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Abstract
This paper presents new results in the area of timing

optimization for multi-source nets. The Augmented RC-
Diameter (ARD) is proposed as a natural and practical per-

formance metric and a linear time algorithm for computing

the ARD of a multi-source net is presented. Building on
the ARD, an algorithm for optimal repeater insertion is pre-

sented: for a given multi-source topology the algorithm e�-

ciently identi�es an optimal assignment of repeaters to pre-
scribed insertion points under the \min cost timing feasible"

problem formulation. The algorithm has been implemented

and preliminary experimental results are promising.

1 Introduction
Due to a technological shift in the relative importance of

interconnect delay and logic delay, recent years have seen
much research in automatic timing optimization for VLSI

interconnect. Most of this work has focused on single-source

interconnect optimization and includes bu�er insertion (e.g.,
[16], [5], [10]), performance driven topology synthesis (e.g.,

[11]), and wire sizing (e.g., [2], [10], [14]).

After considering the single-source case, it is natural to
ask what can be done for multi-source nets since buses are so

prevalent in modern designs and are often a key determinant

of system performance. This topic has only recently received
attention (e.g., [4], [3], [15]) and is the topic of this paper.

Our primary contributions are as follows.

(1) We propose the Augmented RC-Diameter (ARD) as a

natural timing metric for multi-source optimization.

(2) We demonstrate that the ARD can be computed in
O(n) time and thus is no harder than computing an

RC-radius (e.g., [13]).

(3) We present an algorithm for a promising optimization

technique in this area: optimal bi-directional repeater
insertion. We adopt the objective of cost minimization
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subject to a given timing spec. The technique produces
a suite of solutions giving a cost vs. performance trade-

o� and also subsumes the discrete driver sizing problem.

We focus on repeater insertion in part because the de-

coupling e�ect of repeaters makes the performance to cost
bene�t of the technique extremely favorable. Further, it has

been shown to be a feasible design technique in the high-end

community and, in fact, is commonly used in the design of
high-speed commercial microprocessors [12].

Nevertheless, some design and technology issues arise in
to bi-directional repeater insertion which do not appear in

the single-source case. A primary issue is repeater design:

should one use a pair of tri-state bu�ers controlled by a
bus arbiter1 or more sophisticated \direction sensing" au-

tonomous repeaters (e.g., [8], [7])? Such decisions are largely

dependent on designer preference [12] and are not addressed
here. Fortunately, such issues appear to have little impact

on the basic nature of the optimization problem and our

techniques should remain relevant.

2 Preliminaries and Formulations
Throughout the remainder of this paper, the following

are assumed to be given technology parameters.

� � and � which are respectively resistance and capaci-
tance per unit wire length (e.g. 1 micron).

� A library Lb of repeaters. For notational simplicity,

we assume that repeaters are symmetric (e.g., a re-
peater's drive capability is independent of signal direc-

tion). Thus, the following parameters will characterize

a repeater b: intrinsic delay i(b), output resistance
r(b), input capacitance c(b) and cost s(b).

Clearly, repeaters with asymmetric characteristics are of

practical value. Generalizations of the presented algorithms

to deal with the asymmetric case are straightforward and
are used in our implementation.

For completeness, we review the basic delay models. In

the typical basic model, the delay of a bu�er b is given by

i(b)+ r(b) � cload where cload is the capacitive load on the b's

output. Similarly in the Elmore model, the delay of a signal
transmitted along a wire of length l from u to v is approxi-

mated by � l( l �
2
+ cv) where cv is the lumped downstream

capacitance at v. Subsequently when referring to the delay
of a path, these models are assumed.

1Note that a bus controller is typically necessary whether re-
peaters are inserted or not and thus the additional control over-
head when repeaters are used can reasonably be expected to be
modest, particularly when amortized over a multi-bit bus.



In addition to the above technology parameters, the fol-
lowing net-speci�c parameters are also given.

