
ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. 1997 ACM/0-89791-849-5/97/0003/$3.50

Delay Management for Programmable Video Signal Processors

M.L.G. Smeets E.H.L. Aarts G. Essink E.A. de Kock

Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Abstract

We consider the problem of memory allocation for inter-
mediate data in the mapping of video algorithms onto pro-
grammable video signal processors. The corresponding
delay management problem is proved to be NP-hard. We
present a solution strategy that decomposes the delay man-
agement problem into a delay minimization problem fol-
lowed by a delay assignment problem. The delay minimiz-
ation problem is solved with network flow techniques. The
delay assignment problem is handled by a constructive ap-
proach. The performance of the combined approach is ana-
lyzed by means of a benchmark set of industrially relevant
video algorithms.
Key words. Real-time video signal processing; combin-
atorial optimization; retiming; life-time analysis of vari-
ables; network flow; stream processing.

1 Introduction

At Philips Research programmable video signal pro-
cessors (VSPs) have been developed for real-time pro-
cessing of digital video signals [Veendrick et al., 1994].
The programming of a VSP system is done by mapping a
specification of a video algorithm given by a multirate sig-
nal flow graph (SFG) onto a network of VSPs. The map-
ping of an SFG onto a VSP network can be viewed as a
feasibility problem in which operations must be assigned to
processing elements (PEs) and execution intervals such that
a set of timing, processor, and communication constraints is
met [Essink et al., 1991a].

We aim at fully automatic mapping with real-time exe-
cution imposed by static scheduling. The mapping problem
is NP-hard and cannot be solved in its entirety [Van Don-
gen, 1990]. We have adopted a decomposition into the fol-
lowing three subproblems: delay management, partition-
ing, and scheduling. In this paper we concentrate on the
delay management problem. Detailed discussions of the
other problems are given by De Kock et al. (1995) for par-
titioning, and Essink et al. (1991b) for scheduling.

Delay management refers to the problem of allocating
memory resources for the storage of intermediate data. The

life-time of intermediate data, i.e., the time between pro-
duction and consumption, is related to the time assign-
ment of the operations. As a consequence, the time assign-
ment determines the storage requirement for intermediate
data. The available storage capacity is divided into several
memories and memory types. In the delay management
step, one determines the type and the amount of memory
for the storage of the intermediate data by computing a pre-
liminary time assignment.

The delay management problem resembles problems
that arise in the field of life-time analysis of variables [Denk
& Parhi, 1994], and pipelined IC design [Hu, Bass & Har-
ber, 1994]. It is closely related to register allocation prob-
lems. The problem we discuss differs from those presented
in the literature by the fact that we have to deal with a fixed
architecture that contains multiple types of memories that
can be used to store intermediate data. So, the delay man-
agement problem is in fact a feasibility problem rather than
an optimization problem. Furthermore, the delay manage-
ment problem contains an additional type assignment prob-
lem.

We present a solution approach to the delay manage-
ment problem that relaxes certain constraints and decom-
poses it into two subproblems. The first subproblem called
the delay minimization problem is solved efficiently using
network flow techniques. The second subproblem called
the delay assignment problem is handled using construct-
ive heuristics.

The organization of this paper is as follows. In Sec-
tion 2 we present the concepts and a mathematical model
of the delay management problem. In Section 3 we prove
that the delay management problem is NP-hard. In Sec-
tion 4 we present our decomposition strategy and discuss
how the delay minimization and delay assignment problem
are handled. In Section 5 we present preliminary results. In
Section 6 we conclude with some final remarks.

2 Delay Management

A detailed discussion of VSP chips and the mapping of
video algorithms onto systems of VSPs is presented by Vis-
sers et al. (1995), and the reader is referred to this work for

the details. Here we restrict ourselves to a brief summary of
VSP concepts that are relevant for the description of delay
management.

2.1 Architecture

In Figure 1 the VSP architecture is depicted graphically.
A VSP contains a number of pipelined processing elements
(PEs): ALEs, MEs, BEs, and OEs. ALEs execute arithmetic
and logic operations, MEs contain a random access memory
on which they execute read and write operations. BEs ex-
ecute buffer operations, and OEs execute communication
operations. All PEs are fully interconnected by means of a
switch matrix. Circular buffers called silos are positioned
between the outputs of the switch matrix and the inputs of
the PEs.

