – allowed for macroblocks within B-pictures
only.

Non-motion compensated macroblocks, are allowed for all types of
pictures, and are said to beintra-coded.

As the MPEG-2 decoder reads the bitstream, it identifies the
start and type of a coded picture, and then decodes each macroblock
in the picture, as shown in Fig. 3.

for each macroblock
 in a picture

if coded

 if motion
 compensated

 picture store
 interpolation

 ADD

retrieve skipped
 block

if last macroblock

start of macroblock decoding

end of macroblock decoding

N

N

N

Y

Y

Y

error
 signal

motion
 vectors

intra-coded
 coefficients

 repeat N-1 times

VLD & IQ

IDCT IDCT

Figure 3: Macroblock decoding in an MPEG decoder.

frame type of macroblock coding
type fraction skip intra forw/back bidir

I 1/15 0 1 0 0
P 4/15 0.0173 0.0658 0.9169 0
B 10/15 0.0848 0.0050 0.2226 0.6876

Table 2: Estimates of branching probabilities for MPEG mac-
roblock decoding.

In Fig. 3,N represents the number of macroblocks in a picture
– for the streams being considered a picture is comprised of 330
macroblocks. The shaded ellipses in Fig. 3 represent basic flow
of control decisions taken during the decoding of each macroblock
within a picture. Table 2 shows estimates of branching probabili-
ties for these decision points. These estimates were generated by
running a software decoder on a collection of MPEG video traces.
The first two columns in Table 2 identify the type of picture (I, P, or
B) and the percentage of occurrence of that particular type of pic-
ture in the fixed sequence of pictures considered for our MPEG-2
decoder. The third column in the table gives the branching proba-
bility for the first decision point in Fig. 3, i.e., the probability that
a macroblock will be skipped within a P or a B picture (note that
all macroblocks within an I pictures are intra-coded). The three last
columns in Table 2 give the probability that a given macroblock will
be intra-coded, forward/backward coded, or bidirectionally coded,
for I, P and B pictures.

The performance of an MPEG-2 decoder is determined by the
individual performance of five key modules: Variable Length De-
coding (VLD), Inverse Quantization (IQ), Inverse DCT (IDCT),
Pixel Interpolation (PI), and Pixel Add (PA) [7]. However not all
the modules are executed for every macroblock. In particular, as
shown in Fig. 3, none of the modules is executed for non-coded (or
skipped) macroblocks, and the PI and PA Modules are not executed
for intra-coded macroblocks. Moreover, the processing done by the
PI and PA Modules for bidirectionally coded macroblocks is twice
of that required by forward or backward coded macroblocks, since
one additional reference macroblock needs to be considered in the
first case. (This extra-processing is the reason for the separation
of bidirectionally coded macroblocks from the two other types of

motion compensated macroblocks in the control flow graph shown
in Fig. 3.)

The algorithm-level descriptions of the MPEG-2 modules re-
ferred to above have been the focus of extensive studies on op-
timizations/transformations geared towards performance enhance-
ment [7, 4]. In our example, we have adopted the set of highly
optimized algorithmic descriptions discussed in [7]. In these be-
havioral descriptions, the VLC and IQ modules are merged in order
to save on write/read cycles to memory.

5.2 Using Probabilistic Constraint Analysis to Guide the
Design of an MPEG2 video Decoder

The objective in this example is to define/specify the RTL architec-
ture (functional units and registers/memory) for the key MPEG-2
decoder modules referred to above, so as to derive a decoder sup-
porting a throughput of 30 frames/sec (which translates into a 33.3
ms decoding time per picture).

Design Option 1 The modules’ RTL descriptions of our initial
design, referred to as Option 1, were directly derived from the mod-
ules’ algorithmic descriptions given in [7]. The scheduling of op-
erations within each module was strictly performed based on data
dependencies,i.e., the performance of such modules is never com-
promised by resource sharing. Memory blocks were assumed to be
implemented by RAMs with a single read port (with two cycle read
operations) and a single write port.

Table 3 shows the resulting execution delays (in # cycles) for
the various MPEG-2 decoding modules. As mentioned previously,
the execution delays of the PI and PA modules are given sepa-
rately for bidirectionally coded and for forward/backward coded
macroblocks.