� Terminal set N in the plane with the following param-
eters associated with each terminal v 2 N

a(v): latest arrival time at pin v from a latch output (or

PI) via a path not traversing net N

d(v): maximum delay from pin v to a latch input (or

PO) via a path not traversing net N

c(v): the input capacitance of pin v when acting as a

sink

r(v): the output resistance of the driver of pin v when

acting as a source

� A Rectilinear Steiner Tree T connecting N with pre-
scribed, degree two, candidate bu�er insertion points2

To assess the performance of a a routing tree T with a

driver assignment and a (perhaps null) bu�er assignment we
now formally de�ne the Augmented RC-Diameter, ARD(T ).

De�nition 1 Let PD(u; v) be the RC path delay from
source pin u to sink pin v in topology T spanning N in-

cluding delay of the driver, bu�ers and wires on the path.

We de�ne the Augmented RC Diameter of T , ARD(T ) as

ARD(T ) = max
u2N

max
v2Nnfug

(a(u) + PD(u;v) + d(v))

The ARD(T ) gives the maximum delay from the circuit's PIs

to its POs among all paths traversing N and thus, captures

the impact of the net on, for example, system cycle time.3

The de�nition of ARD(T ) leads naturally to the Optimal

Repeater Insertion Problem as follows.

Problem 1 Given routing topology T , a set of technology

parameters and performance target Dspec, �nd an assign-

ment of repeaters to the insertion points of T such that the
resulting cost is minimized subject to ARD(T ) � Dspec.

We present a solution to Problem 1 in Section 4.

3 Linear Time Computation of ARD(T )
Clearly, by performing n single-source computations we

can compute ARD(T ) in O(n2) time. However, we will show

that only O(n) is needed and thus, the problem is no harder

than the analogous single-source computation.

We �rst clarify some additional assumptions and nota-

tion. Without loss of generality, we assume that all ter-

minals are also leaves in the topology T . For purposes of

depth-�rst traversal, it will be useful to orient a topology T

with respect to an arbitrary root vertex s. In such a rooted
tree, we use p(v) to indicate the parent of v; we also note

that edges (u; v) 2 T are now directed. We use c(u; v) and

r(u; v) to respectively denote the capacitance and resistance
of a wire (u; v) 2 T .

2We assume insertion points are degree two to avoid ambiguity

with respect to which side of the repeater a branch connects.
3No generality is lost by not explicitly specifying the sources

and sinks of the net; for any non-sink (-source) v, we simply set
d(v) = �1 (a(v) = �1).

The �rst step in computing ARD(T ) is the computa-
tion of capacitive values cL(u; v) and cL(v; u) for every edge

(u; v) 2 T where cL(u; v) is the total capacitance at v as
seen from u and likewise, cL(v; u) is the load at u from v's

perspective. We �rst compute cL(u; v) where (u; v) 2 T (i.e.,

forward edges) by the following recurrence.

cL(u; v) =

8>>><
>>>:

c(v) if v is a terminal

c(b) else if bu�er b is
placed at vX

(v;w)2T

cL(v;w) + c(v;w) o.w.

(1)

After this bottom-up process, we compute cL(v; u) where
(u; v) 2 T (i.e., backward edges) top-down as follows.

cL(v; u) =

8>>>>>><
>>>>>>:

c(u) if u is the root

c(b) else if bu�er b is
placed at u

cL(u; p(u)) + c(u; p(u))+X
(u;w)2T
w 6=v

cL(u;w) + c(u;w) o.w.

(2)

Once cL(u; v) and cL(v; u) have been computed for edges

(u; v) 2 T , the remainder of the algorithm follows as in Fig.

1. In a depth-�rst traversal, the algorithm computes three
values for each subtree Tv: a is the augmented arrival time

at v via sources in Tv; d is the augmented delay from v to

sinks in Tv; and dI is the Augmented RC-Diameter among
source/sink pairs in Tv. Once the root is reached, the ARD

of the entire tree is easily derived.