P P PP

outputs

inputs

ALEs

silo

switch
matrix

program

BEs OEsMEs

ALE
core

ME
core

Figure 1: VSP Architecture.

2.2 Delay Elements.

Typical of signal processing is the production and con-
sumption of intermediate streams of data samples. These
intermediate data samples are stored temporarily in delay
elements. VSPs contain two types of programmable delay
elements that we call silos and compact silos.

Silos contain a random access memory of 32 words and
additional address calculation logic. This logic generates
the write address and cyclically increments it in each clock
cycle. The read address is generated by the program of the
corresponding PE. As a result, data samples can be delayed
1 up to 31 clock cycles.

Compact silos are a feature of the MEs. Each ME con-
tains additional address generation logic in order to use part
of the available random access memory in a way that is
similar to the functionality of silos. One can implement
multiple FIFOs, each having its own length and through-
put rate, in a single compact silo. The length of a compact
silo is equal to the smallest power of two that is greater or
equal to the sum of the lengths of the FIFOs. The additional
logic generates the addresses to implement the FIFOs. For

more information about compact silos the reader is referred
to Dijkstra et al. (1989).

Many existing video signal processing architectures
make use of random access memory or FIFOs [Lee & Bier,
1990] to store intermediate data. Silos and compact silos
are more flexible than FIFOs and have an advantage over
the use of random access memories by the fact that memory
addresses do not have to be specified by the programmer.

2.3 Signal Flow Graphs

SFGs consists of operations and data precedences. In
this paper an SFG is denoted by a pair (O;R) where O de-
notes a set of operations and R a set of data precedences.
Each operation has a period and an execution time. The
period indicates how often the operation is executed, e.g., a
period of 4 denotes that an operation needs to be executed
exactly every 4 clock cycles. This corresponds with a rate
of 13.5 MHz for a clock frequency of 54 MHz. The period
of an operation o is given by p(o)2Z+. The execution time
of an operation o is given by e(o) 2Z+.

Data precedences are represented by 3-tuples r =
(o;o0;(p;b;b0)) with o;o0 2 O, p 2 Z+, and b;b0 2 Z such
that p is a multiple of p(o) and of p(o0). A data pre-
cedence r specifies that the data sample generated in the
(kp=p(o) + b)th execution of operation o is consumed in
the (kp=p(o0)+ b0)th execution of operation o0, for all in-
tegers k.

In the mapping trajectory, each execution of each opera-
tion in an SFG must be assigned to a time. The time assign-
ments are restricted by requiring that each execution of an
operation o is processed on the same processing element.
As a result of this assumption and the assumption of strict
periodicity, the assignments only have to be found for the
first execution of each operation. For reasons of conveni-
ence we use completion times to denote the time assign-
ment of an operation. This is represented by the function
σ : O! Z.

To model the use of compact silos, we associate a
delay with each operation. This delay indicates how many
samples the output of an operation is delayed in a compact
silo. Formally, the delay assignment is represented by the
function τ : O ! N. Consequently, if τ(o) = 0 then opera-
tion o must be executed on an ALE, BE or OE. If τ(o) > 0
then operation o must be executed on an ME.

2.4 Problem Statement

We consider the number of clock cycles that the data
samples of data precedence r reside in a silo. Let ρ(r) 2 Z
indicate the first time a data sample of r is read from the
silo, and let ω(r) 2Z indicate the first time a data sample is
written into the silo. The difference ρ(r)�ω(r) is the delay

d(r), and is the time between consumption and production
of the data samples of r.

Definition 1 (Delay). The delay d : R ! Z is defined as
d(r) = ρ(r)�ω(r), where ρ(r) = σ(o0) + b0p(o0)� e(o0)
and ω(r) = σ(o)+(b+ τ(o))p(o). 2

Definition 2 (Feasible time assignment). A time assign-
ment σ : O ! Z is called feasible if and only if it satisfies
0 < d(r)< 32 for all r 2 R. 2

An example of an infeasible time assignment is given in
Figure 2. Here, the data samples of r cannot be delayed

0 10 20 30 40

clock
cycles

o o’

r

Figure 2: Example of an SFG with a time assignment that
is infeasible since the difference between the time of con-
sumption and the time of production of the samples of data
precedence r exceeds the maximum storage time of one silo.

