
Function Decomposition and Synthesis Using Linear Sifting

Christoph Meinel Fabio Somenzi Thorsten Theobald

FB IV { Informatik Electr. and Computer Engineering Zentrum Mathematik
Univ. Trier Univ. of Colorado at Boulder TU M�unchen

D { 54286 Trier USA { Boulder, CO 80309-0425 D { 80290 M�unchen

Abstract

In order to simplify a synthesis task for particularly hard
functions it is sometimes inevitable to decompose the function
in a preprocessing step. We propose a new algorithm for auto-
matically decomposing a target function by extracting a linear
�lter within the synthesis process. The algorithm is an appli-
cation of the Linear Sifting algorithm which has been proposed
in [6]. Using this method we were able to synthesize functions
with standard tools which fail otherwise.

1 Introduction

Decomposition techniques date back to the very early days of
computer-aided circuit design [5]. By revealing the structural
properties of a switching function it is possible to establish
representations by means of several simpler functions. Utiliz-
ing these functional properties enables us to decompose large
and complex circuits into a system of smaller subcircuits which
may be readily available and economically maintained.

Recent developments concerning symbolic representations
of switching functions by means of decision diagrams [2] have
renewed the interest in decomposition techniques [3, 11]: By
extracting functional properties and decomposing the switch-
ing functions the well-known power of symbolic manipulation
techniques can be even further extended.

In particular, the recent work [3] dealt with the problem
that most multi-level synthesis tools like SIS run into severe
problems for complex functions. By decomposing the circuit
into the cascade of two suitable subcircuits the synthesis task
can be simpli�ed. However, e�cient algorithms to �nd such a
decomposition are available only for very speci�c types of de-
composition. An attractive candidate is to divide the function
f into a linear block � and a non-linear block f 0 (see Fig. 1,
[15]) such that f(x) = f 0(�(x)). The main synthesis task now
is to �nd a linear block � that minimizes the complexity of f .
In [3] this problem has been tackled by methods of spectral
analysis. However, although there is a well-established theory
on these techniques [4] the practical implementation of these
ideas leads to very complex algorithms and the improvements
are limited. Hence, an important question is not only to �nd
better algorithms but also to �nd algorithms which can be
integrated much more easily into existing design systems.

f - � f 0

Figure 1: Linear decomposition.

�This work was supported in part by NSF grant MIP-94-22268, SRC
contract 95-DJ-560 and DFG-grant Me 1077/12-1.

In this paper we propose to use the Linear Sifting algorithm
[6] for the computation of the linear block �. This algorithm is
an extension of the well-known Sifting algorithm [12], which is
currently the state-of-the-art method for �nding good variable
orderings of binary decision diagrams. In the Linear Sifting
algorithm, not only swaps of two neighboring variables are
applied as elementary operations, but also linear transforma-
tions among neighboring variables. This algorithm modi�es a
given function, but preserves the canonicity in representation
and the e�ciency of manipulation. We show in what respect
Linear Sifting can be used to perform the above mentioned
synthesis task, and we prove the validity of our approach by
experimental results.

The paper is structured as follows: In Section 2 we recall
de�nitions relevant to decision diagrams and linear transfor-
mations. In Section 3 we review the approach of [3] based on
spectral analysis. In Section 4 we present our new approach
based on Linear Sifting and contrast it to the existing ap-
proach. Experimental results are given in Section 5. Finally,
the ideas and results are summarized.

2 Preliminaries

2.1 Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) [2] are rooted di-
rected acyclic graphs representing switching functions. Each
OBDD has two sink nodes which are labeled 1 and 0. Each
internal (= non-sink) node is labeled by an input variable xi
and has two outgoing edges, labeled 1 and 0. A linear variable
order � is placed on the input variables. The variable oc-
currences on each OBDD-path have to be consistent with this
order. An OBDD computes a switching function f : IBn ! IB,
IB = f0; 1g, in a natural manner: each assignment to the input
variables xi de�nes a unique path through the graph from the
root to a sink. The label of this sink de�nes the value of the
function on that input.

