
0-89791-993-9/97 $10.00  1997 IEEE

Power Optimization using Divide-and-Conquer Techniques for Minimization of
the Number of Operations

Inki Hong, Miodrag Potkonjak and Ramesh Karriy

Computer Science Department, University of California, Los Angeles, CA 90095
yDept. of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003

Abstract

We develop an approach to minimizing power consump-
tion of portable wireless DSP applications using a set of
compilation and architectural techniques. The key techni-
cal innovation is a novel divide-and-conquer compilation
technique to minimize the number of operations for gen-
eral DSP computations. Our technique optimizes not only
a significantly wider set of computations than the previ-
ously published techniques, but also outperforms (or per-
forms at least as well as other techniques) on all examples.
Along the architectural dimension, we investigate coordi-
nated impact of compilation techniques on the number of
processors which provide optimal trade-off between cost
and power. We demonstrate that proper compilation tech-
niques can significantly reduce power with bounded hard-
ware cost. The effectiveness of all techniques and algo-
rithms is documented on numerous real-life designs.

1 Introduction
The applications of portable wireless market are defined by
their intrinsic demand for portability, flexibility, cost sen-
sitivity and by their high digital signal processing (DSP)
content. Portability translates into the crucial importance
of low power design, flexibility results in a need for pro-
grammable platforms implementation, and cost sensitivity
narrows architectural alternatives to a uniprocessor or a few
off-the-shelf standard processors. The key optimization
degree for satisfying this set of requirements comes from
properties of typical portable computations. The computa-
tions are mainly linear, but rarely 100% linear due to either
need for adaptive algorithms or nonlinear quantization el-
ements. Such computations are well suited for static com-
pilation and quantitative optimization.

Our goal is to develop synthesis and compilation meth-

1Ramesh Karri was supported by an NSF CAREER grant MIP-
9702676. Inki Hong and Miodrag Potkonjak were partially supported
by a MICRO 96-182 grant. Inki Hong was also supported by a DAC
fellowship.

ods and tools for realization of typical DSP wireless ap-
plications on single and multiple programmable proces-
sors. Furthermore, we study achievable power-cost trade-
offs when parallelism is traded for power reduction.

The main technical innovation of the research is the first
approach for minimizing the number of operations ingen-
eral computations. The approach optimizes not only sig-
nificantly wider set of computations than the other previ-
ously published techniques [11], but also outperforms or
performs at least as well as other techniques on all ex-
amples. To the best of our knowledge this is the first
optimization-intensive approach for minimizing the num-
ber of operations ingeneralcomputations. The second
technical highlight is the quantitative analysis of costvs
power trade-off on multiple programmable processors. We
derive a condition under which the optimization of the
cost-power product using parallelization is beneficial.

2 Preliminaries

We selected as a computational model synchronous data
flow (SDF) [4]. The syntax of a targeted computation is de-
fined as a hierarchical control-data flow graph (CDFG) [8].
The only relevant speed metric is throughput. We assume
that all types of operations take one clock cycle for their ex-
ecution, as it is the case in many modern DSP processors.
In the case of a multi-processor, we make the following ad-
ditional assumptions: (i) all processors are homogeneous,
(ii) inter-processor communication does not cost any time
and hardware, and (iii) effective switched capacitance in-
creases linearly with the number of processors.

The power model used in this research is built on three
established facts. First, the number of operations at the
machine code-level is proportional to the number of op-
erations at high-level language [2]. Secondly, the power
consumption in programmable processors is directly pro-
portional to the number of operations, regardless of what
the mix of operations being executed is [13]. Finally, our
model follows the power consumption and timing models
in digital CMOS circuits presented in [1]. Based on these

three facts, we conclude that if the targeted implementa-
tion platform is a single CMOS processor, reduction in the
number of operations is the key to power minimization.

3 Related Work
Power minimization efforts across all levels of design ab-
straction process are surveyed in [10]. Parhi and Messer-
schmitt [6] presented optimal unfolding of linear DSP
computations. Potkonjak and Rabaey [7] addressed the
minimization of the number of multiplications and addi-
tions in linear computations in their maximally fast form
so that the throughput is preserved. Sheliga and Sha [9]
presented an approach to minimizing the number of op-
erations in linear computations. Srivastava and Potkonjak
[11] developed an approach to minimizing power for lin-
ear computations, based on the minimization of the num-
ber of operations. A variant of their technique is used in
“conquer” phase of our approach. Our approach is differ-
ent from theirs in two respects. First, their technique can
handle only linear computations, while our approach can
optimize generalcomputations. Secondly, our approach
outperforms their techniques for linear computations.

