
0-89791-993-9/97 $10.00 1997 IEEE

Decomposition of Timed Decision Tables and its

Use in Presynthesis Optimizations

Jian Li Rajesh K. Gupta
Department of Computer Science Information & Computer Science

University of Illinois, Urbana-Champaign University of California, Irvine

Urbana, Illinois 61801 Irvine, California 92697

Abstract { Presynthesis optimizations transform a

behavioral HDL description into an optimized HDL de-

scription that results in improved synthesis results. In

this paper we introduce the decomposition of Timed De-

cision Tables (TDT), a tabular model of system behav-

ior. The TDT decomposition is based on the kernel

extraction algorithm. By experimenting using named

benchmarks, we demonstrate how TDT decomposition

can be used in presynthesis optimizations.

1 Introduction

Presynthesis optimizations have been introduced in [1]
as source-level transformations that produce \better"
HDL descriptions. For instance, these transformations
are used to reduce control-ow redundancies and make
synthesis result relatively insensitive to the HDL coding-
style. They are also used to reduce resource require-
ments in the synthesized circuits by increasing compo-
nent sharing at the behavior-level [2].
The TDT representation consists of a main table

holding a set of rules (similar to the speci�cation in
a FSMD [3]), an auxiliary table which speci�es concur-
rencies, data dependencies, and serialization relations
among data-path computations, or actions, and a delay
table which speci�es the execution delay of each action.
The rule section of the model is based on the notions

of condition and action. A condition may be the pres-
ence of an input, or the outcome of a test condition. A
conjunction of several conditions de�nes a rule. A de-
cision table is a collection of rules that map condition
conjunctions into sets of actions. Actions include logic,
arithmetic, input-output(IO), and message-passing op-
erations. We associate an execution delay with each
action. Actions are grouped into action sets, or com-
pound actions. With each action set, we associate a

0

concurrency type of serial, parallel, or data-parallel [4].
The structure of the rule section can be found in [1]
In additional to the set of rules speci�ed in a main

table (the rule section), the TDT representation in-
cludes two auxiliary tables to hold additional informa-
tion about the execution delay of each action, serializa-
tion, data dependency, and concurrency type between
each pair of actions.

Example 1.1. Consider the following TDT:

c1 Y Y N

c2 Y N X delay

a1;1 1 0 0 1

a1;2 1 0 0 3

a2;1 0 1 0 4

a2;2 0 1 0 2

a3;1 0 0 1 6

a3;2 0 0 1 1

a1;1 a1;2 a2;1 a2;2 a3;1 a3;2
a1;1 s

a1;2
a2;1 d

a2;2
a3;1 p

a3;2

An `X' in the condition column indicates a Don't Care as-

sociated with the particular condition. When c1 = `Y' and

c2 = `Y', actions a1;1 and a1;2 are selected for execution.

Since action a1;2 is speci�ed as a successor of a1;1, action

a1;1 is executed with a one cycle delay followed by the exe-

cution of a1;2. Symbols `d' and `p' indicate actions that are

data-parallel and parallel actions respectively. 2

The execution of a TDT consists of two steps: (1)
select a rule to apply, (2) execute the action sets that
the selected rule maps to. More than two action sets
may be selected for execution. The order in which to
execute those action sets are determined by the concur-
rency types, serialization relations, and data dependen-
cies speci�ed among those action sets [4], indicated by
`s', `d', and `p' in the table above. An action in a TDT
may be another TDT. This is referred to as a call to the
TDT contained as an action in the calling TDT.

Example 1.2. Consider the following calling hierarchy:

TDT1

c1 Y N

a1 1 0
TDT2 0 1

TDT2

c2 Y N

a2 1 0
a3 0 1

When c1 = `N' the action needs to be invoked is the call to

TDT2, forces evaluation of condition c2 resulting in actions

a2 or a3 being executed. No additional information such as

concurrency types needs to be speci�ed between action a1

and TDT2 since they lie on di�erent control paths. 2

Procedure/function calling hierarchy in input HDL
descriptions results in a corresponding TDT hierarchy.
TDTs in a calling hierarchy are typically merged to in-
crease the scope of presynthesis optimizations. Merging
attens the calling hierarchy speci�ed in original HDL
descriptions. In this paper we present TDT decompo-
sition which is the reverse of the merging process. By
�rst attening the calling hierarchy and then extracting
the commonalities, we may �nd a more e�cient behav-
ior representation which leads to improved synthesis re-
sults. This allows us to restructure HDL code. In this
paper, we introduce HDL code-restructuring using TDT
merging and decomposition transformations. This op-
timization belongs to a group of presynthesis optimiza-
tions such as column/row reduction and action sharing
that have been presented earlier [1, 4, 2].
This paper is organized as follows. The next section

introduces the notion of TDT decomposition and relates
it to the problem of kernel extraction in an algebraic rep-
resentation of TDTs. Section 3 presents an algorithm
for TDT decomposition based on kernel extraction. Sec-
tion 4 shows the implementation details of the algorithm
and presents the experimental results. Finally, Section
5 concludes and presents our future plan.

