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Abstract—The performance of micro-electro-mechanical sys-
tems depends on the interaction between electrical, mechanical,
and fluidic forces. Simulating this coupled problem is made more
difficult by the fact that most MEMS devices are innately three-
dimensional and geometrically complicated. It is possible to sim-
ulate efficiently these devices using domain-specific solvers, pro-
vided the coupling between domains can be handled effectively. In
this paper we will survey recent developments in coupled-domain
simulation, and give computational comparisons between relax-
ation, multi-level Newton, and Newton-Iterative methods for 3-D
electromechanical analysis.

I. INTRODUCTION

Because of the specialized processing involved, the cost of proto-
typing even simple microsensors, microvalves, and microactuators is
enormous. In order to reduce the number of prototype failures, design-
ers of these devices make frequent use of finite-element based simu-
lation tools. Finite-element techniques are very general, but are very
inefficient when used to simulate three-dimensional geometrically-
complicated micromechanical structures, where device performance
is critically dependent on the interaction between electrostatic, me-
chanical and fluidic forces. Simulation efficiency can be substantially
improved by using domain-specific solvers, provided the coupling
between domains can be handled effectively. In this paper, we will
survey recent developments in coupled-domain simulation, and give
computational comparisons between relaxation, multi-level Newton,
and Newton-Iterative methods for 3-D electromechanical analysis.

II. ELASTOSTATICS AND ELECTROSTATICS.

Micro-mechanical structures undergo large deformation when sub-
jected to electrostatic forces. This structural deformation can be deter-
mined by solving a nonlinear force balance equation which includes
the material stresses and the electrostatic pressures. In particular, stan-
dard continuum mechanical analysis [6] leads to a system of partial
differential equations of the form

r � (S(ru(x))) = 0 in Ω (1)

u = 0 on Γg (2)

nṙ � (S(ru(x))) = p on Γhi (3)

n�r � (S(ru(x))) = 0 on Γhi (4)
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where x is a point on the initial structure, u(x) is the displacement of
that point from its initial position,S is the nonlinear algebraic operator
which relates the displacement gradient to the material stresses, Ω is
the interior of the structure, Γg is that part of the structure surface
whose position is fixed, Γhi is the movable part of the structure surface
which is acted on only by electrostatic pressure forces p.

The electrostatic pressure, p, on micro-mechanical conductors is
related to the surface charge density, �, as in p = �

2�
2, where � is the

dielectric permittivity. This surface charge density can be determined
by solving the integral equation

 (x) =

Z
surfaces

�(x0)
1

4��0kx� x0k
da

0

; x 2 surfaces (5)

where  (x) is the known conductor surface potential, � is the sur-
face charge density, da0 is the incremental conductor surface area,
x, x0 2 R3, and kxk is the usual Euclidean length of x given byp
x

2
1 + x

2
2 + x

2
3 [9].

The most commonly used approach to solving (1) are the finite-
element methods [3]. Finite-element methods can also be used to
solve a partial differential equation form of (5), and is a commonly used
approach to solving the coupled electromechanical problem. However,
for very complicated three-dimensional geometries, the electrostatic
pressures can be computed much more efficiently using multipole
or precorrected-FFT accelerated iterative methods applied directly to
(5) [7], [8]. The difficulty addressed in this paper is finding approaches
which lets one use the most efficient algorithm for each of the domains
but still allows one to solve the coupled problem.

III. COUPLED METHODS

Boundary-element discretization of (5) leads to a system of equa-
tions of the form

P (u+ x)q �  = RE(u; q) = 0 (6)

where n is the number of discretization unknowns, q 2 Rn is a vector
of surface charges, u + x 2 R

3n is the vector of absolute surface
positions, and P (u + x) 2 R

n�n is a dense geometry dependent
matrix which relates discretized surface charges to discretized surface
potentials. Here, RE is our notation for the electrostatic equilibrium
equations, note that it indicates the dependence on geometry.

Finite-element discretization of (1) leads to a nonlinear system of
equations of the form

FM(u)� FE(q) = RM (u; q) = 0 (7)

where m is the number of discretization nodes, u 2 R
3m is the

vector of discretized node displacements, FM(u) 2 R
3m is a vector

of integrated forces due to material displacement, andFE is the vector
of integrated electrostatic pressure forces. Here, RM is our notation
for the elastostatic equilibrium equations, note that it indicates the
dependence on electrostatic forces.
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Fig. 1. A simple relaxation scheme for self-consistent electro-
mechanical analysis.

The most obvious approach to solving the coupled system of (6) and
(7) is to use a simple relaxation scheme [4], [5], [11], as diagrammed
in Figure 1. The relaxation algorithm does not always converge,
however, particularly when the electrostatic forces are large and the
structure is extremely compliant [12].
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Fig. 2. A coupled algorithm for self-consistent electro-mechanical
analysis.