4 The Repeater Insertion Algorithm
As in the previous section, we assume that the routing

topology T has been reoriented with an arbitrary terminal

as the root. Our repeater insertion algorithm is based on dy-

namic programming on this reoriented tree. The key com-
ponent of our algorithm is concise characterization of the

multitude of paths in the tree (e.g., in principle, all O(n2)

paths are of interest as opposed to O(n) in the single-source
case).

To motivate the issues involved in this characterization,

consider the example in Fig. 2. We have arrived at vertex v

in our bottom-up traversal and need to be able to assess the
maximum arrival time at v from u and w and the internal

augmented path delays u to w and w to u. The key is that

these values depend on the capacitance of the tree outside of
Tv (i.e., T nTv) { the external capacitance, cE. To assess the

arrival time at v from terminal u, consider the case where

cE = 0; calculating the driver delay and interconnect delay
of wire (u; v), we give the arrival time at v from u as

a(v; u) = a(u) + 2(2 + 4 + 1) + 5(1 + 4 + 1) = 204:

Similarly, the arrival time at v via source w is given by

a(v; w) = 104 (again, assuming cE = 0). Thus, in general
(i.e., for arbitrary cE), we have

a(v; u) = 204 + 7cE and a(v;w) = 104 + 12cE

since the path resistance from u to v is 7 and that fromw to v
is 12. In Fig. 2(c), we see that not only does the arrival time



Routine: ARD(T )

Output: The Augmented RC-Diameter of T

Orient T with an arbitrary pin s 2 N as the root
Compute cL(u; v) and cL(v; u) for all (u; v) 2 T

(a; d; dI) ARD R(s)

Let cL(s) be the total load on pin s

RETURN max(a+ d(s); d+ a(s) + r(s)cL(s); dI)

Routine: ARD R(v)

Output: triple (a; d; dI) where

a = max
u2Tv\N

a(u) + PD(u; v)

d = max
u2Tv\N

PD(v;u) + d(u)

dI = max
u2Tv\N

max
w2Tv\N

w 6=u

a(u) + PD(u;w) + d(w)

IF(v is a leaf)

a a(v) + r(v)(cL(v; p(v)) + c(v;p(v)))
RETURN (a; d(v);�1)

ELSE

a d dI  �1

FOREACH child u of v

(a(u); d(u); dI(u)) ARD R(u)

a0(u) a(u) + r(u; v)(
c(u;v)

2
+ cL(u; v))

d0(u) d(u) + r(v; u)( c(v;u)
2

+ cL(v; u))

IF (bu�er b placed at v)
a0(u) a0(u) + r(b)(cL(v; p(v)) + c(v; p(u)))

d0(u) d0(u) + r(b)(cL(v; u) + c(v; u))

dI  max(dI; a+ d0(u); d+ a0(u); dI(u))
a max(a; a0(u))

d max(d; d0(u))

RETURN (a; d; dI)

Figure 1: Computation of ARD(T )

depend on cE, but so does the critical source { w dominating

when cE < 20 and u dominating when cE > 20. Thus, the

piece-wise maximum of a(v; u) and a(v;w) shown in Fig.

2(c) captures the arrival time at v from its descendants as a

function of external capacitance cE .

We must also consider the internal paths (u; v; w) and

(w; v; u) as in Fig. 2(d). The augmented RC delay of path

(u; v;w) includes a(v; u), the scalar delay from v to sink w

(PD(v;w)), and d(w). Thus, noting that PD(v;w) = 30

and d(w) = 20, we have

d(u; v;w) = a(v; u) + PD(v;w) + d(w) = 254 + 7cE:

Similarly, d(w;v; u) = 274 + 12cE . These are shown by

dashed lines in part (d) of the �gure and amount to adding

scalars to the y-intercepts of a(v; u) and a(v; w). Taking the

piece-wise maximum of d(u; v;w) and d(w; v; u) gives us the

internal augmented RC diameter of Tv (in this case d(w;v; u)

dominates d(u; v;w) for all values of cE.)