2 TDT Decomposition

TDT decomposition is the process of replacing a at-
tened TDT with a hierarchical TDT that represents an
equivalent behavior. As we mentioned earlier, decom-
position is the reverse process of merging and together
with merging, it allows us to produce HDL descriptions
that are optimized for subsequent synthesis tasks and
are relatively insensitive to coding styles. Since this
decomposition uses procedure calling abstraction, arbi-
trary partitions of the table (condition/action) matrices
are not useful.

Example 2.1. Consider the following TDT.

c1 Y Y Y Y Y Y Y Y N N N N

c2 Y Y Y N N N N N

c3 Y Y Y Y N

c4 Y N N

c5 Y N

c6 Y Y N N Y Y N N

c7 Y N Y N Y N Y N

a1 1 1 1 1 1 1 1 1

a2 1 1 1 1 1 1 1 1 1 1 1

a3 1 1

a4 1

a5 1 1

a6 1 1 1 1

a7 1 1 1 1 1 1

a8 1 1 1 1 1 1

a9 1

Notice the common patterns in condition rows in c6 and c7,

and action rows in a6, a7, and a8. 2

Above in Example 2.1 is a attened TDT. The �rst
three columns have identical condition entries in c1 and
c2, and identical action entries in a1 and a2. These
columns di�er in rows corresponding to conditions fc4,
c5g and actions fa3, a4, a5g, which appear only in the
�rst three columns. This may result, for example, from
merging a sub-TDT consisting of only conditions fc4,
c5g and actions fa3, a4, a5g.
Figure 1 shows a hierarchy of TDTs which specify the

same behavior as Example 2.1. The equivalence can be
veri�ed by merging the hierarchy of TDTs [4]. Note
that the conditions and actions are partitioned among
these TDTs.

TDT1:

c1 Y Y Y N

c2 Y N N

c3 Y N

a1 1 1 1

a2 1 1 1

TDT2 1

TDT3 1 1

a9 1

TDT2:

c4 Y N N

c5 Y N

a3 1 1

a4 1

a5 1 1

TDT3:

c6 Y Y N N

c7 Y N Y N

a6 1 1

a7 1 1 1

a8 1 1 1

Figure 1: One possible decomposition of the TDT in
Example 2.1.

The commonality in the attened TDT may not re-
sult from multiple calls to a procedure as indicated by
TDT3 in Figure 1. It could also be a result of common-
ality in the input HDL speci�cation. If this is the case,
extraction will lead to a size reduction in the synthesized
circuit.
It is not always possible to decompose a given TDT

into a hierarchical TDT as shown in Figure 1 above.
Neither is it always valid to merge the TDT hierarchy
into attened TDT [4]. These two transformations are
valid only when the speci�ed concurrency types, data
dependencies, and serializations are preserved. In this
particular example, we assume that the order of execu-
tion of all actions follows the order in which they ap-
pear in the condition stub. For the transformations to
be valid, in this particular example, we also note that
the actions a1 and a2 do not modify conditions in called
TDTs namely c4 through c7.
The structural requirements for TDT decomposition

can be e�ciently captured by a two-level algebraic rep-
resentation of TDTs [2]. This representation only cap-
tures the control dependencies in action sets and hence
is strictly a sub set of TDT information. We also re-
strict the TDT model to only limited-entry forms, one
where actions matrix is a Boolean matrix. The utility
of this form has been demonstrated earlier with respect
to modeling of exception conditions [4]. For each con-

dition variable c, we de�ne a positive condition literal,
denoted as lc, which corresponds to an `Y' value in a
condition entry. We also de�ne a negative condition lit-
eral, denoted as l�c, which corresponds to an `N' value
in a condition entry.
We de�ne a `�' operator between two action literals

and two conditions literals which represents a conjunc-
tion operation. This operation is both commutative and
associative [4].
A TDT is a set of rules, each of which consists of

a condition part which determines when the rule is se-
lected, and an action part which lists the actions to be
executed once a rule is selected for execution. The con-
dition part of a rule is represented asY

ce(i)6=`X0; i=1;ncond

�i (1)