A more robust approach is to use a full Newton algorithm to solve
the coupled system, as diagrammed in Figure 2 [1]. The difficulty with
the coupled approach is that the off-diagonal or coupling derivatives,
@RM
@q

and @RE
@u

in the linear system of Figure 2, may not be available
explicitly. If an iterative method, like GMRES [10], is used to solve the
linear system, then only matrix-vector products are required. There-
fore, the off-diagonal derivatives need not be explicitly computed, and
can be approximated by finite-differences. For example, if ∆u is a part
of the vector generated by GMRES, then

@RE(u; q)

@u
∆u � RE(u+ ∆u; q)�RE(u; q): (8)

It should be noted that if Krylov-subspace methods like GMRES are
used to solve the system in Figure 2, then as much of the diagonal
blocks as is possible should be explicitly factored and used as a pre-
conditioner [1]. Otherwise, the GMRES algorithm will converge too
slowly to be practical.

I
R
u

R
q I

q

u

q R u

u R q

E

M

i

i

i
E

i

i
M

i

−

−




























= −

−
−













∂
∂

∂
∂

∆
∆

( )

( )

( ) ( )

( ) ( )

( )

( )

u u ui i i( ) ( ) ( )+ = +1 ∆
q q qi i i( ) ( ) ( )+ = +1 ∆

 Converged stopyes

  i = i + 1

N
ex

t N
ew

to
n 

Ite
ra

tio
n

Fig. 3. A multi-level Newton algorithm for self-consistent electro-
mechanical analysis.

Preconditioning the linear system of Figure 2 requires modifying
the individual solvers somewhat. Therefore, the coupled method is
not really a “black box” approach in which different domain solvers
can be swapped in and out. Consider instead that a program which
solves (6) can be thought of as producing charges given geometric
displacments, and we will denote this as

q = RE(u): (9)

In addition, a program which solves (7) can be thought of as producing
geometric displacments given charges, and we denote that as

u = RM (q): (10)

A multilevel-Newton method, given in Figure 3, can be used to de-
termine the solution to the coupled system. We refer to this as a
multilevel Newton method because application of the R operators
implies solving systems of equations, typically with an inner New-
ton’s method. Note that in the multilevel-Newton method, the block
diagonals which are already identity matrices and need not be pre-
conditioned. Also, application of @RE

@u
and @RM

@q
to a vector can

be performed using finite-differences, and therefore does not require
modifying the domain-specific solvers.

IV. RESULTS

Numerical results are presented for two examples: a beam over
a ground plane and a comb drive structure. The performance of the
relaxation, multi-level Newton and coupled algorithms is examined
for both the examples. In particular, the convergence characteristics
and the simulation times are compared.

A. Beam Example

The beam example considered here is 500 �m long, 50 �m wide,
14.35 �m thick and is positioned 1 �m above the ground plane. Fig-
ure 4 shows a top view of the beam example. The beam is discretized



Fig. 4. Top view of a beam over a ground plane example

into 50 parabolic elements and the ground plane is discretized into
250 4-node elements. When a positive potential with reference to
the ground plane is applied on the beam, the beam deflects towards
the ground plane because of the electrostatic force. As the potential
difference increases, the tip of the beam approaches the ground plane,
and touches the ground plane for a certain bias defined as the pull-in
voltage. The pull-in voltage for the beam considered here is 17.24
volts.

Figure 5 compares the peak deflectionobtained from the relaxation,
multi-level Newton and coupled algorithms. The results are identical
verifying the accuracy of each solver. The deflection of the beam for
an applied bias of 17.23 V is shown in Figure 6.
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Fig. 5. Comparison of peak deflections from relaxation, multi-level
Newton and coupled algorithms for a beam over a ground plane
structure. Note that the three curves overlap.

The performance of the relaxation, multi-level Newton and coupled
algorithms for the beam example is summarized in Table I. Observe
that the multi-level Newton and coupled algorithms take fewer iter-
ations and are much faster compared to the relaxation algorithm for
tightly coupled cases. Figure 7 and Figure 8 compare the conver-
gence of the relaxation, multi-level Newton and coupled algorithms
for the beam and ground plane example. Note that closer to pull-in
the relaxation algorithm converges slowly, but the multi-level Newton
and coupled algorithms converge rapidly. The slow convergence of
the relaxation algorithm, near pull-in, is due to the increased coupling
between elastostatic and electrostatic systems. As the multi-level

Fig. 6. Deflection of the beam (not to scale) for an applied bias of
17.23 V.

Newton and coupled algorithms accurately account for all the cou-
pling they exhibit rapid convergence behavior. Note also that the
multi-level Newton algorithm takes fewer iterations compared to the
coupled algorithm, but the coupled algorithm is faster compared to the
multi-level Newton technique.