A crucial observation needs to be made with respect to the num-
bers shown in Table 3 for the VLD+IQ Module. The execution
delay of that module for each macroblock depends on the number
of non-zero DCTs per macroblock, and is thus data dependent. In
[7], the average size of VLCs in typical MPEG-2 bitstream was re-
ported to be about 4.5 bits which in turn translates to an average
of 30 non-zero DCTs per macroblock,i.e., an average of 484 cy-
cles per macroblock for Option 1. We have used a crude model for
the delay of the VLD+IQ module given by a Gaussian distribution
with this mean (see Table 3) and a standard deviation of 20 % of
the mean, to account for the variability in the stream.

block type Option 1 Option 2
VLD+IQ (avg) any 484 436

IDCT any 2,304 1,152
Pixel forw/back 320 160

Interpolation bidir 640 320
Picture forw/back 512 256

Add bidir 1024 512

Table 3: Time estimates (# cycles per macroblock) for MPEG mod-
ules.

In the upper part of Fig. 4, we show the decoding time distri-
butions for I, P, and B pictures for design Option 1, derived using
the execution delays per macroblock (in # cycles) given in Table
3, the branching probabilities given in Table 2, and the previously
mentioned model for the VLC+IQ block. Table 4 shows the corre-
sponding average and worst case decoding times (in # cycles) for
the three types of pictures, and also the worst case and average de-
coding time considering all picture types (given on the last row of
the table).

0.8 0.9 1 1.1 1.2 1.3 1.4

x 10
6

0

0.005

0.01

0.015

0.02

0.025
Option−1: PDF of Decoding Cycles for I, P, B Frames

Cycles

P
ro

b.

I

P

B

4.5 5 5.5 6 6.5 7 7.5 8

x 10
5

0

0.005

0.01

0.015

0.02

0.025
Option−2: PDF of Decoding Cycles for I, P, B Frames

Cycles

P
ro

b.

I
P

B

Figure 4: Decoding time distributions, for I,P and B Frames for
Options 1 and 2

type Option 1 Option 2
I 9.200 / 10.159 5.399 / 6.357

Average / P 11.559 / 12.500 6.564 / 7.506
Maximum B 12.807 / 13.684 7.134 / 8.011
(�105) all 12.234 / 13.684 6.866 / 8.011

Table 4: Average and worst case decoding times, in # cycles for I,P
and B frames.

The maximum combinatorial delay for our module’s RTL de-
scriptions was determined to be 43 ns (for a 0.7�m standard-cell
library). So, for a 43 ns clock, our Option 1 design led to an av-
erage delay per picture of 52.6 ms (i.e., the decoder would only
sustain a throughput 19 pictures per second), which is below the
target of 33.3 ms per picture (i.e., the desired throughput of 30 pic-
tures per second). Moreover, the resulting design exhibited a worst
case picture decoding delay of 58.8 ms. Option 1 was thus clearly
insufficient in terms of performance, and was dropped.

Design Option 2 A second implementation, which we will call
Option 2, was then developed, taking advantage of the fact that the
computations performed by the IDCT, the PI, and the PA Modules
can be easily parallelized. A new design was developed that: (1)
has two parallel IDCT units (i.e., can compute simultaneously two
8x8 2-D IDCTs, each of which is done as a loop whose body com-
putes an 8-point IDCT); (2) has two parallel pixel interpolation and
pixel add units; and, (3) uses RAMs with two parallel read ports
(still with a two cycle read operation).

Table 3 shows the resulting execution delays (in # cycles) for
the various decoder modules for Option 2. The bottom part of Fig.
4 shows the decoding time distributions for I, P, and B pictures for
the new design. Table 4 shows the resulting average and worst case
picture decoding delays for the three types of pictures, and also the
worst case and average decoding delays for all picture types.

The maximum combinatorial delay was determined to be 46 ns,
using the same standard-cell library, thus leading to an average de-
coding delay per picture of 31.5 ms, now below the target delay of
33.3 ms per picture, and to a worst case delay of 36.5 ms. Note,
however, that the (relative) gap between the average and the worst
case delays for Option 2 has increased significantly with respect to
that for Option 1 (see last row of Table 4). Indeed, in the Option 2

design we have increased the decoder performance by introducing
some parallelism in the IDCT, PI, and PA Modules. As a result,
the relative percentage of time spent on the heavily data dependent
VLD+IQ Module, with respect to the total decoding time, has in-
creased significantly, leading to more significant delay variations
across pictures.