�i =

�
lci ;when ce(i) = `Y'
lci ;when ce(i) = `N'

where ncond is the number of conditions in the TDT and
ce(i) is the condition entry value at the ith condition
row for this rule. The action part of a rule is represented
as Y

ae(i)6=`00; i=1;nact

lai (2)

where nact is the number of actions in the TDT and
ae(i) is the action entry value at the ith action row for
this rule. A rule is a tuple, denoted by

(K : �)

As will become clear later, for the purpose of TDT de-
composition a rule can be expressed as a product of cor-
responding action and condition literals. We call such
a product a cube. For a given TDT, T , we de�ne an
algebraic expression, ET , that consists of disjunction of
cubes corresponding to rules in T .
For simplicity, we can drop the `�' operator and `:' de-

notation and use `c' or `a' instead of lc and la in the al-
gebraic expressions of TDTs. These symbols follow only
algebraic laws for symbolic computation. For treatment
of this algebra, the reader is referred to [4].

Example 2.2. Here is the algebraic expression for the
TDT in Example 2.1.

ETDT 2:1

= c1c2c4a1a2a3a4a5 + c1c2�c4c5a1a2a5

+ c1c2�c4�c5a1a2a3 + c1�c2c3c6c7a2a6a7a8

+ c1�c2c3c6�c7a2a7a8 + c1�c2c3�c6c7a2a6a7

+ c1�c2c3�c6�c7a2a8 + c1�c2�c3a1a9

+ �c1c6c7a1a2a6a7a8 + �c1c6�c7a1a2a7a8

+ �c1�c6c7a1a2a6a7 + �c1�c6�c7a1a2a8

Note that there is no speci�cation on delay, concurrency

type, serialization relation, and data dependency. Also no-

tice that `c', `�c', and `a' are short-hand notations for `lc', `l�c',

`la' respectively. 2

2.1 Kernel Extraction

During TDT decomposition, it is important to keep an
action literal or condition literal within one sub-TDT,
that is, the decomposed TDTs must partition the con-
dition and action literals. To capture this, we introduce
the notion of TDT support.

De�nition 2.1 The TDT-support of an expression
ET is the set of action literals in ET and positive con-
dition literals corresponding to condition literals that
appear in ET .

Example 2.3. Expression c1�c2c3�c6�c7a2a8 is a cube. Its

TDT support is fc1; c2; c3; c6; c7; a1; a8g. 2

We consider here TDT decompositions into sub-
TDTs that have disjoint TDT-supports. TDT decom-
position uses algebraic division of TDT-expressions to
identify sub TDTs. We de�ne the algebraic division as
follows:

De�nition 2.2 Let ffdvnd; fdvsr; fquot; fremg be alge-
braic expressions. We say that fdvsr is an algebraic di-
visor of fdvsr when we have fdvnd = fdvsr �fquot+frem,
the TDT-support of fdvsr and the TDT-support of fquot
are disjoint, and fdvsr � fquot is non-empty.

An algebraic divisor is called a factor when the re-
mainder is void. An expression is said to be cube free

when it cannot be factored by a cube.

De�nition 2.3 A kernel of an expression is a cube-
free quotient of the expression divided by a cube, which
is called the co-kernel of the expression.

Example 2.4. Rewrite the algebraic form of
TDTExample 2:1 as follows.

ETDT2:1

= c1c2a1a2(c4a3a4a5 + �c4c5a5 + �c4�c5a3)

+ c1�c2c3a2(c6c7a6a7a8 + c6�c7a7a8 + �c6c7a6a7 + �c6�c7a8)

+ c1�c2�c3a1a9

+ �c1a1a2(c6c7a6a7a8 + c6�c7a7a8 + �c6c7a6a7 + �c6�c7a8)

The expression c4a3a4a5 + �c4c5a5 + �c4�c5a3 is a kernel of
TDTExample 2:1 with a corresponding co-kernel c1c2a1a2.

Similarly, c6c7a6a7a8 + c6�c7a7a8 + �c6c7a6a7 + �c6�c7a8 is also

a kernel of TDTExample 2:1, with two corresponding co-

kernels: c1�c2c3a2 and �c1a1a2. 2

3 Algorithm for TDT Decompo-

sition

This section presents an algorithm for TDT decompo-
sition. The core of the algorithm is similar to the tech-
niques used in multi-level logic optimization. There-
fore we �rst discuss how to compute algebraic kernels
from TDT-expressions before we show the complete al-
gorithm which calls the kernel computing core and ad-
dresses some important issues such as preserving data-
dependencies between actions through TDT decompo-
sition.

