
Delay Estimation for Technology Independent Synthesis

Yutaka TAMIYA

FUJITSU LABORATORIES LTD.
4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, JAPAN, 211-88

Tel: +81-44-754-2663
Fax: +81-44-754-2664

E-mail: tamy@flab.fujitsu.co.jp

Abstract

This paper proposes “path mapping”, a method of delay es-
timation for technology independent combinational circuits.
Path mapping provides fast and accurate delay estimation us-
ing the common ideas with the tree covering based technology
mapping. First, path mapping does technology mapping for
all paths in the circuit with minimum delay. Then, it finds the
most critical path among all the paths in the circuit. Finally,
it answers its path delay as the circuit delay.

Experimental results show path mapping estimates more
accurate circuit delay than unit delay, and runs much faster
than the technology mapper.

1 Introduction

In a general LSI design flow, a circuit is first optimized at
technology independent level, then, is mapped into the tech-
nology library cells, and finally optimized at technology de-
pendent level. At all design phases, “delay” plays an impor-
tant role in measuring goodness of the circuit.

Especially, technology independent synthesis needs both
fast and accurate delay estimation. Technology independent
synthesis iterates hundreds times of trials that modifies the
circuit and estimates its delay. Thus delay calculation time
should be small to reduce synthesis time. In addition, the
actual circuit delay cannot be calculated unless all nodes in
the circuit is made from technology library cells. There are
two previously proposed delay estimations for a technology
independent circuit: unit delay and technology mapping.

Almost all synthesis tools use unit delay [1] to estimate de-
lay of a technology independent circuit. It first decomposes
the circuit into inverter (INV) and 2-input nand (NAND2)
nodes. Then it finds the maximum number of NAND2's on
a single path from a primary input to a primary output, and
recognizes that number as the circuit delay.

Extension of this unit delay for complex logic function
nodes has been proposed by [2]. It does not actually decom-
pose the circuit into INV and NAND2 nodes, but it calculates

delay of a complex node with a similar way of unit delay.
Thus, this method has no essential differences from unit de-
lay.

Run time of unit delay is very small. Accuracy of unit
delay, however, is low because unit delay does not consider
technology mapping. For example in Fig. 1, nodes on pathA

! X can be mapped to a NAND4 cell. In this case bothA

andC will be an input of a NAND4 cell, and path delays ofA
! X andC ! X are almost the same. However, unit delay
says pathA! X is 1.5 times larger than pathC ! X.

NAND4

A

B

X
D

E

C

Figure 1: Difference of Unit Delay and Technology Mapping

Another delay estimation of technology mapping answers
the exact circuit delay with the actual delay model of the tech-
nology library. The most efficient technology mapper is based
on tree covering algorithm [3], which runs in linear time to
the number of nodes in the circuit. However it is very slow
for technology independent synthesis to use it iteratively.

We propose a new delay estimation method of “path map-
ping”. It provides accurate delay estimation using the com-
mon ideas with the tree covering based technology mapping.
Also it runs fast, so that it is suitable for technology indepen-
dent synthesis.

This paper is organized as follows: definitions of path map-
ping and delay calculation are presented in Section 2. Sec-
tion 3 presents an efficient algorithm for delay calculation,
and is followed by some heuristics for more accurate delay
estimation in Section 4. Then we discuss experimental results
in Section 5 and conclusion in Section 6.

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

(2)Subject path

(3)Path mapping

(1)INV-NAND2 decomposition

(4)Feasibility

g

f

j

y<={d,e,i}

x<={a,b,c,h}y=ao21

e d c b a

i h
x=aoi21

Vdd

e d c b a

g f

e d c b a

Figure 2: Example of path mapping

2 Path Mapping

Path mapping estimates the circuit delay by the following
equation:

max

8p2Paths
min

8m2Mappings

fDelay ofp mapped bymg (1)

The “min” operator of this equation means that path mapping
finds the fastest technology mapping for each path in the cir-
cuit. And the “max” operator means that path mapping finds
the most critical path among all paths in the circuit. Details
of Eq. 1 are represented in the following subsections.

2.1 Mapping on a Subject Path

Technology mapping within the “min” operator of Eq. 1 pro-
ceeds as follows:

Step 1 First, extract one path from a primary input to a pri-
mary output (Fig. 2(1), (2)). We call this extracted path
a “subject path”. Remove all nodes and nets not on the
subject path. Record the number of fanouts and num-
ber of inputs at each node on the subject path (They are
shown with dotted lines in Fig. 2(2)).