0 10 20 30 40

clock
cycles

o o’

o’’
r’ r"

Figure 3: The example from Figure 2 in which the SFG is
extended with an extra operation o00 and data precedences
r0 and r00 such that the time assignment is feasible.

sufficiently long since it requires more cycles than one silo
can provide. If this is the case, either the time assignment
must be changed or the SFG must be extended. Figure 3
shows an extension which is obtained from the SFG of Fig-
ure 2 by replacing r with a delay operation o00 and two data
precedences r0 and r00. For this extended SFG the same time
assignment is feasible since the total delay of precedence r
is now distributed over two precedence r0 and r00 and the
two resulting delays each fit into one silo. Moreover, oper-
ation o00 can be mapped onto a compact silo which delays
its time of production. Several other SFG extension are per-
mitted, but we do not present them here since they are not
relevant for the discussion.

The insertion of delay operations does not alter the func-
tionality of an SFG, but may possibly violate capacity con-
straints since they increase the utilization of the PEs. There
are three resources under consideration:

i. The ALE, BE, and OE resources.

ii. The ME access resources.

iii. The ME storage resources.

This is modeled by three resource types p, m, and s, for i, ii,
and iii, respectively. Each resource type t has a capacity Ct

and requirement Rt . Then the capacity constraints are for-
mulated as

Rp �Cp ^ Rm �Cm ^ Rs �Cs: (1)

For a given VSP network the capacities are fixed, i.e., Cp

equals the number of PEs of type ALE, BE, and OE, Cm

equals the number of MEs, and Cs equals the storage capa-
city of the MEs. The requirements for all resource types are
given by

Rp = ∑
o 2O

τ(o) = 0

1
p(o)

; Rm = ∑
o 2 O

τ(o)> 0

1
p(o)

; Rs = ∑
o 2 O

τ(o)

Definition 3 (Feasible delay assignment). A delay assign-
ment is feasible if and only if it satisfies (1). 2

The delay management problem now can be stated as fol-
lows.

Definition 4 (Delay management problem). Given are a
VSP network N and an SFG A. Find an SFG extension A0 of
A and a feasible delay assignment such that a feasible time
assignment exists for all operations in A0. 2

3 Complexity

The following theorem presents a result on the complex-
ity of the delay management problem.

Theorem 1. The delay management problem is NP-hard in
the ordinary sense. 2

Proof. (Sketch) The reduction is from bin packing with a
fixed number of bins, which is NP-hard [Garey & Johnson,
1979]. We restrict ourselves to a variant of delay manage-
ment in which only delay operations with period 1 are in-
serted into the SFG, which is, from a complexity point of
view, easier than the delay management problem without
this restriction.

The restricted delay management problem is formalized
as follows: Given a set U of sets V1; : : :Vn consisting of 3-
tuples (δp;δm;δs)2Q

3 . EachVk corresponds to a delay that
needs to be implemented. If a delay is implemented using
a set of operations O, then

δp = ∑
o 2 O

τ(o) = 0

1; δm = ∑
o 2 O

τ(o)> 0

1; δs = ∑
o 2O

τ(o):

Hence, a 3-tuple (δp;δm;δs) corresponds to the additional
requirement for the resource types p;m, and s, respectively,

when implementing a delay corresponding with Vk, with δp

operations with period 1 on ALE, BE, or OE, δm operations
with period 1 on ME, and δs memory requirement. As a
consequence, we have

δm � δs^ (δs > 0) δm > 0); (2)

for all 3-tuples (δp;δm;δs) 2 Vk, where 1 � k � n). Fur-
thermore, we are given the initial requirements Ip; Im; Is 2Q
of resources p, m, and s respectively, and three constants
Cp;Cm, and Cs, which denote the capacities. The question
is: does there exist a corresponding set U 0 that contains ex-
actly one element from each Vk and for which the total re-
quirement does not exceed the capacity of each resource,
i.e.,