3.1 Algorithms for Kernel Extraction

A naive way to compute the kernels of an expression is
to divide it by the cubes corresponding to the power set
of its support set. The quotients that are not cube free
are weeded out, and the others are saved in the kernel
set [5]. This procedure can be improved in two ways: (1)
by introducing a recursive procedure that exploits the
property that a kernel of a kernel of an expression is also
the kernel of this expression, (2) by reducing the search
by exploiting the commutativity of the `�' operator. Al-
gorithm 3.1 shows a method adapted from a kernel ex-
traction algorithm due to Brayton and McMullen [6],
which takes into account the above two properties to
reduce computational complexity.

Algorithm 3.1 A Recursive Procedure Used in

Kernel Extraction

INPUT: a TDT expression e, a recursion index j;
OUTPUT: the set of kernels of TDT expression e;
extractKernelR(e, j) f
K = 0;
for i = j to n do
if (j getCubeSet(e; li)j � 2) then
C = largest cube set containing li s.t.
getCubeSet(e; C) = getCubeSet(e; li);

if (lk 62 C 8k < i) then
K = K [extractKernelR(e=eC; i+ 1)

endfor

K = K [e;
return(K);

g

In the above algorithm, getCubeSet(e; C) returns the
set of cubes of e whose support includes C. We order
the literals so that condition literals appear before ac-
tion literals. We use n as the index of the last condition
literal since a co-kernel containing only action literals
does not correspond a valid TDT decomposition. Notice
that lc and l�c are two di�erent literals as we explained
earlier. The algorithm is applicable to cube-free expres-
sions. Thus, either the function e is cube-free or it is
made so by dividing it by its largest cube factor, deter-
mined by the intersection of the support sets of all its
cubes.

Example 3.1. After running Algorithm 3.1 on the al-
gebraic expression of TDT2:1 we get the following kernels:

k1 = ETDT 2:1;

k2 = c2a1a2c4a3a4a5 + c2a1a2�c4c5a5 + c2a1a2�c4�c5a3

+ �c2c3a2c6c7a6a7a8 + �c2c3a2c6�c7a7a8 + �c2c3a2�c6c7a6a7

+ �c2c3a2�c6�c7a8;

k3 = c4a3a4a5 + �c4c5a5 + �c4�c5a3;

k4 = c6c7a6a7a8 + c6�c7a7a8 + �c6c7a6a7 + �c6�c7a8;

k5 = c5a5 + �c5a3;

k6 = c7a6 + �c7;

k7 = c7a6a7 + �c7a8;

Note that k6 has a cube with no action literals. This rep-
resents a TDT rule with no action selected for execution.

2

3.2 TDT Decomposition

Our TDT decomposition scheme works as follows. First,
the algebraic expression of a TDT is constructed. Then
a set of kernels are extracted from the algebraic expres-
sion. The kernels are eventually used to reconstruct a
TDT representation in hierarchical form. Not all the
algebraic kernels may be useful in TDT decomposition
since the algebraic expression carries only a subset of the
TDT information. We use a set of �ltering procedures
to delete from the kernel sets kernels which corresponds
to invalid TDT transformations or transformations pro-
ducing models that results in inferior synthesis results.

Algorithm 3.2 TDT Decomposition

INPUT: a attened TDT tdt;
OUTPUT: a hierarchical TDT with root tdt0;
decomposeTDT(tdt)
f

sop �constructAlgebraicExpression(tdt);
K �extractKernel(sop);
trimKernel1(K, sop);
trimKernel2(K, sop, td);
trimSelf(k, sop);
trimKernel3(k, sop);
tdt0 �reconstruct TDT with Kernels(tdt;K);
return tdt0

g

The procedure constructAlgebraicExpression() builds
the algebraic expression of tdt following Algorithm 3.3.
The function expression() builds an expression out of
a set of sets according to the data structure we choose
for the two-level algebraic expression for TDTs. The
complexity of the algorithm is O(AR+CR) where A is
the number of action in tdt, R is the number of rules in
tdt, and C is the number of conditions in tdt.