Step 2 Map nodes on the subject path with library cells. In
this mapping some extra INV and/or NAND2 nodes can
be added to the side inputs of the path, so that original
nodes on the path and added nodes will match with some
library cell. In Fig. 2(3) an AOI21 (AND-OR-INV21) is
mapped to nodesa, b, c, and an extra NAND2 nodeh.
Also AO21 (AND-OR21) is mapped to nodesd, e, and
an extra INV nodei.

This mapping prohibits to map a single library cell
across a fanout point: i.e., two nodes just before and af-
ter a fanout point cannot be mapped to the same one cell.

That's because tree covering based technology mapping
never maps a single library cell across a fanout point.

Note that resultant mapping of Step 2 ignores two kinds of
nodes:

� Unused nodes within mapped library cells, which does
not map to the subject path.

� Nodes not on the subject path in the circuit.

Even though ignoring such those nodes, the resultant map-
ping by Step 2 is feasible, if the technology library satisfies
certain requirements. The requirements are as shown here.

Definition 1 “Technology Library Requirements for Feasible
Path Mapping”

The technology library satisfies the following all condi-
tions:

1. It contains cells of constant 0, constant 1, INV, and
NAND2.

2. The technology mapping uses only combinational and
single-output library cells.

3. The technology mapping only uses INV-NAND2 tree de-
compositions of library cells.

2

Requirement 1 and 2 are already satisfied by almost all
CMOS libraries and tree covering based technology mappers.
Requirement 3 means path mapping cannot handle EOR and
ENOR cells, whose INV-NAND2 decomposed graphs are not
a tree, but a DAG (Directed Acyclic Graph).

All nets of an INV-NAND2 tree decomposition are con-
trollable: i.e., by setting adequate values to some inputs all
nets can be set to both 0 and 1. Thus values of any nodes

within a library cell that are not used by Step 2, can be ar-
bitrarily set to either a constant value (0/1), or the same (or
inverted) value of a some inputs of the cell.

We have proved that if the technology library satisfies re-
quirements of Def. 1, resultant mapping of Step 2 can be
replaced with its original path in the circuit by adding INV
nodes and/or assigning constant values to unused inputs of
mapped library cells. Fig. 2(4) shows adding an INV nodej

and pulling up one input of the AOI21 cell make the circuit
logically equivalent to the circuit of Fig. 2(1).

2.2 Circuit Delay

There are many combinations of library cells to map the sub-
ject path. In order to calculate Eq. 1, we try all possible path
mappings and calculate its path delay. Path delay is calculated
considering number of fanouts, delay parameters of mapped
library cells, and other technology-specific delay parameters.
The minimum path delay among all possible path mappings
is recorded as the delay of the subject path.

The path of the maximum delay is chosen as the most crit-
ical path in the circuit, and its delay will be the estimated
circuit delay. This estimated circuit delay is guaranteed to
be a lower bound of the actual circuit delay after technology
mapping. This is because path mapping calculates the fastest
technology mapping for each path. Thus circuit delay ob-
tained by technology mapping is always larger than circuit
delay obtained by path mapping.

3 Efficient Algorithm

Properties of Eq. 1 and path mapping gives us an efficient
algorithm to obtain the circuit delay. We can calculate circuit
delay in linear time to the number of nodes.

3.1 Path Pattern Table

In the mapping process described in Section 2, a library cell
can be mapped to the subject path, if one of paths in the library
cell can be mapped to the subject path. Using a “path pattern
table” we can speed up this mapping process.

A “path pattern” is defined as a string of digit 1 and 2,
which represents an order of INV and NAND2 nodes on a
path. A digit 1 corresponds to an INV node, and 2 to a
NAND2 node. For example in Fig. 1, pathA ! X has a
path pattern of “21212”. PathC !X andD!X have path
patterns of “212” and “22”, respectively.

A “path pattern table” is defined as a collection of a pair
of a path pattern and its corresponding cell delay. All entries
of path patterns must exist in some technology library cell. A
path pattern table can be made by generating all INV-NAND2
tree decompositions of all library cells, and calculating path
delays of all paths in those INV-NAND2 tree decompositions.
Since Eq. 1 only needs the fastest mapping, it is enough for

each path pattern in the path pattern table to have only the
minimum cell delay.