TABLE I
COMPARISON OF RELAXATION (ALG I), MULTI-LEVEL NEWTON (ALG

II) AND COUPLED (ALG III) ALGORITHMS FOR THE NUMBER OF

ITERATIONS AND CPU(SEC) FOR A THICK BEAM AND GROUND PLANE

EXAMPLE

Bias # Iterations CPU(sec)
Alg I Alg II Alg III Alg I Alg II Alg III

2.0 4 2 2 283.5 698.7 368.4
4.0 5 3 3 381.0 967.0 476.2
6.0 6 3 3 507.7 1244.9 514.5
8.0 7 3 3 608.4 1079.6 572.4
10.0 8 3 3 710.2 1086.8 612.4
12.0 10 3 4 909.5 1086.7 801.3
14.0 13 4 4 1244.4 1530.7 813.4
16.0 20 4 5 2015.8 1499.0 1096.0
17.0 41 5 6 4248.1 1957.0 1399.3
17.20 94 5 6 9713.83 2145.7 1482.5
17.23 200 7 9 20910.5 2823.5 2289.8

B. Comb Drive Example

The comb example consists of a deformable comb structure, a
drive structure and a ground plane. As shown in Figure 9, the F-
shaped finger structure is the comb, the E-shaped finger structure is
the drive, and the rectangular shapedstructure is the ground plane. The
comb is discretized into 172 parabolic elements, the drive is discretized
into 144 linear bricks and the ground plane is discretized into 2688
4-node elements. When a positive potential is applied on the drive
structure, and zero potential on the comb and the ground plane, the
comb structure deforms out of plane. The deformation of the comb
structure for an applied bias of 85 volts is shown in Figure 10. Note
that only the comb structure deforms and the drive and the ground
plane do not move.

A comparison of the relaxation, multi-level Newton and coupled
algorithms for the comb example is summarized in Table II. At low
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Fig. 7. Convergence of relaxation, multi-level Newton and coupled
algorithms for a beam and ground plane structure for an applied
bias of 17.20 volts
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Fig. 8. Convergence of relaxation, multi-level Newton and coupled
algorithms for a beam and ground plane structure for an applied
bias is 17.23 volts

Fig. 9. Comb drive example

Fig. 10. Deformation of the comb (not to scale) for an applied bias
of 85 volts.

voltages, the deflection of the comb is small, the coupling between
the electrical and mechanical systems is weak and the relaxation algo-
rithm works very well. At low voltages, both multi-level Newton and
coupled algorithms take fewer iterations compared to the relaxation
algorithm but the simulation time for both multi-level Newton and cou-
pled algorithms is a little longer. For higher voltages, the multi-level
Newton and coupled algorithms converge much faster compared to the
relaxation algorithm. For a bias of 80 volts, the multi-level Newton
algorithm is about 7.7 times faster and the coupled algorithm is about
5 times faster compared to the relaxation algorithm. The convergence
of the relaxation, multi-level Newton and coupled algorithms at 80
V bias is shown in Figure 11. For an application of 85 V on the

TABLE II
COMPARISON OF RELAXATION (ALG I), MULTI-LEVEL NEWTON (ALG

II) AND COUPLED (ALG III) ALGORITHMS FOR NUMBER OF ITERATION

S AND CPU(SEC) FOR A COMB DRIVE EXAMPLE (A * INDICATES THAT

THE ALGORITHM FAILS TO CONVERGE FOR THE BIAS)

Bias # Iterations CPU(sec)
Alg I Alg II Alg III Alg I Alg II Alg III

25.0 7 3 6 3595.4 5802.2 5589.8
50.0 16 4 8 9138.0 10195.1 11833.5
75.0 70 4 10 42160.3 12053.2 18590.7
80.0 142 3 9 81827.0 10660.4 16670.2
85.0 * 3 10 * 10767.8 18490.9

drive, the relaxation algorithm fails to converge, while the multi-level
Newton and coupled algorithms converge very rapidly and take 3 and
10 iterations, respectively. This is illustrated in Figure 12.

V. CONCLUSION

In this paper we presented three algorithms for coupled electro-
mechanical analysis. The relaxation technique is a black-box approach
but does not converge very well when the electrostatic forces are large
or when the structure is very compliant. The full-Newton technique
exhibits excellent convergence behavior but it is not a black-box tech-
nique. The multilevel-Newton method is a black-box technique and
exhibits excellent convergence behavior. For microdevices involving
two or more coupled energy domains, the multilevel-Newton tech-
nique appears to be the most attractive. CPU results indicate that both
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Fig. 11. Comparison of convergence of relaxation,multi-level Newton
and coupled algorithms for a comb example at an applied bias of
80 V.
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Fig. 12. Comparison of convergence of relaxation,multi-level Newton
and coupled algorithms for a comb example at an applied bias of
85 V.

full-Newton and multilevel-Newton are faster techniques compared to
relaxation. From our preliminary studies, it is hard to conclude which
one of the full-Newton and the multilevel-Newton techniques is a faster
approach for microelectromechanical CAD. Several improvements to
the full-Newton method are possible and are currently being investi-
gated. A comparison of the three methods with improvements to the
full-Newton method should provide better insight in indentifying the
most efficient approach.
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