Algorithm 3.3 Constructing Algebraic Expres-

sions of TDTs

constructAlgebraicExpression(tdt) f
for i = 1, C do

construct a positive condition literal lci ;
construct a negative condition literal l�ci ;

endfor

for i = 1, A do

construct an action literal lai
endfor

R ��; // empty set
for i = 1, R do

r ��;
for j = 1, C do

if (ce(i; j) == `Y') then

r �r [flcig;
if (ce(i; j) == `N') then

r �r [fl�cig;
endfor;
R �R [r;

endfor

return expression(R);
g

Procedure extractKernel(sop) calls the recursive
procedure extractKernelR(sop; 1) to get a set of ker-
nels of sop, the algebraic expression of tdt.
Some kernels appear only once in the algebraic ex-

pression of a TDT. These kernels would not help in
reducing the resource requirement and therefore they
are trimmed from K using procedure trimKernel1().
The number of co-kernels corresponds to the number of
times sub-TDT that corresponds to a certain kernel is
called in the hierarchy of TDTs.
Since information such as data dependency are not

captured in algebraic form of TDTs, the kernels in
K may not corresponds to a decomposition which
preserves data-dependencies speci�ed in the original
TDT. These kernels are trimmed using procedure
trimKernel2().

Algorithm 3.4 Removing Kernels Which Corre-

sponds to an Invalid TDT Transformations

trimKernel2(K, e, tdt) f

foreach k 2 K do

ag �0;

foreach q 2 co�Kernels(k; e) do
foreach action literal la of q do

if a modi�es any condition of k then

foreach action literal l� in k do

if (la appears before l�) then

ag �1;

endforeach

endforeach

endforeach

if (ag == 0) then

K �K � fkg;

endforeach

g

The worst case complexity of this algorithm is
O(AR + CR) since the program checks no more than
once on each condition/action literal corresponding to
a condition entry or action entry of tdt.

Example 3.2. Now we look at kernel k4 = c6c7a6a7a8 +

c6�c7a7a8 + �c6c7a6a7 + �c6�c7a8. Suppose it corresponds to

TDT3. Also suppose in Example 2.1, a2 modi�es c6 and the

result of a2 is also used in a6. Because a2 modi�es c6, in

the hierarchical TDT we need to specify that a2 comes after

TDT3 to preserve the behavior. However, this violates the

data dependency speci�cation between a2 and a6. Therefore,

under this condition given above, k4 will be eliminated by

trimKernel2(). 2

An expression may be a kernel of itself with a co-
kernel of `1' if it is kernel free. However this kernel is
not useful for TDT decomposition. We use a proce-
dure trimSelf() to delete an expression from its own
kernel set for TDT decomposition. Also, as we men-
tioned earlier, a kernel of an expression's kernel is itself
a kernel of this expression. However, in this paper, we
consider TDT decomposition involving only two levels
of calling hierarchies at a time. For this reason, we use
trimKernel3() delete \smaller" kernels which are also
kernels of other kernels of an expression.
Finally, we reconstruct a hierarchical TDT represen-

tation using the remaining algebraic kernels of the TDT
expression. The algorithm is outlined below. It con-
sists two procedures: reconstruct TDT with Kernel(),
and constructTDT () which is called by the other pro-
cedure to build a TDT out of an algebraic expression.
Again, the worse case complexity of the algorithm is
O(CR +AR).

Algorithm 3.5 Construct a Hierarchical TDT

Using Kernels

INPUT: a attened TDT tdt, its algebraic expression
exp, a set of kernels K of exp;

OUTPUT: a new hierarchical TDT;
re Construct TDT with Kernels(tdt, K, exp) f
foreach k 2 K do

t �constructTDT(tdt, k)
generate a new action literal lt for t;
compute q and r s.t. exp = k � q + r;
e �lt � q + r;

endforeach

return constructTDT(tdt, e);
g

Example 3.3. Assume expression c6c7a6a7a8+c6�c7a7a8+
�c6c7a6a7+�c6�c7a8 is the only kernel left after trimming proce-
dures performed on the kernel set of the algebraic expression
of TDTExample 2:1. The following hierarchical TDT will be
constructed.

TDT1:

c1 Y Y Y Y Y N

c2 Y Y Y N N

c3 Y N

c4 Y N N

c5 Y N

a1 1 1 1 1 1

a2 1 1 1 1 1

a3 1 1

a4 1

a5 1 1

TDT3 1 1

a9 1

TDT3:

c6 Y Y N N

c7 Y N Y N

a6 1 1

a7 1 1 1

a8 1 1 1

2

4 Implementation and Experi-

mental Results

To show the e�ect of using TDT decomposition in
presynthesis optimizations, we have incorporated our
decomposition algorithm in PUMPKIN, the TDT-
based presynthesis optimization tool [4]. Figure 2 shows
the ow diagram of the process of presynthesis optimiza-
tions. The ellipse titled \kernel extraction" in Figure 2
shows where the TDT decomposition algorithm �ts in
the global picture of presynthesis optimizations using
TDT.