Technology mapping generates a buffer or/and INV node
tree at fanout points with a large number of fanouts in order
to distribute fanouting load and speed up the fanout points.
At fanout points path mapping considers both buffering and
non-buffering cases, and takes the smaller delay.

Table 1 shows statistics of two CMOS libraries: lib2 (a
SIS genlib library [5]) and CG51 (a Fujitsu's 0.5� CMOS
standard cell library [7]). In the table, “Number” means num-
ber of path patterns contained by single-output combinational
library cells, excluding EOR and ENOR cells. “Maximum
Length” means the maximum number of nodes contained by
one path pattern. Lib2 has only 23 path patterns. Although

Library Number Maximum Length
lib2 (SIS) 23 7

CG51 (Fujitsu) 63 15

Table 1: Path patterns in CMOS libraries

CG51 is a real library and has 240 combinational single-
output cells, it has only 63 path patterns. Those small num-
bers of path patterns helps us to save memory and run time.
The length of the maximum path pattern is 7 for lib2, and 15
for CG51. Since time spent by matching process depends on
length of path patterns, path mapping is expected to run in
short time.

In addition, we need to make a path pattern table only
once for each technology library because the path pattern ta-
ble does not depend on subject circuits.

3.2 Dynamic Programming based Arrival
Time Calculation

Path mapping can use a dynamic programming paradigm sim-
ilar to the tree covering based technology mapping[3]. It can
avoid to enumerate all paths in the subject circuit, where the
number of paths is exponential to the number of nodes at
worst.

First, we set initial arrival times at primary inputs of the
subject circuit. Then we process internal nodes one by one in
a topological order from primary inputs toward primary out-
puts, and calculate an arrival time of the node. After all nodes
are processed, the maximum arrival time among primary out-
puts is selected as the circuit delay.

Fig. 3 shows an example of arrival time calculation of node
root. Since we calculate arrival times of nodes in topological
order, we have already processed all nodes in the transitive
fanin cone ofroot.

In order to calculate the arrival time atroot we trace all
paths ended atroot by visiting nodes in the fanin cone in a
depth-first order. We introduce two variables,arrvT ime and
minPath. arrvT ime is initialized with�1, and answers
the arrival time atroot after we have visited all nodes in the

PI
root

node=x
path pattern
 "1"
 "2"
 "212"
 "21212"
 "221"

delay
100
100
120
120
125

pat = "212"a

b

fanin cone of root

x

Figure 3: Arrival time calculation at “root”

fanin cone.minPath is initialized with+1, and holds the
minimum arrival time of all intermediate nodes on the path
from the currently visiting node toroot.

Suppose we currently visit nodex in the fanin cone. We try
to map the pathx! root with a single library cell. We can
easily check this trial by searching the path pattern table. If an
entry of the path pattern of pathx! root is found, we know
the path can be mapped and its minimum cell delay from the
path pattern table. The arrival time ofroot with this mapping
is calculated by the following equation:

(Arrival time atx)+ (Delay of path patternx! root) (2)

We substituteminPath with the value of Eq. 2, if it is less
thanminPath. This means we find the fastest mapping ever
examined on the pathx! root.

We call a node in the fanin cone a “leave node”, if the node
is either a fanout point or at a distance of the length of the
maximum path pattern apart fromroot. We don' t need to
visit any nodes beyond a leave node because no cells can be
mapped across the leave node.

When we reach to a leave node, we substitutearrvT ime

with minPath, if minPath is larger thanarrvT ime. Note
that this arrival time calculation leads us to further reduction
of searching space, i.e., when the arrival time of a currently
visiting node is less thanarrvT ime, we don' t need to visit
any nodes beyond the currently visiting node.

According to discussion above, run time calculating an ar-
rival time ofroot is bound by a constant value. And an arrival
time of each node needs to be calculated only once. Thus time
complexity of path mapping is linear to the number of nodes
in the subject circuit. Tree covering based technology map-
ping also has linear time complexity. It is, however, much
slower than path mapping because technology mapping ex-
amines all matchings between a graph of the subject circuit
and all graphs of library cells, while path mapping only has to
search an entry of a path pattern in the path pattern table.

4 Heuristics for More Accurate Delay
Estimation

Path mapping uses an inverter heuristic as tree covering based
technology mapping [3] does. Adding a pair of inverters to
every net, it considers both positive and negative phases of
library cell mappings.