Ik+ ∑
u2U0

π(u;k)�Ck; k 2 fp;m;sg:

Here, π : Q3 � fp;m;sg ! Q is a projection operator
defined as

π((a;b;c);p) = a; π((a;b;c);m) = b; π((a;b;c);s) = c:

A reduction from bin packing with three bins can be made.
The bin packing problem is defined as follows: Given are a
set of items I = fi1; : : : ; ing and sizes 1� s(im)< B, where
s(im) 2 Z+ and B 2 Z+ is the bin size. Can the items be
packed in three bins T1;T2 and T3, such that

∑
i2Tk

s(i)� B; k 2 f1;2;3g?

Next, we show that every instance of bin packing with three
bins can be written as an instance of our restricted delay
management problem. To this end we take Ip = Im = Is = 0,
Cp = B;Cm = B+n, and Cs = (n+1) �B. Furthermore, we
take U = fV1; : : : ;Vng, where each Vk is defined as

Vk = f(s(ik);1;B); (0;1+ s(ik);B); (0;1;B+ s(ik))g:

It can be verified that all 3-tuples in any Vk satisfy (2).
The 3-tuples correspond with implementations of delays of
length s(ik)+ 1+B. It is straightforward to determine the
bin to which they are assigned. This completes the proof.

2

4 Solution strategy

We have shown that the delay management problem is
NP-complete. As a result, no polynomial time algorithm
is believed to exist that solves each instance of the prob-
lem. Therefore, we use a heuristic approach in which we
transform the delay management problem into an optimiz-
ation problem. The resulting optimization problem is sub-
sequently decomposed into two subproblems called delay

minimization and delay assignment. As a result of this de-
composition, we restrict the solution space. To present our
solution strategy we need the following definitions and res-
ults.

Definition 5 (Surplus delay). The surplus delay d0 :
R ! Z is defined as d0(r) = max(0; d(r)�31

p), where r =
(o;o0;(p;b;b0)): 2

Hence, the surplus delay represents the storage requirement
for intermediate data that does not fit into one silo with a
given time assignment.

Theorem 2. Given is an SFG (O;R). A time assignment
σ : O! Z is called feasible if and only if it satisfies

8r2R 0 < d(r) ^ ∑
r2R

d0(r) = 0:

2

Proof. By the definition of d0. 2

Theorem 3. Given are an SFG A = (O;R) and a time as-
signment σ such that ∑r2R d0(r) > 0. Then an SFG ex-
tension A0 = (O0;R0) of A can be constructed for which a
time assignment σ : O0 ! Z exists such that ∑r2R0 d0(r) <
∑r2R d0(r). 2

Proof. Let k = jfr 2 R j d0(r) > 0gj, let r0 =

(o;o0;(p;b;b0) 2 fr 2 R j d0(r) > 0g, and let n = d
d0(r0)�p

32 e.
Define O0 = O [

S
1�i�n oi and

R0 = Rnfr0g [f(o;o1;(p;b;0));(on;o0;(p;0;b0))g [S

1�i<n
(oi;oi+1;(p;0;0)):

We now define a time assignment σ0 for A0 as follows. Let
σ0 = σ [

S
1�i�n σ0(oi), where σ0(oi) = σ(o) + bp(o)�

e(o)+ 32i for all 0 � i � n. Assuming that the executions
times of all operations are smaller than 32, it can easily be
checked that

0 < σ0(o1)� e(o1)�σ0(o)�bp(o)< 32; (3)

81�i<n 0 < σ0(oi+1)� e(oi+1)�σ0(oi)< 32; and (4)

0 < σ0(o0)+b0p(o0)� e(o0)�σ0(on)< 32: (5)

As a result, for all r2R0nR holds d0(r) = 0. Since the delay
of the precedences r 2 R n fr0g has not changed, we have
jfr 2 R0 j d0(r) > 0gj = k� 1 and that the sum of surplus
delay decreases. 2

Theorem 3 states that it is always possible to decrease
the sum of surplus delays as long as the sum is larger than
zero. We can calculate a time assignment σ yielding a min-
imal sum of surplus delay. Then, on account of Theorem 3,
σ can be used to reduce the sum of surplus delay of the
SFG. The last mentioned step can be repeated, until the sum

of surplus delays equals zero. The repetition terminates on
account of Theorem 2, The combination of these theorems
guarantees that only a finite number of operations need to
be added for the existence of a feasible time assignment.