This discussion gives an idea of our approach: as we pro-

ceed bottom-up, we accumulate path resistance in the slopes

of PWL functions and apply appropriate PWL operators
when considering options such as repeater insertion.
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Figure 2: (a) Example bottom-up computation, (b) ab-
straction of external capacitance cE , (c) corresponding
arrival time functions at v from u and w, (d) and aug-
mented delay of internal paths

4.1 Solution Characterization
A solution (repeater assignment) s for subtree Tv is fully

parameterized as follows (using C-like structure syntax).

s:cost scalar cost

s:cap scalar capacitance
s:d scalar augmented delay to sinks in Tv
s:fA PWL giving arrival time at v from sources

in Tv as a function of cE
s:fI PWL giving augmented RC diameter for

source/sink pairs internal to Tv

The �rst three parameters are inherited from the single-

source problem (see [10]) while the two PWL functions are
unique to the multi-source problem. For each vertex v in the

reoriented tree we compute a set S(v) of option solutions for

Tv where each s 2 S(v) is characterized as above.

4.2 PWL Primitives
In this section we de�ne some basic PWL operators. We

�rst give a formal de�nition of a PWL itself.

De�nition 2 A piece-wise linear (PWL) function f is a

set of quadruples (y0; slope; xl; xr) where each such quadru-
ple represents a line segment and gives the y-intercept (y0),

slope and domain for which the segment is de�ned (i.e., all

x where xl � x � xr). Additionally, no two segments may
have overlapping domains.

As is typical in most applications of PWL functions, we store

line segments in a linked list ordered by domain.

The following are the PWL primitives we require.



f  PWL Max(f1; f2)
() f(x) = max(f1(x); f2(x)) 8x

f  PWL AddScalar(f1; dy)
() f(x) = f1(x) + dy 8x

f  PWL ShiftLeft(f1; dx)

() f(x) = f1(x+ dx) 8x

f  PWL AddSlope(f1; ds)

() f(x) = f1(x) + x � ds 8x

Each of these operations is performed in time linear in the

number of segments in the participating functions by appro-
priately stepping through the segment lists.

4.3 Solution Dominance
As in most multi-dimensional dynamic programming ap-

plications, a key issue in repeater insertion is the elimination

of suboptimal solutions. Typically, a solution s is character-
ized by a set of k scalars s[1]; s[2]; :::; s[k]; assume w.l.o.g

that minimization in each of these k dimensions is preferred.

This induces a partial order � on a set of solutions S; for
s1; s2 2 S, we have the following

s1 � s2 () s1[i] � s2[i] 8 i 2 f1::kg:

We need not consider any solution s2 2 S if there exists
s1 2 S such that s1 � s2 (assume w.l.o.g. all solutions are

distinct). Thus, for a given solution set S, we compute the

minima of S and discard the remainder.

De�nition 3 The minimal or dominant subset of a set of
k-dimensional points S is the largest subset S0 � S such that,

for all s1; s2 2 S
0, s1 6� s2 and s2 6� s1.

The problem of �nding a minimal point set has a long his-
tory dating back at least to [9]. A variety of algorithms have

been proposed; some achieve excellent asymptotic complex-

ity (e.g. [9]) while others have been tuned for ease of imple-
mentation or fast expected run time (e.g., [1]).

The reader may have noted that because of the PWL

functions s:fA and s:fI a subsolution s does not correspond
to a single point in k-dimensional space; rather, it corre-

sponds to an in�nite set of 5-dimensional points { one for

every value of cE. To deal with this complication we intro-
duce the notion of a minimal functional subset (MFS).4

De�nition 4 Let S be a set where each s 2 S is a k-tuple

of PWL functions of a variable x. For each s 2 S, let s0 be
de�ned (for i 2 f1::kg) as

s
0
[i](x) =

(
1 if 9s0 2 S s.t. s0 6= s and

s0[j](x)� s[j](x) 8j 2 f1::kg
s[i](x) o.w.