It is in cases such as the above that the interest of the system-
atic algorithm for assessing probabilistic constraints proposed in
this paper becomes obvious. Indeed, in order to adequately eval-
uate the suitability of the decoder design under discussion, a key
piece of information (to be given to the designer) is the probability
that the target delay of 33.3 ms will be exceeded by the particular
decoder design. Note that, based on such a probability, and depend-
ing on the specific timing requirements of the application for which
the MPEG-2 decoder is being developed, the outcome of the evalu-
ation might be radically different. Specifically, the Option 2 design
could be considered an adequate solution, could be an unneces-
sarily expensive solution (in terms of area and/or average power
consumption), or could still require further performance improve-
ments. Table 5 shows the probability of violating the decoding time
constraint and the Chernoff bound, for I, P and B frames and over-
all obtained by our algorithm. The exact numbers are exhibited to
show the quality of the approximations (upper bound) provided by
the algorithm. Based on these numbers, the designer would pro-
ceed, either by performing yet another iteration at the RTL level, or
by starting the physical design of the decoder.

frame type Exact Chernoff Bound
I 0 N/A
P 8:364 � 10�12 1:162 � 10�10

B 5:095 � 10�4 4:103 � 10�3

all 3:397 � 10�4 2:735 � 10�3

Table 5: Probabilities of violating decoding time requirement of
33:3 ms for Option 2, given a 46 ns clock.

6 Conclusions

In this paper we have formulated a probabilistic critical path prob-
lem on a DAG with random weights and proposed a novel approx-
imate algorithm for determining the likelihood that a constraint is
satisfied. Through a discussion using synthetic and real examples,
we have made a case for the importance/relevance of assessing
probabilistic constraints on system performance, whenever the ap-
plication domain is amenable to some level of constraint relaxation.
Specifically, the ability to analyze the system model so as to derive
less aggressive performance requirements on its various compo-
nents has the potential to reduce the final cost and power consump-
tion of the system. Our algorithm is currently being implemented
in an environment for assisting algorithm and architecture-level de-
sign space exploration during system-level design [11].

References

[1] In G. De Micheli and M. Sami, editors,Hardware/Software
Codesign. Kluwer Academic, 1996.

[2] G. de Veciana, M. Jacome, and J.-H. Guo. Hierarchical algo-
rithms for assessing probabilistic constraints on system per-
formance.Tech. Rep., Dec. 1997.

[3] D. Gajski et. al.Specification and Design Of Embedded Sys-
tems. PTR Prentice Hall, 1994.

[4] V. Bhaskaranet al. Algorithmic and architectural enhance-
ments for real-time MPEG-1 decoding on a general purpose
risc workstation. IEEE Trans. Circ.& Syst. Video Tech.,
5(5):380–86, Oct. 1995.

[5] R. Guérin and A. Orda. QoS-based routing in networks with
inaccurate information: theory and algorithms.IBM Research
Report 20515, 1996.

[6] R. Gupta.Co-synthsis of Hardware and Software for Digital
Embedded Systems. Kluwer Academic, 1995.

[7] W. Lee and Y. Kim. MPEG-2 video decoding on pro-
grammable processors: computational and architectural re-
quirements. InProc. SPIE, pages 265–87, 1995.

[8] N. Liu. MPEG decoder architecture for embedded applica-
tions. IEEE Trans. Consumer Elect., 42(4):1021–28, Nov.
1996.

[9] D. G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, 1989.

[10] D. Mitra and J. A. Morrison. Multiple time scale regulation
and worst case processes for ATM network control.Proc.
34th CDC, pages 353–357, 1995.

[11] H. Peixoto and M. Jacome. Algorithm and architecture level
design space exploration using hierarchical data flows. In
Proc. 11th Intern. Conf. on Application-specific Systems, Ar-
chitectures and Processors, pages 271–82, July 1997.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