Assertions

parser

TDT

merger

merged TDT

optimizer

optimized TDT

code generator

optimized HDL

input HDL

(a)

Assertions

user specification

(b)

merged TDT

column reduction

row reduction

TDT(1)

kernel extraction

TDT(3)

optimized TDT

action sharing

TDT(2)

Figure 2: Flow diagram for presynthesis optimizations:
(a) the whole picture, (b) details of the optimizer.

Our experimental methodology is as follows. The
HDL description is compiled into TDT models, run
through the optimizations, and �nally output as a
HardwareC description. This output is provided to
the Olympus High-Level Synthesis System [7] for hard-
ware synthesis under minimum area objectives. We use
Olympus synthesis results to compare the e�ect of op-
timizations on hardware size. Hardware synthesis was
performed for the target technology of LSI Logic 10K
library of gates. Results are compared for �nal circuits
sizes, in terms of number of cells. To evaluate the ef-
fectiveness of this step, we have turned o� other opti-
mizations and run PUMPKIN with several high-level
synthesis benchmark designs.
Table 1 shows the results of TDT decomposition on

examples designs. The design `daio' refers to the Hard-
wareC design of a Digital Audio Input-Output chip
(DAIO) [8]. The design `comm' refers to the Hard-
wareC design of an Ethernet controller [9]. The de-
sign `cruiser' refers to the HardwareC design of a vehicle
controller. The description `State' is the vehicle speed
regulation module. All designs can be found in the high-
level synthesis benchmark suite [7]. The percentage of
circuit size reduction is computed for each description
and listed in the last column of Table 1. Note that this
improvement depends on the amount of commonality

existing in the input behavioral descriptions.

Table 1: Synthesis Results: cell counts before and after
TDT decomposition is carried out.

design module circuit size (cells) �%
before after

daio phase decoder 1252 1232 2
receiver 440 355 19

comm DMA xmit 992 770 22
exec unit 864 587 32

cruiser State 356 308 14

5 Conclusion and Future Work

In this paper, we have introduced TDT decomposition
as a complementary procedure to TDT merging. We
have presented a TDT decomposition algorithm based
on kernel extraction on an algebraic form of TDTs.
Combining TDT decomposition and merging, we can re-
structure HDL descriptions to obtain descriptions that
lead to either improved synthesis results or more e�-
cient compiled code. Our experiment on named bench-
marks shows a size reduction in the synthesized circuits
after code restructuring.
As a future work, we are exploring HDL optimiza-

tion strategies based various presynthesis optimization
techniques that lead to best synthesis results.

Acknowledgment. This research is supported in part
by NSF CAREER Award MIP 95-01615 and an FMC
Education Fund Fellowship.

References

[1] J. Li and R. K. Gupta, \HDL Optimization Using Timed

Decision Tables," in Proceedings of the 33rdDesign Au-
tomation Conference, pp. 51{54, June 1996.

[2] J. Li and R. K. Gupta, \Limited exception modeling and
its use in presynthesis optimizations," in Proceedings of

the 34thDesign Automation Conference, June 1997.

[3] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci-
�cation and Design of Embedded Systems. Prentice Hall,
1994.

[4] J. Li and R. K. Gupta, \System modeling and presyn-
thesis using timed decision tables," Tech. Rep. UCI ICS-
TR-97-12, University of California, March 1997.

[5] G. D. Micheli, Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

[6] R. Brayton and C. McMullen, \The decomposition and
factorization of boolean expressions," in Proceedings of
the IEEE International Symposium on Circuits and Sys-
tems, 1982.

[7] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong,
\The Olympus Synthesis System for Digital Design,"
IEEE Design and Test Magazine, pp. 37{53, Oct. 1990.

[8] M. M. Ligthard, A. Bechtolsheim, G. D. Micheli, and
A. E. Gamal, \Design of a digital input output chip," in
Custom IC Conference, May 1989.

[9] D. Ku and G. D. Micheli, High-level Synthesis of ASICs
under Timing and and Synchronization Constraints.
Kluwer Academic Publishers, 1992.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