4 Single Programmable Processor
The power minimization of single processor is based on the
the minimization of the number of operations. The core of
the approach to minimizing the number of operations is
presented in the pseudo-code of Figure 1.

Decompose a computation into strongly connected
components(SCCs);
Any adjacent trivial SCCs are merged into a sub part;
Use pipelining to isolate the sub parts;
For each sub part

Minimize the number of delays using retiming;
If (the sub part is linear)

Apply optimal unfolding;
Else

Apply unfolding after isolating nonlinear operations;
Merge linear sub parts to further optimize;
Schedule merged sub parts to minimize memory usage;

Figure 1. Minimizing the number of operations
for general DSP computations

The first step of the approach is to identify the compu-
tation’s strongly connected components(SCCs), using the
depth-first search-based algorithm [12]. For any pair of
operationsA andB within an SCC, there exist both a path
fromA toB and a path fromB toA. The graph formed by

all SCCs is acyclic. Thus, the SCCs can be isolated from
each other using pipeline delays, which enables us to op-
timize each SCC separately. The inserted pipeline delays
are treated as inputs or outputs to the SCC. As a result, ev-
ery output and state in an SCC depend only on the inputs
and states of the SCC. In this sense, the SCC is isolated
from the rest of the computation and can be optimized sep-
arately. Note that this isolation is not affected by unfold-
ing. For trivial SCCs with only one node, unfolding fails to
reduce the number of operations. Thus, any adjacent triv-
ial SCCs are merged together before the isolation step, to
reduce the number of pipeline delays used.

The number of delays in each sub part is minimized us-
ing retiming by the Leiserson-Saxe algorithm [5]. Note
that smaller number of delays will require smaller number
of operations since both the next states and outputs depend
on the previous states. SCCs are further classified as either
linear or nonlinear. Minimization of the number of opera-
tions for linear computations is NP-complete [9]. We have
adopted an approach of [11] for the optimization of lin-
ear sub parts, which uses unfolding and the maximally fast
procedure [7]. We note that instead of maximally fast pro-
cedure, the ratio analysis by [9] can be used. [11] has pro-
vided the closed-form formula for the optimal unfolding
factor with the assumption of dense linear computations,
which means that every output and state are linear combi-
nations of all inputs and states with no 0, 1, or -1 coeffi-
cients. For sparse linear computations, they have proposed
a heuristic which continues to unfold until there is no im-
provement. We have made the simple heuristic more effi-
cient with binary search, based on the unimodality property
of the number of operations on unfolding factor [11].

When a sub part is classified as nonlinear, we apply un-
folding after the isolation of nonlinear operations. All non-
linear operations are isolated from the sub part so that the
remaining linear sub parts can be optimized. All arcs from
nonlinear operations to the linear sub parts are considered
as inputs to the linear sub parts, and all arcs from linear
sub parts to the nonlinear operations are considered as out-
puts from the linear sub parts. If every output and state
of the nonlinear sub part depend on nonlinear operations,
then unfolding with the separation of nonlinear operations
is ineffective in reducing the number of operations.

It is often beneficial to decompose a computation into
larger sub parts than SCCs, especially when there are
many intermediate outputs between SCCs. This observa-
tion leads us to an approach to merging sub parts for further
reducing the number of operations. We consider merging
of any adjacent arbitrary sub parts. Suppose we consider
merging of sub partsi and j. The gainGAIN(i; j) of
merging sub partsi and j can be computed as follows:
GAIN(i; j) = COST (i) + COST (j) � COST (i; j),

whereCOST (i) is the optimized number of operations for
sub parti andCOST (i; j) is the optimized number of op-
erations for the merged sub part ofi andj. To compute the
gain,COST (i; j) must be computed, which requires con-
stant coefficient matricesA;B;C; andD for the merged
sub part ofi and j. It is easy to construct the matrices
using the depth-first search [12]. Sub part merging is per-
formed by a greedy optimization approach. The algorithm
is straightforward. Until there is no improvement, merge
the pair of sub parts which produces the highest gain.

5 Multiple Programmable Processors
When multi-processors are used, potentially more sav-
ings in power can be obtained. Usingk processors in-
creases throughputk times when there is full parallelism in
the computation, while effective switched capacitance in-
creasesk times as well. There exists full parallelism in all
the real-life examples considered since the feedback loops
can be computed in parallel and there exist more operations
outside feedback loops than required.