The OBDD is called reduced if it does not contain any
vertex v such that the 0-edge and the 1-edge of v lead to the
same node, and it does not contain any distinct vertices v and
v0 such that the subgraphs rooted in v and v0 are isomorphic. It
is well-known that reduced OBDDs are a unique representation
of switching functions f : IBn ! IB with respect to a given
variable order [2]. The size of an OBDD is the number of its
nodes. Several functions can be represented by a multi-rooted
graph called shared OBDD. In the following, all functions are
represented by a shared OBDD. Furthermore, typical OBDD-
implementations use an additional edge attribute to represent
a function and its complement by the same subgraph.

2.2 Linear Transformations

A Boolean function � : IBn ! IBn is called linear if there exists
an n�n-matrixm� with Boolean entries such that �(x) = m� �
x where the matrix product m� �x is evaluated over the Galois

�eld GF (2). Of course, � andm� can be used interchangeably.
Additionally we allow to complement some bits of �(x).

3 Synthesis by Spectral Analysis

In this section we revisit the algorithm of [3]. This description
will form the basis for the development and judgement of our
algorithm.

The problem: Given a Boolean function f : IBn ! IB, �nd
a linear transformation � and a remaining function f 0 :
IBn ! IB such that the decomposition f(x) = f 0(�(x))
simpli�es the synthesis task and leads to smaller circuits.

The choice of suitable linear transformations is achieved by
assigning each Boolean function a complexity measure that is
heuristically related to the complexity of the �nal circuit im-
plementation. The cost of the transformation � is neglected in
this complexity measure on the grounds that the transforma-
tion itself is typically much less complex than the remaining
function after the transformation. (In our experience this is
true in most cases.)

In order to estimate the complexity of the Boolean function
f one can use the number of vector pairs (x1; x2) which have
a Hamming distance dH(x1; x2) of 1 and which have identical
function values, i.e.

C
n(f) = #f(x1; x2) : dH(x1; x2) = 1 and f(x1) = f(x2)g:

This value lies in the range 0 to n2n. As a heuristic cri-
terion, large values of Cn(f) indicate a simple AND/OR-
implementation with the extreme case Cn(1) = n2n. On
the other hand, small values of Cn(f) indicate an expensive
AND/OR-implementation with the extreme case Cn(x1�x2�
� � � � xn) = 0. Due to the observation that many multi-
level synthesis systems perform poorly without a good sum-
of-product representation of the target function, the authors
of [3] claim that the complexity measure C can also be used
for multi-level synthesis.

It has been shown that the complexity measure C(f) can be
expressed by the Walsh spectrum of f [4]. TheWalsh spectrum
of f is the 2n element vector

S
n(f) = (s0; : : : ; s2n�1) =W

n
Y
n(f);

where Y n(f) is the 2n element truth table vector of f (with
0, 1 replaced by +1, �1) and Wn is the 2n � 2n Hadamard
matrix de�ned by

W
n =

�
Wn�1 Wn�1

Wn�1 �Wn�1

�
; W

0 = 1:

If jjujj is de�ned as the number of 1's in the binary represen-
tation of u, then the complexity measure C can be written as
a weighted sum of squares of the Walsh spectral coe�cients

C
n(f) = n2n �

1

2n

2
n
�1X

u=0

jjujj s
2

u :

The main idea in [3] to �nd a suitable linear �lter is to
construct linear transformations that minimize the complexity
C. In order to �nd suitable candidates for this minimization
process the Walsh coe�cient representation of the complexity
measure is used. To avoid the exponential costs of computing
the Walsh transformation symbolic BDD-techniques are used
in connection with extensions of the Walsh transformation.

4 Synthesis by Linear Sifting

4.1 The Linear Sifting Algorithm

Originally starting from re-encodings of �nite state machines
and from the general optimization of BDD-representations two
recent papers [7, 6] have investigated the e�ect of linear trans-
formations on BDDs, concluding that they form a class very
well suited to the implementation of e�cient algorithms. In
[6] an e�cient algorithm is presented which combines the e�-
ciency of Sifting and the power of linear transformations. We
will brie
y review this algorithm.