This strategy is efficient if the problem of finding a time
assignment yielding a minimal sum of surplus delays can be
solved in polynomial time. In the next subsection we show
that this is indeed the case. The problem of finding such
a time assignment is referred to as the delay minimization
problem. The problem of finding an SFG extension with re-
duced sum of surplus delays is referred to as the delay as-
signment problem. This decomposition leads to two altern-
ative solution strategies. In the first strategy we try to find
a solution to the delay minimization problem and then re-
peatedly try to find solutions to the delay assignment prob-
lem, until all surplus delays are zero. In the second strategy
we repeatedly try to find solutions to the delay minimiz-
ation problem followed by the delay assignment problem
until all surplus delays are zero. The second strategy im-
plies more computational work, but the following example
shows that the increase in resource requirements as a con-
sequence of delay management can be lower if the second
strategy is chosen.

Figure 4 shows an SFG with operations o, o0 and o00,
among others. The path between o and o00 forces σ(o00) =
σ(o) + 64. A time assignment σ that yields minimal sum

o o’ o’’

(o,o’’,(1,64,0))

(o,o’,(1,0,0)) (o,o’’,(1,0,0))

Figure 4: Example of an SFG.

of surplus delay is, for instance, σ(o) = 0, σ(o0) = 32, and
σ(o00) = 64, yielding a sum of surplus delay of 2. For this
time assignment, two delays have to be implemented. One
between o and o0, and one between o0 and o00. If only one
delay is implemented, a new time assignment yielding a
sum of surplus delay equal to zero can be computed.

On account of the example, the strategy is to repeatedly
solve delay minimization and delay assignment problems
in an alternating way. If one would choose the alternative
strategy and aim at a minimum increase in PE utilization,
one would need a piece-wise linear cost function rather than
a linear cost function; see Figure 5. In the example two dif-
ferent time assignments can be found. One for which one
data precedence has a delay 62, and another for which two
precedences have a delay equal to 32. In the first case the
sum of the delays larger than 31 is much larger than in the
second case, 31 as opposed to 2. But only one additional
operation is needed to guarantee the existence of a feasible
time assignment, whereas in the second case two additional
operations are needed to guarantee the existence of a feas-

0 32 64 96
delay

1/p

32

64

96

cost
x

0

0 32 64 96
delay

1/p

32

64

96

cost
x

0

linear piece-wise linear

Figure 5: Linear and piece-wise linear cost func-
tion for a precedence r = (o;o0;(p;b;b0)) with a
delay d(r).

ible time assignment. With a piece-wise linear cost func-
tion the second time assignment is twice as expensive as
the first time assignment. An important disadvantage of a
piece-wise linear cost function is that no polynomial time
algorithm is known that solves the problem.

4.1 Delay Minimization

The goal of the delay minimization is to find a time as-
signment that minimizes the sum of the surplus delay. In or-
der to minize the storage requirement for intermediate data,
we do not store copies of the data. To this end, we classify
the consumers into numbered groups.

Definition 6 (Group). The set G(o; i) of precedences of
group i of operation o is defined as

G(o; i) = f(o;o0;(p;b;b0)) 2 R j b� i (mod
p

p(o)
)g:

2

For each producing operation o, the number of consuming
groups is equal to

q(o) = lcmf
p

p(o)
j (o;o0;(p;b;b0)) 2 Rg;

by the definition of the precedences and groups.
The delay minimization problem can be formally stated

as follows

Definition 7 (Delay minimization problem). Given is an
SFG (O;R). Find a time assignment σ : O! Z such that

∑
o2O

∑
0�i<q(o)

maxfd0(r) j r 2G(o; igg

is minimal, and 0 < d(r) for all r 2 R. 2

Next, we show that this problem can be rewritten as the
dual of the minimum cost flow problem, for which there
exist efficient solution strategies [Ahuja and Orlin, 1989].