One can reduce the voltage so that the clock frequency
of all k processors is reduced by a factor ofk. It is al-
ways beneficial to use more processors in terms of power
with the following two limitations: (i) the amount of paral-
lelism available limits the improvement in throughput and
the critical path of the computation is the maximum achiev-
able throughput and (ii) when supply voltage approaches
close to threshold voltage, the improvement in power be-
comes so small that the cost of adding a processor can not
be justified. We want to find the number of processors
which minimizes power cost-effectively.

Reduction %
Init. New Reduction % From

Design Ops [11] Method From [11] Init. Ops

dist 48 47.3 36.4 23.0 24.2
chemical 41 33 29.6 10.3 27.8

DAC 2098 2098 1327.83 36.7 36.7
modem 213 213 148.83 30.1 30.1

GE controller 180 180 105.26 41.5 41.5
APCM receiver 2238 N/A 1444.19 N/A 35.4

Audio Filter 228 N/A 92.0 N/A 59.7
Video Filter 398 N/A 184.5 N/A 53.7

VSTOL 1686 N/A 876 N/A 47.9

Table 1. Minimizing the number of operations
for real-life examples; N/A - Not Applicable

We propose aPN product as a measure of cost effec-
tiveness, whereP is the power consumption normalized to
that of optimized single processor solution andN is the
number of processors used. The smaller thePN product
is the more cost-effective the solution is. IfPN is smaller
than 1, usingN processors has decreased the power con-
sumption by a factor of more thanN . It depends on the

power requirement and the cost budget for the implementa-
tion how many processors the implementation should use.
PN products monotonically increase with respect to the
number of processors. From the values ofPN in all the
cases considered on the standard CMOS platforms, we ob-
serve that cost effective solutions usually use only a few
processors.

Design Vinit Vt New Volt Pow Red

dist 5.0 1.1 3.76 2.33
3.3 0.7 2.70 1.96
1.3 0.3 1.10 1.84
0.5 0.1 0.42 1.88
0.25 0.06 0.21 1.82

chemical 5.0 1.1 3.61 2.65
3.3 0.7 2.61 2.21
1.3 0.3 1.07 2.04
0.5 0.1 0.41 2.10
0.25 0.06 0.21 2.02

DAC 5.0 1.1 3.81 2.72
3.3 0.7 2.50 2.75
1.3 0.3 1.00 2.69
0.5 0.1 0.38 2.80
0.25 0.06 0.19 2.66

modem 5.0 1.1 4.02 2.21
3.3 0.7 2.65 2.23
1.3 0.3 1.05 2.19
0.5 0.1 0.40 2.25
0.25 0.06 0.20 2.17

GE controller 5.0 1.1 3.65 3.21
3.3 0.7 2.39 3.25
1.3 0.3 0.96 3.16
0.5 0.1 0.36 3.31
0.25 0.06 0.18 3.12

Table 2. Minimizing power consumption on sin-
gle programmable processor for linear examples

Based on these observations, we have developed the
strategy for the multiple processor implementation. First,
power for single processor implementation is minimized
using the technique in Section 4. Next, increase the num-
ber of processors until thePN product is below the given
maximum value. The maximum value is determined based
on the power requirement and the cost budget for the im-
plementation. The strategy produces solutions with only a
few processors, in many cases single processor.

6 Experimental Results
Our set of benchmark designs include all the examples
used in [11] as well as the following typical portable DSP
applications: DAC - 4 stage NEC digital to analog con-
verter for audio signals; modem - 2 stage NEC modem; GE
controller - 5-state GE linear controller; APCM receiver -
Motorola’s adaptive pulse code modulation receiver; Au-
dio Filter - ADC followed by 18 order parallel filter; Video
Filter - two ADCs followed by 12-order 2D IIR filter; and
VSTOL - VSTOL robust observer structure aircraft speed
controller. DAC, modem, and GE controller are linear and
the rest are nonlinear. The examples from [11] are all lin-

ear, which include ellip, iir5, wdf5, iir6, iir10, iir12, steam,
dist, and chemical.

Table 1 presents the results of our technique for min-
imizing the number of operations. The fifth and sixth
columns of Table 1 provide the reduction percentage of
our method from [11] and from the initial number of op-
erations, respectively. Our method achieves the same num-
ber of operations as [11] for ellip, iir5, wdf5, iir6, iir10,
iir12, and steam while it reduces the number of opera-
tions by 23 and 10.3% for dist and chemical, respectively.
All the examples from [11] are small single-input single-
output (SISO) linear computations, except dist and chem-
ical which are two-inputs single-output linear computa-
tions, which results in no room for further improvement
from [11]. Our method reduces the number of operations
by an average 39.7% for the examples that previous tech-
niques are either ineffective or inapplicable. Tables 2 and 3
present the results of our technique for minimizing power
on single processor for various technologies. Our method
results in power reduction by an average factor of 3.43.