The well-known Sifting algorithm [12] tries to �nd a good
variable ordering of an OBDD by successively investigating
each variable: The current variable is moved through the whole
ordering and �nally put in the best position that has been
found. The basic step during the movement of the variable
is a pairwise exchange of variables. Suppose that variables xi
and xj are to be swapped, and that xi immediately precedes xj
before the swap. Then the e�ect of the exchange on each node
labeled xi can be easily seen by applying Boole's expansion
theorem w.r.t. both xi and xj . Assuming f is the function of
a node labeled xi, we have:

f = xixjf11 + xix
0

jf10 + x
0

ixjf01 + x
0

ix
0

jf00: (1)

Formally exchanging xi and xj and rearranging terms yields
the function �(f):

�(f) = xixjf11 + xix
0

jf01 + x
0

ixjf10 + x
0

ix
0

jf00: (2)

In words, the e�ect of a swap is to interchange f10 and f01. If
we repeat the same process for the application of an elementary
linear transformation xi 7! xi � xj , we obtain:

�(f) = xixjf11 + xix
0

jf00 + x0ixjf01 + x0ix
0

jf10: (3)

A comparison of Equations (2)-(3) shows that the only dif-
ference is that f00 is involved in the interchange with f10,
instead of f01. The fundamental techniques applied to the
e�cient swapping of two variables can be used also for their
linear combination. By combining swapping and linear trans-
formations it is possible to reduce the size of the BDD in more
cases than by swapping only. This observation forms the basis
of the Linear Sifting algorithm, which proceeds as follows.

Each variable is considered in turn, and, as in Sifting, it
is moved up and down in the order. Let xi be the chosen
variable, and let xj be the variable immediately following it
in the order. One basic step of Linear Sifting consists of the
following three phases:

1. Variables xi and xj are swapped; let the size of the BDD
after the swap be s1.

2. The linear transformation xj 7! xi � xj is applied; let
the resulting size of the BDD be s2.

3. If s1 � s2 then the linear transformation is undone. This
is obtained by simply applying the transformation again,
since it is its own inverse.

The net e�ect of the three-phase procedure is that xi is moved
one position onward in the order, and possibly linearly com-
bined with xj .

The usual formulation of linear transformations is in terms
of exclusive or, rather than its complement. We use the equiv-
alence function (�) because typically, BDDs use the comple-
ment arcs; hence, in order to preserve canonicity, we cannot
swap f11 with one of ff10; f01; f00g, all of which could be
complemented. Since the 1-arcs cannot be complemented, we
would have to change the complementation of arcs into the

node labeled (initially) xi. This would make the operation
non-local, which is highly undesirable.

The Linear Sifting algorithm is very time-e�cient, as it is
shown in [6], and it sometimes leads to signi�cant reductions
in the sizes of the OBDDs compared to the \conventional"
Sifting algorithm.

4.2 Applying Linear Sifting

Our heuristic for extracting a linear �lter is to use the (shared)
BDD sizes of the functions f 0; � in the decomposition f(x) =
f 0(�(x)) as a complexity measure:

C
n(f 0; �) = BDD-size(f 0; �):

Our algorithm for extracting a linear �lter is to apply the Lin-
ear Sifting algorithm on the given target function as explained
above. Hence, our complexity measure coincides with the op-
timization criterion of the Linear Sifting algorithm. Partic-
ularly, we can exploit the fact that our implementation rep-
resents the linear transformation � within the shared BDD
itself. The measure has been inspired by the observation that
in some cases Linear Sifting yields signi�cant reductions in the
BDD size compared to the conventional Sifting algorithm. Al-
though there is by far no strict correlation between BDD size
and the di�culty in the mapping step, we expect functions
with relatively small BDD size to be mapped easily. The ad-
vantage of our measure is that it is the most attractive one for
the preprocessing step (minimizing the BDD size is equivalent
to minimizing the memory consumption) and that it somehow
seems to be particularly adequate to analyze Boolean func-
tions whose implementation will be obtained through modern
BDD-based logic synthesis tools.