To this end, we introduce a linearization of the cost func-
tion by introducing additional operations. For each group
an additional operation is introduced. This operation does
not need to be mapped onto a PE, but is merely used to
compute a preliminary time assignment. The time assign-
ment of an additional operation belonging to operation o
and group labeled b is denoted by ηb(o). We require that
ηb(o) is such that ηb(o)�σ(o)

p(o)�q(o) is the largest amount of surplus
delay needed for all data precedences in group b excedent
from o, with period p, i.e.,

ηb(o)�σ(o)
p(o) �q(o)

= maxfd0(r) j r 2 G(o;b)g:

With this definition, a new cost function and constraints can
be derived, resulting in a new formulation of the delay min-
imization problem.

Definition 8 (Delay minimization problem reformulated)).
Given is an SFG (O;R). Find a time assignment σ : O!Z

such that

∑
o2O

∑
0�b<q(o)

1
p(o) �q(o)

� (ηb(o)�σ(o))

is minimal, and

0 < d(r); (6)

σ(o)� ηb(o); and (7)

σ(o)+d(r)�32< ηb(o); (8)

for all o 2 O, for all 0 � b < q(o), and for all r =
(o;o0;(p;b;b0) 2 R. 2

Note that the cost function can be rewritten to the following
expression that must be maximized:

∑
o2O

1
p(o)

�σ(o)+ ∑
o2O

∑
0�b<q(o)

�1
p(o) �q(o)

�ηb(o): (9)

The dual of the minimum cost flow problem is formally
stated as follows.

Definition 9 (Dual of the minimum cost flow problem).
Given are c;u 2 R, b 2 Z, and A 2 Z2. Find π;δ 2 Z such
that

∑
i2N

biπi� ∑
(i; j)2A

ui jδi j is maximal, subject to:

δi j � 0 ^ πi�π j�δi j � ci j for all (i; j) 2 A:
(10)

2

Mapping the variables of the dual of the minimum cost
flow problem onto variables in the delay minimization
problem is a straightforward task. First we construct the
variables π and b associated with the nodes of the network

flow graph. By looking at the first summation in (9) we
would like to conclude bo =

1
p(o) . However, bo must be an

integer. To correct this, all bos are multiplied by a suitable
constant ζ. If the additional operations of group i belonging
to operation o are denoted by ōi, we obtain for each o 2 O
and for each 0� i < q(o)

bo = ζ
p(o) ;

bōi =
�ζ

p(o)�q(o) ;

πo = σ(o);
πōi = ηi(o); and
ζ = lcmfp(o) �q(o) j o 2 Og:

The variables δi j and ci j are weights on edges connecting i
and j in the network flow problem. To let the second sum-
mation in (10) be zero, we demand all δi j to be zero. Since
we already chose δ and π, we may only vary c when map-
ping the constraints in the delay minimization problem to
the constraints of the minimum cost flow problem. This
is done by adding edges (i; j) with weights ci j to the net-
work flow graph. For the constraints of (6) we add edges
(o;o0) with weights d(r)�σ(o0)+σ(o)�1 to the network
flow graph. For the constraints of (7), we add edges (o; ōb)
with weights 0. Finally, for constraints of (8) we add edges
(o0; ōb) with weights 31�d(r).

To solve the dual of the minimum cost flow problem we
use the algorithm of Ford [1962].

4.2 Delay Assignment

Given the delays obtained from the solution of the delay
minimization problem it is possible to identify the preced-
ences with surplus delay. During delay assignment opera-
tions are inserted on a group of precedences with surplus
delay greater than zero. Selection of the group is done by
using a simple heuristic; the group with the largest surplus
delay is chosen. For this group additional operations will
be inserted in the SFG. This heuristic is chosen to allow
the SFG to be extended with operations that have a large
delay. The period of the extra operations is determined by
the period of the operation o producing the data samples
and equals p(o) �q(o). The delay assignment problem can
be defined as follows.

