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In a gate-level description of a �nite state machine

(fsm), there is a tradeo� between the number of latches

and the size of the logic implementing the next-state

and output functions. Typically, an initial implemen-

tation is generated via explicit state assignment or

translation from a high-level language, and the trade-

o� is subsequently only lightly explored. We e�ciently

explore good latch/logic tradeo�s for large designs gen-

erated from high-level speci�cations. We reduce the

number of latches while controlling the logic size. We

demonstrate the e�cacy of our techniques on some

large industrial examples.

1 Introduction

In a gate-level description of a �nite state ma-

chine (fsm), there is a tradeo� between the number

of latches and the size of the logic implementing the

next-state logic. This tradeo� can be exploited at two

levels: during generation of the initial implementation,

and during subsequent logic optimization steps.

1.1 Background

State assignment is the generation of a state encod-

ing and an initial latch/logic implementation from a

higher level in the design process. To date, primarily

two approaches have been used. Explicit state assign-

ment begins from an explicit state transition graph

and chooses a minimum-latch encoding while minimiz-

ing the size of the combinational logic [5, 13, 6]. State

assignment from high-level languages chooses an en-

coding according to the delay statements in the speci-

�cation, relying on logic synthesis to later optimize the

gate-level implementation [1]. Explicit state assign-

ment is impractical for large designs, and despite so-

phisticated techniques for determining an optimal as-

signment, it can produce results far worse than hand-

coded implementations. Furthermore, explicit state

assignment programs have not targeted greater-than-

minimum-latch implementations. With current tech-
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nology (e.g. FPGAs), it is no longer necessary to min-

imize the number of latches and doing so often pro-

duces prohibitively large combinational logic. One-hot

encoding can also be applied to an explicit state graph,

where one latch is used for each state. The resulting

logic will be small and fast since the states do not need

to be encoded and decoded. However, the number of

latches is huge, and a one-hot implementation can be

a di�cult starting place for logic synthesis. Automatic

techniques for reducing the number of latches in a one-

hot implementation to produce a good tradeo� have

not been resoundingly successful.

State assignment from high-level languages is typ-

ically done by a statement-by-statement translation,

which results in a natural insertion of registers at the

delay statements in the description. This is a good

starting point for logic synthesis, but results in far

more latches than are required to implement the de-

sign [1]. Even if the number of latches is not important

for the �nal implementation, too many can drastically

reduce the e�ciency of synthesis and optimization al-

gorithms (e.g., symbolic state traversal).

After state assignment, the latch/logic tradeo�

can be explored via logic optimization. Standard

techniques, e.g., extracting common factors, func-

tion simpli�cation, and retiming, may result in some

latch/logic rearrangement, but largely the state as-

signment is �xed and optimization only improves the

implementation for the given assignment. The goal

of retiming and resynthesis [8] was to jointly optimize

latch positions and combinational logic, but the opti-

mization potential was too limited by the initial state

assignment.

Removal of redundant latches has been done ubiq-

uitously. The term �redundant latches� itself is used

ubiquitously with a variety of meanings: latches that

do not fanout to a primary output, latches that are

constant in the entire state space, latches that are

constant in the reachable state space, latches that are

equivalent to other latches, and other more sophisti-

cated de�nitions. We do not consider simple redun-



dant latch removal here (latches that do not fanout,

latches that are constant) as the results are straight-

forward. Equivalent state variable identi�cation and

removal has been done as part of several works (e.g.,

[10, 12, 9]). With current BDD and symbolic traversal

techniques, this also is a simple operation. A more ro-

bust algorithm for single latch removal was published

in [7]. It is directly relevant to our single latch removal

algorithm described in Section 3.1 and is treated more

thoroughly in that section. It is exact (precisely for

replacing a single latch with logic), and far too ex-

pensive when the number of latches exceeds the mini-

mum (log2(reachable�states)) even for small circuits.

In [9], a more general technique for re-encoding �nite

state machines was given. While some of the work

there is relevant to ours (e.g., controlling the size of the

encoding/decoding logic), the target was quite di�er-

ent. The goal of that re-encoding was to try to match

the encodings of two di�erent but similar machines in

order to speed up symbolic traversal.