Although we did not particularly aim at fully symbolic syn-
thesis algorithms like the one by Minato [10] we also investi-
gated these methods, see Section 5.3. These algorithms start
by transforming the OBDD of a function into a ZDD (zero-
suppressed BDD, [8]) of its prime-irredundant two-level form
before proceeding.

5 Experimental Results

5.1 Main Setup

For the experimental evaluation we tried to use a very sim-
ilar setup as the one in [3]. Our algorithm has been imple-
mented using the CUDD BDD-package [14] and SIS 1.3 [13].
After building the BDDs in a suitable manner (see below) they
are dumped to a BLIF �le. In case of using Linear Sifting
the transformation is also encoded into this �le (in form of a
subcircuit). Notice that, for sequential benchmarks, only the
combinational portion of the logic has been considered, that
is, state inputs and state outputs have been treated as primary
inputs and primary outputs, respectively.

The functions are then synthesized under SIS 1.3 us-
ing script.rugged. Mapping was done using the library
lib2.genlib with the command map -m 0 which optimizes the
circuit for area. The memory limit was 128 MB, the time limit
20000 s on a Sun Sparc 10.

Our results for a set of 62 benchmark circuits are shown
in Table 2. The column In represents the number of inputs
resp. outputs of the function. The column Area shows the
area of the mapped circuit, where all numbers are divided by
464, the greatest common divisor of all gate sizes. The delay
of the mapped circuit and the time that SIS needs for all the
above mentioned tasks are listed in the next two columns. The

Starting from a HDL Using transformation

In Area Delay BDD Area Delay BDD

sec 8 674 23.02 109 357 13.95 111

des 256 6213 126.36 7388 7824 117.53 4887

Figure 3: Reference results from [3].

following two columns show the size of the BDD after the pre-
processing step (= the symbolic simulation using Sifting resp.
Linear Sifting) and the running times of this preprocessing.

In our experiments we were especially interested in the
question if it is possible by using an appropriate preprocess-
ing to synthesize those functions which failed when using only
conventional variable reordering. Hence, our experiments were
conducted as follows: We used the publicly available very good
variable orderings from the CUDD distribution [14] and used
the mapping from the corresponding BDDs as our reference.
These variable orderings were obtained by a large number of
di�erent variable reordering variants. Then we used three com-
binations of Sifting and Linear Sifting in order to see whether
a circuit can be improved or a failed attempt can now be com-
pleted. The three combinations are:

1. Start from the well-known good ordering, then apply a
�nal Linear Sifting.

2. Dynamically apply Linear Sifting.

3. Dynamically apply Linear Sifting until Convergence.

By these methods the number of fails could be reduced
from 9 to 6. As 2 of these 6 functions completed when starting
from a good order, we now only have 4 functions that did not
complete for any variant. Concerning the size of the circuits for
which both approaches succeed, the decomposition generally
seems to produce some overhead. However, in some cases like
s1423, C7552 or C2670 signi�cant gains could be achieved by
using Linear Sifting. As it is proven by the CPU times, the
preprocessing step is very time-e�cient.

As a further reference we want to mention the results of
[3]. Unfortunately, although they report on a large number of
intermediate results of their implementation, they give their
�nal mapping results only for two circuits whose BDDs have
more than 31 nodes and compare it to a mapping from a hard-
ware description language, see Fig. 3.

5.2 Separate Mapping

In the above described experimental setup, we were mainly
interested in the e�ect of Linear Sifting when acting as a pre-
processing for introducing some structure into the function
representation.