The minimal functional subset (MFS) of S is S0:

S
0 = fs0js 2 S and 9x s.t. s

0[i](x) 6=1g

Note that PWL functions in S0 may no longer be \con-
nected" since they may have suboptimal regions of the do-

main (i.e., 1) separating useful regions of the domain. Fi-

nally, we point out that the fundamental pruning operation

4We use the notion of subset somewhat loosely here, however,
the meaning should be clear.

of the de�nition { for a given s and s0, detect all ranges of
x for which s0 dominates s and alter s accordingly { can

be implemented in time linear in k and the total number
of segments in question. This is done by �rst detecting the

regions in which s0[i] dominates s[i] (similar to a PWL Max

operation) for each i and then computing the intersection of
these regions and updating the PWLs accordingly.

In our application, solutions are characterized by three

scalars (degenerate PWL functions) and two PWL func-

tions. At each stage of dynamic programming, we would
like to e�ciently compute the FMS of a solution set S. We

have devised an easy to implement algorithm for solving this

problem which appears to work well in practice; it appears in
pseudo-code in Fig. 3. The algorithm takes a divide and con-

quer approach motivated by the following intuition. Suppose

that the FMS of S is much smaller than S itself.5 The idea
is that many of the suboptimal solutions will be discarded

at relatively deep levels of the recursion thus avoiding exces-

sive pair-wise comparisons at higher levels of the recursion.
Thus, the approach targets fast performance in practice but

retains an 
(jSj2) worst case complexity in terms of the

number of pair-wise comparisons.

Routine: MinimalFS DC(S)

Output: The minimal functional subset of S
1. IF (jSj = 1)

2. RETURN S

3. Divide S into equal sized sets Sl and Sr
4. S0l  MinimalFS DC(Sl)

5. S0r  MinimalFS DC(Sr)

6. Compute S0 = MFS(S0l [ S
0
r) by pair-wise

comparison between S0l and S0r
7. RETURN S0

Figure 3: Computing MFS(S) by Divide & Conquer

4.4 The Overall Algorithm
We present a high-level view of our algorithm for optimal

repeater insertion in Fig. 4. We recursively compute solution
sets S(v) from those of v's children. The top-level code takes

di�erent actions depending on whether the current vertex v

is a leaf, Steiner (branch) node, insertion point or the root
itself; supporting subroutines appear in Fig. 5.

The algorithm follows the intuition presented in the pre-

ceding sections. Consider the computation of s:fA by Join-

Sets in Fig. 5. Here we are joining two subtrees and the
capacitance of each subtree will be seen by signals arriv-

ing at the root of the other tree. This gives rise to the

PWL ShiftLeft operators to compute f1A and f2A, the arrival

time functions at the root with respect to the external capaci-

tance of the newly formed tree. Taking their PWL Max gives

s:fA. Computing s:fI is slightly more complex. We must
consider not only pre-existing internal paths, but also inter-

nal paths traversing the newly formed root v. The e�ect of

these newly formed paths is captured in f12I and f21I which
give the augmented diameters of paths through v starting

5From experience, this is frequently the case, particularlywhen
constructing solutions at a branch point



Routine: MSRI(v)

Purpose: Computes the minimal solution set S(v)

among repeater assignments to Tv
IF (v is a leaf)

s:cost 0 ; s:cap c(v) ; s:d d(v)

s:fA  a(v) + r(v) cE
s:fI  �1 /* No internal path */

S(v) fsg

ELSE IF (v is a Steiner node)
S(v) ;

FOREACH (child u of v)