Due to space limitation, the experimental results for
multi-processors were omitted. For the results, we refer
to [3]. Our method achieves cost-effective solutions with
very low power penalty compared to the solutions which
only optimize power without considering hardware cost.

Design Vinit Vt New Volt Pow Red

APCM receiver 5.0 1.1 3.85 2.62
3.3 0.7 2.53 2.64
1.3 0.3 1.01 2.58
0.5 0.1 0.38 2.68
0.25 0.06 0.19 2.56

Audio Filter 5.0 1.1 3.03 6.76
3.3 0.7 1.85 6.54
1.3 0.3 0.8 6.58
0.5 0.1 0.3 7.11
0.25 0.06 0.16 6.44

Video Filter 5.0 1.1 3.24 5.15
3.3 0.7 2.12 5.24
1.3 0.3 0.85 5.04
0.5 0.1 0.32 5.37
0.25 0.06 0.17 4.94

VSTOL 5.0 1.1 3.43 4.10
3.3 0.7 2.25 4.15
1.3 0.3 0.90 4.02
0.5 0.1 0.34 4.25
0.25 0.06 0.17 3.96

Table 3. Minimizing power on single pro-
grammable processor for nonlinear examples

7 Conclusion
We introduced an approach to minimizing power using
compilation and architectural techniques. The key tech-
nical innovation is a compilation technique for minimiz-
ing the number of operations which synergistically uses
several transformations within a divide and conquer op-

timization framework. The approach not only deals with
generalcomputations, but also outperforms previous tech-
niques for limited computation types. We also investigated
the impact of compilation techniques on the number pro-
cessors which provide optimal trade-off of cost and power.
The experimental results on a number of real-life designs
demonstrated the effectiveness of the proposed approach.

References
[1] A.P. Chandrakasan, S. Sheng, and R.W. Broderson.

Low-power CMOS digital design.IEEE J. of Solid-
State Circuits, 27(4):473–484, 1992.

[2] P.D. Hoang and J.M. Rabaey. Scheduling of DSP pro-
grams onto multiprocessors for maximum through-
put. IEEE Trans. on Signal Processing, 41(6):2225–
2235, 1993.

[3] I. Hong, M. Potkonjak, and R. Karri. Power optimiza-
tion using divide-and-conquer techniques for mini-
mization of the number of operations. Technical re-
port, Computer Science Department, UCLA, 1997.

[4] E.A. Lee and D.G. Messerschmitt. Synchronous
dataflow.Proc. of the IEEE, 75(9):1235–1245, 1987.

[5] C.E. Leiserson and J.B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5–35, 1991.

[6] K.K. Parhi and D.G. Messerschmitt. Static rate-
optimal scheduling of iterative data-flow programs
via optimum unfolding.IEEE Trans. on Computers,
40(2):178–195, 1991.

[7] M. Potkonjak and J. Rabaey. Maximally fast and ar-
bitrarily fast implementation of linear computations.
ICCAD, pages 304–308, 1992.

[8] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast
prototyping of data path intensive architectures.IEEE
Design & Test of Computers, 8(2):40–51, 1991.

[9] M. Sheliga and E.H.-M. Sha. Global node reduction
of linear systems using ratio analysis.International
Symposium on High-Level Synthesis, pages 140–145,
1994.

[10] D. Singh, J. Rabaey, M. Pedram, F. Catthoor, S. Raj-
gopal, N. Sehgal, and T. Mozdzen. Power conscious
cad tools and methodologies: A perspective.Proc. of
the IEEE, 83(4), 1995.

[11] M. Srivastava and M. Potkonjak. Power optimization
in programmable processors and ASIC implemen-
tations of linear systems: Transformation-based ap-
proach.Design Automation Conference, pages 343–
348, 1996.

[12] R.E. Tarjan. Depth first search and linear graph algo-
rithms. SIAM J. on Computing, 1(2):146–160, 1972.

[13] V. Tiwari, S. Malik, and A. Wolfe. Power analysis
of embedded software: a first step towards software
power minimization.IEEE Trans. on VLSI Systems,
2(4):437–445, 1994.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