In particular for the cases where Linear Sifting leads to
far superior results we were interested in the question in how
far it is advisable to encode the transformation and the re-
maining function into one BLIF �le or to do the mappings
separately. Table 4 shows what happens to the circuits C499,
C1355, C1908 when mapping the transformation and the re-
maining function separately. It re
ects the general observation
that separate mapping typically does not improve the mapping
results in our environment. However, we did not use a special-
ized algorithm for mapping the transformation (like in [3]).
This might improve our results.

5.3 Symbolic Synthesis

Minato [10] has proposed the use of symbolic BDD- and ZDD
techniques for optimizing multi-level logic circuits. They are

Starting from very good order Best results - three Linear Sifting BDDs

In Area Delay Time BDD PTime Area Delay Time BDD PTime

9symml 9 116 11.8 8 25 0.7 115 9.9 5 25 0.1

alu4 14 1210 36.8 156 350 0.2 1251 35.6 251 350 0.4

t481 16 90 12.5 3 21 0.9 90 12.5 4 21 1.0

vda 17 1748 25.1 265 478 0.3 1800 29.7 269 478 0.5

cordic 23 137 14.4 6 42 0.1 145 18.0 5 31 0.2

s499 23 561 19.8 49 330 0.1 1031 29.5 105 336 0.6

s344 24 300 18.2 12 104 0.1 366 18.3 14 83 0.3

ttt2 24 341 19.1 14 107 0.1 349 21.6 12.5 107 0.2

s1196 32 1509 29.3 362 598 0.3 1462 33.5 842 599 0.8

C1908 33 TIME OUT 5526 1.7 5148 74.9 3714 1209 23.1

adder16 33 366 73.2 9 82 0.1 481 51.2 18 49 0.6

s635 34 569 40.4 24 128 0.2 569 40.4 25 128 0.6

C432 36 2308 43.5 1995 1064 0.3 2279 45.5 3168 1064 1.1

mm9b 38 4472 46.9 6800 1527 0.7 4394 48.6 12941 1502 1.8

toolarge 38 754 26.7 121 319 1.8 737 29.1 98 319 2.4

mm9a 39 3851 52.5 4259 1111 0.5 TIME OUT 980 2.0

C1355 41 TIME OUT 25866 5.1 3110 54.6 757 484 18.1

C499 41 TIME OUT 25866 4.1 3419 58.0 968 520 10.7

k2 45 3667 35.2 1209 1246 0.6 3681 53.9 1438 1236 4.8

s967 45 1088 22.3 163 366 0.2 1012 24.3 169 383 0.5

C3540 50 TIME OUT 23828 7.7 TIME OUT 23823 120.2

s1269 55 3872 42.3 16456 1695 0.4 3719 46.9 3573 1480 2.2

C880 60 13047 77.6 1761 4053 0.8 13150 78.7 1585 4052 5.2

comp32 64 568 80.1 42 97 0.1 527 76.2 38 97 0.7

adder32 65 734 146.2 30 162 0.2 1019 126.7 58 97 2.2

adsb32 65 1323 145.6 136 345 0.2 1323 110.6 82 191 1.5

s938 66 717 40.1 48 161 0.2 726 44.1 46 161 1.4

sbc 68 1869 21.7 222 917 0.5 1861 19.6 193 917 2.0

alu32 73 2032 95.4 307 478 0.4 2078 82.1 281 388 1.8

alu32r 73 2032 95.4 305 478 0.4 2100 95.1 279 388 3.0

dalu 75 1665 32.5 488 689 0.8 1634 42.1 382 594 12.1

s991 84 1329 79.0 82 328 0.3 1485 116.6 82 328 1.8

s1512 86 1451 23.6 104 566 0.4 1358 29.5 102 526 1.6

xi30 90 675 157.4 22 91 0.3 675 157.4 20 91 1.3

s1423 91 3025 39.7 898 1796 0.6 2533 35.8 577 1477 11.4

dpath32 93 1776 133.6 272 485 0.4 1511 100.9 254 396 3.2

mm30a 123 MEMORY OUT 11065 4.5 27038 226.1 8470 8979 47.8