Definition 10 (Delay assignment problem). Given are an
SFG A= (O;R) and a group of precedences G(o; i), where
o 2 O and 0� i < q(o). Find an extension A0 = (O0;R0) of
A by inserting a set of delay operations on the data preced-
ences in G(o; i), and a feasible delay assignment τ : O0!N,
such that a feasible time assignment exists for the opera-
tions in O0. 2

In general, non-zero surplus delays can be implemented
using more than one operation. A non-zero surplus delay

of d cycles that must be implemented using operations with
period p, can be implemented by a combination of δp op-
erations with a delay of 0, and δm operations with a total
delay of δs if and only if δp, δm, and δs satisfy (2) and

1(δp+δm)� d� pδs � 31(δp+δm): (11)

(2) states that using operations with a positive delay re-
quires storage capacity and that each such operation uses at
least one word. (11) states that the data samples are stored
in a silo for a period of time that is between 1 and 31 clock
cycles. Furthermore, we demand that we do not use more
resources than required. This can be formally expressed by
requireing that δp;δm; and δs satisfy

31 �max(0;δp +δm�1)< d� pδs;
31(δp+δm)< d� p �max(0;δs�1):

(12)

By implementing a non-zero surplus delay of size d by us-
ing δp operations with period p on ALE, BE, or OE, δm op-
erations with period p on ME, and δs storage requirement in

total, increases Rp with δp
p , Rm with δm

p , and Rs with δs.
We assume that after delay management, the probabil-

ity of finding a feasible schedule for the resulting SFG is
maximal if the PE utilization per type is balanced. If δp op-
erations on ALE, BE, or OE, and δm operations on ME with
δs words of memory are inserted, all with period p, then we
choose δp;δm; and δs such that the balance index defined as

j
Ip+

δp
p

Cp
�

Im+
δm
p

Cm
j+ j

Im+
δm
p

Cm
�

Is+δs

Cs
j+ j

Ip+
δp
p

Cp
�

Is+δs

Cs
j

(13)
is minimal, where Ip; Im, and Is denote the initial require-
ments for type p, m, and s. This choice implies that the dif-
ference in utilization degree for all resource types is min-
imal. The choice for δp;δm; and δs when implementing
delay for data precedence r is restricted by requiring that
it satisfies (2), (11), and (12), with d = d(r)�31.

Within one group with multiple consumers with differ-
ent delays, we handle the smallest delay first since this
delay can be shared among all consumers of the group.

5 Results

The approach presented in Section 4 was implemented
in C++ and was tested in the VSP mapping tools. We
have used eight industrially relevant video algorithms. The
results are presented in Table 1. For each of the tested
video algorithms a feasible solution to the delay manage-
ment problem was found. Furthermore, for all tested video
algorithms except ‘Vidiwall’ a feasible schedule was found
after delay management and partitioning.

Table 1: Delay management results for eight video al-
gorithms. (p), (m), and (s): resources affected by delay
management. (D) solution to delay management problem
found. (M) solution to mapping problem found.

Requirement before Requirement after D M Capacities
Algorithm p m s p m s p m s
Contrast 42.56 3.00 12768 43.50 7.25 12952 Y Y 144 24 49152
Contour 7.72 0.78 2700 8.22 0.78 2700 Y Y 24 4 8192
ColorConv 8.50 0.00 0 9.50 0.00 0 Y Y 24 4 8192
HorCompr 2.50 0.50 2048 2.59 0.50 2048 Y Y 24 4 8192
Mwtv 8.97 1.75 3424 9.31 1.75 3424 Y Y 24 4 8192
Vidiwall 9.34 1.47 4696 9.81 1.47 4696 Y N 24 4 8192
Gamma 6.03 1.00 1264 6.72 1.06 1331 Y Y 24 4 8192
Panorama 6.53 2.25 6144 7.72 2.25 6144 Y Y 24 4 8192

In order to indicate the extra resource requirements by
delay management, we have compared the requirement be-
fore and after delay management. The results of this com-
parison are also shown in Table 1. Delay management
causes only a small increase in resource requirements. As a
result, the complexity of subsequent scheduling task hardly
increases.