Since path mapping considers the fastest technology map-
ping for a subject path, it ignores delay from side inputs of
the subject path, and it often answers too small circuit delay.
Fig. 4 illustrates two cases of mapping a NAND4 cell. Cir-
cuit (1) of the figure has only one critical path. In this case
technology mapping may use a cascade INV-NAND2 decom-
position of NAND4 in order to cover as many nodes on the
critical path as possible. This contributes to speed up the crit-
ical path.

On the other hand, Circuit (2) of the figure has all paths
equally critical. In this case technology mapping may use
a balance INV-NAND2 decomposition of NAND4 in order
to speed up all paths equally. If technology mapping uses a
cascade decomposition instead, it speeds up only one path,
but makes all other paths slow down. As a result the circuit
delay obtained by a cascade decomposition becomes larger
than one obtained by a balance decomposition. This is why
technology mapping does not use a cascade decomposition to
Circuit (2).

Path mapping mentioned in Section 2 maps each path as
fast as possible. In other words, path mapping always uses
cascade INV-NAND2 decompositions. For the Circuit (2) in
Fig. 4 path mapping applies a cascade decomposition, while
technology mapping never does so. Moreover, it ignores ar-
rival times from side inputs. This results that path mapping
answers smaller circuit delay than actual mapping.

In order to avoid this problem, we use both cascade and
balance decompositions for each library cell. And we use
either of them according to difference of arrival times at
NAND2's inputs. In Fig. 4, for example, if difference of ar-
rival times at inputA andB is large, a cascade decomposition

NAND4

100
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

Cascade decomp. Balance decomp.

X X
A

B

A

B

(1) Circuit having one
 critical path

(2) Circuit having all paths
 equally critical

Figure 4: Cascade decomposition and balance decomposition

is applied, and a balance decomposition is applied otherwise.
Note that this heuristic does not any more guarantee that

path mapping gives a lower bound of the actual circuit delay.

5 Experiments

We have applied path mapping with heuristics discussed in
Section 4 to 27 combinational MCNC benchmark circuits [6].
These circuits are optimized with script.rugged by SIS[5]
twice. In addition, we get another 27 circuits by applying
timing optimization script[1] of “speedup -i; speedupalg
2c kernel divisor; speedup -T -m unit - d 3”. Note that this
timing optimization uses unit delay model, not path mapping.

We measure circuit delays of those 54 circuits by technol-
ogy mapping, path mapping, and unit delay. We use lib2 and
CG51 for technology libraries. Technology mapper is SIS by
the command of “map -AFG -n 1” for lib2, and our boolean
matching based in-house mapper for CG51. We cannot use
the SIS mapper for CG51 because CG51 employs a compli-
cated delay model the SIS mapper cannot handle.

We don' t distinguish rise and fall signal transitions because
it does not significantly improve accuracy of delay estimation,
but doubles run time. In the path pattern table, we record the
average delay of all signal transitions.

Table 2 shows results of lib2 and CG51. The second col-
umn shows circuit names, where the suffix of “.opt” means
the circuit is optimized by the timing script. The third column
shows delays obtained after technology mapping. The fourth
and fifth columns represent estimated delays by path mapping
and unit delay, respectively. The last two columns mean CPU
times of technology mapping and path mapping on a SUN
4/20 Workstation (60 MHz). Numbers in the parentheses are
ratios of those CPU times.

Path mapping runs more than 150 times faster than tech-
nology mapping for almost all circuits. This means path map-
ping is enough fast to be used iteratively in technology inde-
pendent synthesis. Path mapping says C1908 is 10 % faster

than C880 with CG51. However, technology mapping says
those circuits have almost the same delay. We need better
heuristics to this problem.

Table 3 compares accuracies of path mapping and unit de-
lay. In the table, we assume a linear relationship between
estimated and actual (after technology mapping) delays, as
follows:

(Actual Delay)= K � (Estimated delay) (3)

CoefficientK is a constant that depends both on a technol-
ogy mapper and a technology library. We calculateK with
regression analysis for both libraries of lib2 and CG51. Then
we calculate average errors and maximum errors of Eq. 3.