i3 132 254 9.9 11 133 0.2 290 11.0 13 133 1.0

i8 133 2788 45.4 541 1276 1.3 2860 52.9 719 1276 4.1

apex6 135 1406 25.2 84 498 0.3 1432 34.3 158 498 1.6

s3271 142 2564 29.0 160 831 0.8 2666 29.4 145 671 2.9

frg2 143 1823 36.1 313 963 0.6 1837 35.1 321 921 3.5

s4863 153 MEMORY OUT 64088 26.3 MEMORY OUT 64079 419.0

C5315 178 6374 53.0 542 1719 1.3 5746 64.1 3448 1537 8.5

s5378 199 3727 27.6 468 1932 1.3 MEMORY OUT 1688 56.0

C7552 207 9189 143.3 638 2212 2.0 6182 113.5 315 1150 157.8

s3384 226 2605 83.3 141 693 1.2 2737 42.9 160 597 4.5

C2670 233 6475 71.1 433 1774 0.9 5003 51.8 308 1401 9.3

s9234.1 247 9007 45.1 733 3045 2.2 9045 48.1 688 2731 56.2

comp128 256 2296 318.9 3392 385 0.3 2103 311.2 2852 385 8.9

des 256 7148 120.6 1950 2945 1.7 8106 224.9 4012 2087 162.5

add128 257 2942 584.5 1220 642 0.9 4091 497.3 189 385 46.2

adsb128 257 5435 579.5 10750 1401 1.4 5550 428.8 366 767 24.5

i10 257 TIME OUT 20660 6.2 TIME OUT 19343 650.4

alu128 265 TIME OUT 1918 4.2 8550 323.4 623 1540 60.1

s6669 322 TIME OUT 18033 25.3 TIME OUT 17912 157.3

clma 415 1481 33.3 117 738 9.0 1501 29.7 128 718 13.0

clmb 415 1388 28.4 134 690 9.0 1244 23.7 103 618 24.2

dsip 452 5310 119.7 1192 3033 3.1 10595 155.8 3848 2703 31.1

bigkey 486 5529 126.5 1173 1595 1.4 7817 144.2 1480 1406 22.7

s15850.1 611 25154 111.8 4766 9712 15.8 31514 137.6 7727 10934 236.7

s13207.1 700 7487 55.0 1322 2863 12.8 8622 43.2 1187 2854 42.0

Figure 2: Experimental results.

Mapping remaining function Mapping transformation
In Area Delay Time Area Delay Time BDD PTime

C1355 41 1667 26.0 82 1817 68.6 75.9 484 18.1
C499 41 1663 25.2 93 2296 83.2 83.7 520 10.7
C1908 33 4400 42.6 1906 732 29.9 15.9 1209 32.1

Figure 4: Results from separate mapping.

BDD

Symbolic

synthesis (VIS)
- BLIF

Technology

mapping (SIS)
- Circuit

Mapping remaining function
In Area Delay Time

C1355 41 1945 22.5 314
C499 41 1801 28.9 191
C1908 33 TIME OUT

Figure 5: Symbolic synthesis: Idea and results.

mainly based on generating a ZDD-representation for a prime-
irredundant two-level form of the given BDD and then using
e�cient divisor extraction algorithms on ZDDs for optimizing
the circuit. As these techniques seem to be especially suited
when starting a mapping procedure from a given BDD (instead
e.g., of a multi-level description), we explored their use for our
problem. In our experimental setup, we �rst used the symbolic
algorithms for synthesizing the transformed function and then
used SIS for doing the �nal mapping step, see Fig. 5. For the
implementation of the symbolic synthesis algorithms we used
the corresponding procedures of the newest VIS releases [1].

The results for some cases where Linear Sifting reduced the
BDD size signi�cantly are shown in Fig. 5. A comparison with
Fig. 4 shows that the overhead from the two-phase mapping
(VIS and SIS) seems to be too big in our context.