MSRI(u)
S0(u) Augment(S(u); (v; u))

IF (S(v) 6= ;)

S(v) JoinSets(S(v); S0(u))
S(v) MinimalFS DC(S(v))

ELSE

S(v) S0(u)
ELSE IF (v is a candidate insertion point (degree-2))

Let u be the child of v

S0(u) Augment(S(u); (v; u))
S(v) S0(u) [ RepeaterSolutions(S0 (u))

S(v) MinimalFS DC(S(v))

ELSE /* v is the root */
Let u be the child of v

S0(u) Augment(S(u); (v; u))

Compute global ARD for each s 2 S0(u)
by pairing s with driver parameters.

Keep only minima w.r.t. cost and ARD

giving �nal tradeo� curve

Figure 4: Top-level algorithm for Optimal Multi-Source
Repeater Insertion

in subtree 1 and subtree 2 respectively. Ultimately, s:fI is
computed by a PWL Max over pre-existing and new internal

paths. The other subroutines follow similar reasoning.

Optimality of the algorithm follows inductively from its
bottom-up structure.

Theorem 1 Consider S(v) as computed by the MSRI al-
gorithm in Fig. 4. Let s(cE) be the 5-tuple of scalars

(s:cost; s:cap; s:d; s:fA(cE); s:fI(cE)). We conclude that

s 2 S(v) () 9cE s.t. 8 repeater assigments s0 6=
s to Tv; s

0(cE) 6� s(cE)

4.5 Discussion
A few additional issues relating to the algorithm are

worth mentioning. First, by discretizing the dimensions of
problem, it is possible to give a pseudo-polynomial run-time

bound. However, the usefulness of such a bound is limited

by its inherent pessimism; therefore, we defer to experimen-
tal results for a more meaningful run-time evaluation. Sec-

ond, the algorithm also subsumes the driver sizing problem.

Lastly, an extension allowing the use of inverters as repeaters

is straightforward.

5 Experiments
We have implemented prototypes of our algorithms on a

Sun SPARC 10 workstation and we report preliminary re-

Routine: JoinSets(S1 ; S2)

Input: Solution sets S1 and S2 from disjoint subtrees

Output: The non-minimal solution set S when the
subtrees are joined at a common parent

S  ;

FOREACH (pair of solutions s1 2 S1; s2 2 S2)
s:cost s1:cost +s2:cost

s:cap s1:cap +s2:cap

s:d max(s1:d; s2:d)
f1A  PWL ShiftLeft(s1:fA; s2:cap)

f2A  PWL ShiftLeft(s2:fA; s1:cap)

s:fA  PWL Max(f1A; f
2
A)

f12I  PWL AddScalar(f1A; s2:d)

f21I  PWL AddScalar(f2A; s1:d)

fvI  PWL Max(f12I ; f21I )
f1I  PWL ShiftLeft(s1:fI; s2:cap)

f2I  PWL ShiftLeft(s2:fI; s1:cap)

s:fI  PWL Max(fvI ; PWL Max(f1I ; f
2
I ))

S  S [ fsg

RETURN S

Routine: RepeaterSolutions(S)

Output: Solution set in which all solutions are bu�ered

with a repeater from the library Lb
S0  ;

FOREACH (s 2 S and b 2 Lb)

s0:cost s:cost +s(b)
s0:cap  c(b)

s0:d s:d+ i(b) + r(b) � s:cap

a s:fA(c(b)) + i(b)
s0:fA  a+ r(b) � cE
s0:fI  s:fI(c(b)) + 0cE
S0  S0 [ fs0g

RETURN S0

Routine: Augment(S; (u; v))

Output: Solution set built from S

taking wire (u; v) into account
S0  ;

FOREACH (s 2 S)

s0:cost s:cost
s0:cap  s:cap+c(u;v)

s0:d s:d+ r(u; v)( c(u;v)
2

+ s:cap)

f 0A  PWL AddScalar(s:fA; r(u; v)(
c(u;v))