According to Table 3 path mapping hasK of 1.01 for lib2.
This means path mapping predicts almost the same circuit de-
lay as the SIS mapper. For CG51 path mapping hasK of
1.54. This 54 % difference is caused by the complicated delay
model of CG51 and our in-house technology mapper. With
theseK 's we can predict circuit delay with average error of
5.79% and 10.57% for lib2 and CG51, respectively. Compar-
ing with unit delay in terms of average and maximum errors,
path mapping is more accurate both for lib2 and CG51.

6 Conclusion

This paper proposes “path mapping” as a both fast and ac-
curate delay estimation for technology independent combi-
national circuits. According to our experimental results, we
conclude path mapping is more accurate than unit delay, and
much faster than technology mapping. We consider that tech-
nology independent synthesis using path mapping can esti-
mate more accurate circuit delays and get better results with
small increase of run time.

In our future work, we will study other heuristics to im-
prove accuracy of path mapping. And we will also incorpo-
rate path mapping into technology independent timing syn-
thesis, and evaluate its efficiency.

Circuit Delay CPU Time [s]
Lib Ckt Tech Map [ns] Path Map [ns] Unit [levels] Tech Map Path Map (�)

C499 19.23 17.83 19 26.2 0.141 (186)
C499.opt 17.97 15.77 15 63.3 0.162 (391)

C880 31.00 31.93 35 23.5 0.123 (191)
C880.opt 19.60 19.85 20 59.6 0.180 (331)

lib2 C1355 19.23 17.83 19 27.1 0.129 (210)
C1355.opt 17.97 15.77 15 63.2 0.160 (395)

C1908 27.83 29.54 30 26.4 0.138 (191)
C1908.opt 24.96 23.64 23 61.7 0.146 (423)

C5315 26.91 30.10 32 98.5 0.517 (191)
C5315.opt 22.18 21.98 21 210.5 0.573 (367)

C6288 94.02 95.62 92 166.6 0.605 (275)
C6288.opt 76.74 70.31 68 374.7 0.800 (468)

C499 3.99 2.74 19 138.1 0.378 (365)
C499.opt 3.62 2.47 15 188.2 0.454 (415)

C880 6.24 5.09 35 210.1 0.368 (571)
C880.opt 3.88 2.99 20 192.1 0.538 (357)

CG51 C1355 3.99 2.74 19 157.7 0.363 (434)
C1355.opt 3.62 2.47 15 188.3 0.436 (432)

C1908 6.35 4.35 30 184.1 0.364 (506)
C1908.opt 5.00 3.46 23 179.8 0.566 (318)

C5315 6.58 4.58 32 700.2 1.462 (479)
C5315.opt 4.62 3.23 21 665.1 1.667 (399)

C6288 22.70 13.33 92 783.4 2.165 (362)
C6288.opt 16.00 10.10 68 1066.1 2.257 (472)
�: Ratio of CPU times of technology mapping and path mapping

Table 2: Results of lib2 and CG51

Library Delay Model K of Eq.3 Ave. Error (%) Max. Error (%)
lib2 Path Mapping 1.01 5.79 23.34

Unit Delay 1.01 10.57 31.26
CG51 Path Mapping 1.54 9.56 30.07

Unit Delay 0.227 12.80 40.91

Table 3: Comparison of delay estimations

References

[1] K. J. Singh, et al. “Timing Optimization of Combina-
tional Logic”, Proc. of ICCAD-88, pp. 282–285, 1988.

[2] D. E. Wallace, M. S. Chandrasekhar, “High-Level Delay
Estimation for Technology-Independent Logic Equa-
tions”, Proc. of ICCAD-90, pp. 188–191, 1990.

[3] K. Keutzer, “DAGON: Technology Binding and Local
Optimization by DAG Matching”, Proc. of 24th DAC,
pp. 341–347, 1987.

[4] H. J. Touati, “Performance-Oriented Technology Map-
ping”, pp.31–90, Memorandum No.UCB/ERL

M90/109, Univ. of California, Berkeley, 1990.

[5] E. M. Sentovich, et al., “SIS: A System for Sequen-
tial Circuit Synthesis”, Memorandum No.UCB/ERL
M92/41, Univ. of California, Berkeley, 1992.

[6] S. Yang, “Logic Synthesis and Optimization Bench-
marks User Guide Version 3.0”, MCNC International
Workshop on Logic Synthesis, 1991.

[7] Fujitsu Semiconductor, “CMOS Gate Array CG51 Se-
ries, Unit Cell Specification”, 1994.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