A very astonishing result which is also of independent in-
terest in the connection between BDDs and ZDDs is obtained
in the case of adders. When using Minato's algorithm to
transform a BDD for an n-bit adder to the ZDD of its prime-
irredundant two-level form, the ZDD is of linear size. When
applying Linear Sifting on the BDD of the adder, the BDD
size is reduced by 40 % of the original size. If, however, this
linearly sifted BDD is transformed to the ZDD of its irredun-
dant sum-of-product, the size of the resulting ZDD seems to
grow exponentially. A thorough description of this e�ect can
be found in the appendix.

6 Conclusion

We have presented and evaluated a new approach for syn-
thesizing and mapping a Boolean function after performing a
suitable decomposition. Our method is an alternative to the
one proposed in [3]. The experimental results show that this
approach may produce good results in cases where the function
cannot be synthesized without a decomposition. Our approach
is easy to implement in all environments which use dynamic
reordering for BDDs, the resulting algorithm is simpler than
the one in [3]. It also very well supports the concept of sym-
bolic BDD-representations and may immediately pro�t from
further improvements of the Linear Sifting algorithm.

In general, we think that the full power of decomposition
techniques for mapping from a BDD has not been exploited
so far. Additional investigations of the auxiliary routines (like

Linear Sifting), their combination and the optimization crite-
ria should help to close this gap. Speci�cally, the results of
the appendix suggest that the minimization of the ZDD for
the cover of the given function rather than the minimization
of the BDD for the function itself may provide a more reliable
cost function. (The number of nodes in that ZDD corresponds
to the number of literals in a factored form for the function.)

Consequently, we have begun the implementation of Linear
Sifting for ZDDs and we expect results soon.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, et al. VIS: A system f. veri�cation and syn-
thesis. CAV '96, LNCS 1102, pp. 428{432. Springer, 1996.

[2] R. E. Bryant. Graph-based algorithms f. Boolean function
manipulation. IEEE Trans. Comp., C{35:677{691, 1986.

[3] J. P. Hansen, M. Sekine. Synthesis by spectral translation
using BDDs. In 33th DAC, pp. 248{253, 1996.

[4] S. L. Hurst, D. M. Miller, J. C. Muzio. Spectral Techniques
in Digital Logic. Academic Press, 1985.

[5] Z. Kohavi. Switching and Finite Automata Theory. Mc-
Graw Hill, 1978.

[6] Ch. Meinel, F. Somenzi, T. Theobald. Linear sifting of
decision diagrams. In 34th DAC, pp. 202{207, 1997.

[7] Ch. Meinel, T. Theobald. Local encoding transformations
for optimizing OBDD-representations of FSMs. In FM-
CAD '96, LNCS 1166, pp. 404{418. Springer, 1996.

[8] S. Minato. Zero-suppressed BDDs for set manipulation in
combinatorial problems. In 30th DAC, pp. 272{277, 1993.

[9] S. Minato. Binary Decision Diagrams and Applications
for VLSI CAD. Kluwer Academic Publishers, 1996.

[10] S. Minato. Fast factorization method for implicit cube
representation. IEEE Trans. CAD, 15:377{384, 1996.

[11] A. Narayan, J. Jain, M. Fujita, A. Sangiovanni-Vincen-
telli. Partioned OBDDs { a compact, canonical and e�-
ciently manipulable representation for Boolean functions.
In ICCAD '96, pp. 547{553, 1996.

[12] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In ICCAD '93, pp. 42{47, 1993.

[13] E. M. Sentovich, K. J. Singh, L. Lavagno, et al. SIS:
A system for sequential circuit synthesis. Tech. Report
UCB/ERL M92/41, Univ. of California, Berkeley, 1992.

[14] F. Somenzi. CUDD: Colorado University Decision Dia-
gram Package. ftp://vlsi.colorado.edu/pub/, 1996.

[15] D. Varma, E. A. Trachtenberg. Design automation tools
for e�cient implementation of logic functions by decom-
position. IEEE Trans. CAD, 8:901{916, 1989.