2
))

s0:fA  PWL AddSlope(f 0A ; r(u; v))
s0:fI  PWL ShiftLeft(s:fI ; c(u; v))

S0  S0 [ fs0g

RETURN S0

Figure 5: Subroutines of MSRI()

sults in this section. The technology parameters are summa-

rized as follows: unit wire resistance and capacitance

are � = 0:12
=�m and � = 0:15fF=�m respectively; a

\unit" unidirectional bu�er/driver b1 has cost s(b1) = 1, in-

put capacitance c(b1) = 0:05pF and output resistance

r(b1) = 800
. Larger bu�ers were formed by a scaling



Avg. # D.S.: Min ARD R.I.: Min Cost s.t. R.I.: Min ARD Avg. CPU (sec.)
jN j i-points Dds Cost ARD� Dds D Cost D.S. R.I.

10 30:4 0:73 1:45 1:18 0:55 1:73 0:9 6:9
20 36:6 0:77 1:26 1:06 0:44 1:51 6:0 28:9

Table 1: Experimental Results. ARD and cost normalized to min-cost solution (min-sized drivers, no repeaters).

factor k: a kX bu�er bk is parameterized by s(bk) = k,

i(bk) = 100ps (independent of size), c(bk) = k(0:05pF ) and
r(bk) = (800=k)
. These parameters are typical of those

seen in the literature for sub-micron technology.

Experimental results appear in Table 1. In this set of ex-

periments, we assume that all terminals serve as both sources
and sinks and that all arrival times and downstream delay

times are 0 (e.g., all terminals connect to latches). Ten ran-

dom 10 terminal point sets were drawn from a 1cm x 1cm
grid; we did the same for 20 terminals. Steiner trees con-

necting the terminals were then generated using the P-TreeA
algorithm [11]. Repeater insertion points were then added
to the topology such that consecutive insertion points were

no more than approximately 800�m apart.

The repeater insertion algorithm was then applied to the

topology using the repeater formed by a pair of 1X bu�ers.

We then ran the algorithm in driver sizingmode on the same
topology using a driver library built from 1X, 2X, 3X and

4X bu�ers, e�ectively giving a library of 16 drivers when

orientation is considered. Additionally, it was assumed in
both cases that the previous stage resistance of each terminal

was 400
 and that the subsequent stage capacitance of each

terminal was 0:2pF .

As can be seen from columns 3 and 7, far more substan-

tial reductions in RC-diameter were observed for repeater
insertion. Additionally, when the minimum RC-diameter

achievable by driver sizing is used as a constraint for re-

peater insertion, we observe substantially lower cost over-
head for equivalent or better diameter as shown by columns

4 and 5. Finally the average CPU times are given in the

last two columns of the same table. As stated in the pre-
vious section, empirical evidence is the best way to judge

the tractability of algorithms such as those proposed here.
Indeed, the achieved run-times for our largely unoptimized

prototype code are quite reasonable. Since the algorithm

assures optimality, evidence of its tractability is a primary
contribution of this paper.

6 Conclusions/Comments
It is clear that interconnect optimization will play a cen-

tral role in future CAD tools for physical design; optimiza-
tion of multi-source nets is no exception to this trend. As

such, we propose that our results are of fundamental inter-

est. First, the notion of the Augmented RC-Diameter gives

a natural and practical performance metric for multi-source

optimization. Second, we have proposed algorithm for op-
timal repeater insertion demonstrating that it is indeed a

tractable problem. Natural topics for further research in-

clude a more detailed assessment of control overhead and
application of similar techniques to multi-source topology

synthesis.

In closing we thank Professor Majid Sarrafzadeh of

Northwestern University for pointing us to the point dom-

inance literature and Dr. Kenneth Clarkson of AT&T Bell
Labs for pointing out reference [1] and additional input on

point dominance problems.
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