All algorithms in Table 1 could be handled within ten
seconds. Although this does not cause any problems, the
speed of the program could be further increased by choos-
ing other implementations of the algorithm for solving the
dual of the minimum cost flow problem, which is the per-
formance bottleneck.

6 Conclusion

The solution strategy presented in Section 4 extends ef-
fectively and efficiently a given SFG in such a way that
there exists a feasible time assignment. They also show that
the resulting increase of the PE utilization is very limited.
The results indicate the proposed decomposition strategy
handles the delay management problem effectively and ef-
ficiently. The decomposition strategy is very flexible since
it can easily handle more types of memories by changing
the heuristics of the delay assignment step.

Furthermore, we conclude that we can often success-
fully complete the scheduling step using only the memory
that was allocated in the delay management step. This sug-
gest that the total decomposition of the mapping problem
into delay management, partitioning, and scheduling is ef-
fective. In each step, necessary conditions for the next step
are satisfied using lower bound estimations in order not
to restrict the solution space. This is nicely illustrated by
the handling of the PE utilization in the delay management
problem.

Further research concentrates on improvement of the
scheduling techniques and the interaction between the sub-
problems.

References

AHUJA, R.K., T.L. MAGNATI, AND J.B. ORLIN [1989], Net-
work flows, in: M.J. Todd G.L. Nemhauser, A.H.G.
Rinnooy Kan (ed.), Handbooks in operations research
and management science; Volume 1: Optimization, North
Holland, Amsterdam, 211–369.

DENK, T.C., AND K. PARHI [1994], Calculation of minimum
number of registers in 2-d discrete wavelet transforms us-
ing lapped block processing, Proc. 1994 International
Symposium on Circuits and Systems, 77–80.

DIJKSTRA, H., H. HOLLMANN, K. HUIZER, AND R. SLUYTER

[1989], New programmable delay element, Electronic
Letters 25 no. 16, 1019–1021.

DONGEN, R.C.A. VAN [1990], Mapping for digital video signal
processors: Models and algorithms, Master’s thesis, De-
partment of Mathematics and Computing Science, Eind-
hoven University of Technology.

ESSINK, G., E. AARTS, R. VAN DONGEN, P. VAN GERWEN,
J. KORST, AND K. VISSERS [1991a], Scheduling in
programmable video signal processors, Proceedings of
the IEEE International Conference on Computer-Aided
Design, 284–287.

ESSINK, G., E. AARTS, R. VAN DONGEN, P. VAN GERWEN,
J. KORST, AND K. VISSERS [1991b], Architecture and
programming of a VLIW style video signal processor,
Micro-24, 181–188.

FORD, L.R., AND D.R. FULKERSON [1962], Flows in Net-
works, 93–130. Princeton University Press, Princeton,
New Jersey.

GAREY, M.R., AND D.S. JOHNSON [1979], Computer and In-
tractability: A guide to the theory of NP-Completeness,
W.H. Freeman and Company, New York.

HU, X., S.C. BASS, AND R.G. HARBER [1994], Minimizing
the number of delay buffers in the synchronization of
pipelined systems, IEEE Trans. on Computer-aided
design of Integrated Circuits and Systems 13, 1441–1449.

KOCK, E.A. DE, E.H.L. AARTS, G. ESSINK, R.E.J. JANSEN,
AND J.H.M. KORST [1995], A variable-depth search
algorithm for the recursive bipartitioning of signal flow
graphs, OR Spektrum 17, 159–172.

LEE, E.A., AND J.C. BIER [1990], Architectures for statically
scheduled dataflow, Journal of Parallel and Distributed
Computing 10, 333–348.

VEENDRICK, H.J.M, O. POPP, G. POSTUMA, AND M. LECOU-
TERE [1994], A 1.5 GIPS video signal processor (VSP),
Proc. CICC 6.2.

VISSERS, K.A., G. ESSINK, P.H.J. VAN GERWEN, P.J.M. JAN-
SSEN, O. POPP, E. RIDDERSMA, W.J.M. SMITS, AND

H.J.M VEENDRICK [1995], Architecture and pro-
gramming of two generations video signal processors,
Microprocessing and Microprogramming 41, 373–390.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