Appendix

In this appendix we give some analysis of adder functions. The
goal is not only to analyze the blowup for adders reported in
Section 5.3 but also to provide a new reference result for un-
expected yet important e�ects caused by combining seemingly

 s0 s1

b0

 s2

b1

 c3

b2 b2

a2 a2a2

b1

1

a1 a1 a1

b0

a0 a0a0

cin

(a) 3-bit adder

a2’ : b2 = a2

a1’ : b1 = a1

a0’ : b0 = cin

cin’ : a0 = cin

b0’ : b1 = b0

b1’ : b2 = b1

b2’ : b2

 s0 s1

cin’

 s2

a1’

 c3

a2’ a2’

a1’

b2’

a0’

b1’

b0’

1

(b) transformed 3-bit adder

Figure 6: Induction ideas.

unrelated algorithms on BDDs and ZDDs.
Let f(an�1; bn�1; : : : ; a0; b0; cin) : IB2n+1 ! IBn+1 be the

n-bit-adder function that takes as input two n-bit strings
an�1 : : : a0, bn�1 : : : b0 and an incoming carry cin, and com-
putes their binary sum sn�1 : : : s0 and the outgoing carry bit
cn. It is well-known that good BDD-orders for the n-bit adder
require to keep ai and bi together in the ordering, 0 � i � n�1.
Moreover, an optimal OBDD for the adder function that may
use complemented edges needs at least 5n+C nodes for a con-
stant C. As it is shown in the following lemma the variable
ordering bn�1; an�1; : : : ; b0; a0; cin leads to this optimal bound
of (asymptotically) 5n.

Lemma 1 For n � 1, the reduced OBDD (using comple-
mented edges) for the n-bit adder w.r.t. the variable ordering
bn�1; an�1; : : : ; b0; a0; cin has exactly 5n+ 2 nodes.

Proof The lemma can be proven by induction over the num-
ber of variables. The idea of the induction should become clear
from Fig. 6 (a) which shows the OBDD for a 3-bit adder. In
the diagram a 1-edge is indicated by a solid line, a 0-edge by
a dashed line and a complemented 0-edge by a dotted line. 2

Lemma 2 For n � 1, there exists a linear transformation
�n such that the OBDD (using complemented edges) of the
transformed n-bit adder has exactly 3n+ 1 nodes.

The transformation in the previous lemma is exactly the
one that is found in our implementation of Linear Sifting.

Proof The proof is also by induction. The idea of the in-
duction should become clear from Fig. 6 (b) which can be
extended to arbitrary n. On the left side of the �gure the
functional relation between the original and the transformed
variables is given. 2

The transformation from an OBDD to a ZDD for its prime-
irredundant sum-of-product is achieved by using Morreale's
algorithm which has been adapted to the decision diagram en-
vironment by Minato [9]. As this ISOP algorithm contains
a double recursion, a detailed analysis of the resulting ZDD
function quickly becomes quite tedious. However, the follow-
ing can be proved formally:

Lemma 3 For n � 1, the resulting ZDD (which depends on
2 � (2n+1) variables) when applying Minato's algorithm on the
adder of Lemma 1 has size 11n+ 2.

Proof Here, the inductive proof idea is that the ZDD for the
n-bit adder has the structure which is shown in Fig. 7 with
some subgraphs rooted in the nodes A, B. Each variable of
the original OBDD is now represented by two variables repre-
senting the positive and the negative literal. The shown ZDD
structure can be exploited recursively to construct the ZDD
for the (n+ 1)-bit adder. 2

b(n-2)

b(n-2)c

 s(n-1) c(n)

b(n-1) b(n-1)

a(n-1) a(n-1)

b(n-1)c

a(n-1)a(n-1)

0

a(n-1)c

A

a(n-1)c

B

1

Figure 7: ZDD for the adder.

In contrast to the linear ZDD size resulting from the origi-
nal adder, the ZDD size resulting from the transformed OBDD
satis�es the recurrence equation size(n) = 2�size(n�1)+4n+5
for all n � 3 in our corresponding experiments (in particular
n � 16) and hence seems to grow exponentially in n. 3

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