1.2 Our Approach

A complete exploration of the latch/logic tradeo�

is certainly not feasible or necessary. Nonetheless, a

su�ciently rich choice of solutions should be available,

especially with the variety of implementations found

in today's technology. For example:

� one may target an implementation in hardware or

software
� a hardware implementation may be targeted to a

�nal custom design or an FPGA board for emu-

lation
� the current speci�cation may be a preliminary one

used only for veri�cation of functional properties.

In the above three cases, the optimization criteria are

quite di�erent.

We focus on e�cient exploration of the latch/logic

tradeo� for a design generated from a high-level spec-

i�cation. In particular, we begin with designs gen-

erated from Esterel descriptions. The initial encod-

ing (generated by the Esterel compiler), while a nat-

ural one with respect to the behavior of the design,

contains many redundant registers. We develop algo-

rithms for removing redundant registers. We target

the algorithms to work well on large designs, and to

remove registers as cheaply as possible (i.e., to eas-

ily discover redundant registers, to be able to easily

replace them with a minimum amount of additional

logic). We generate optimal solutions considering �nal

implementation cost and/or e�cacy of the intermedi-

ate representations.

Our key results include the following:

� Our algorithms are e�cient enough to provide

a signi�cant choice of implementations regarding

the latch/logic tradeo� for very large circuits. No

other results in this direction have been published

thus far that we are aware of.

� By applying simple (easy to compute) heuristics

for latch reduction, we get very close to the mini-

mum number of latches possible on a given reach-

able state set. In almost all our examples we ob-

tained a �nal number of latches less than or equal

to log2jRj + 1, where R is the set of reachable

states.

� Because we work incrementally from an initial im-

plementation taken from a high-level language,

and we strive to preserve the given structure, the

size of the resulting logic remains tractable even

as we approach the minimum number of latches.

� Our results for maximum latch removal, in terms

of area of the resulting logic, compare very favor-

ably to those obtained by the traditional �robust�

technique of extracting the state transition graph,

running an explicit state encoding program, and

performing logic optimization on the result: we

usually obtain a smaller implementation in much

less time. Furthermore, we observed a blow-up in

the area of the initial implementation after state

assignment (resulting in very long logic optimiza-

tion run-times) which we do not experience with

our incremental techniques. We could only make

this comparison on relatively small examples, as

the explicit state transition graph is expensive to

compute.

� Run-times for the latch removal algorithms are in-

signi�cant. The reachable state set is computed

initially, and all subsequent latch redundancies

are determined in a comparatively trivial amount

of time from this set.

2 Overview of the Technique

We apply heuristic techniques to successively re-

move redundant latches while controlling the size of

the combinational logic. A complete latch removal

technique could be implemented by extracting an ex-

plicit state transition graph, performing exact state

minimization, and running a state assignment pro-

gram to generate a minimum-latch encoding. This

is far too expensive and yields no insight to the

latch/logic tradeo�. We instead successively remove

latches using a subset of the information that is used

in the aforementioned complete scheme. (For exam-

ple, we consider reachable states, but not equivalent

states.)

2.1 The General Algorithm

The core algorithm proceeds as follows:
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Figure 1: General Circuit Transformation

1. Compute the reachable states of the machine.

2. Determine a set of latches which may be easily

removed while preserving the reachable state set.

3. Among these, choose a set of latches to remove

based on a cost estimate; remove latches, add

logic, and optimize.

4. Iterate, removing as many latches as possible, or

as many latches as desired given constraints on

the size of the combinational logic.

It is important to note that at each one-latch-removal

step, for each of our proposed algorithms, we re-encode

states by considering state pairs which can be easily

merged. This is not a general re-encoding: we pair

each reachable state with an unreachable state, and

give each pair a single new encoding. The pair/merge

operation is done in such a way that it is computation-

ally easy to determine the pairings, it is inexpensive in

BDD size and logic size to perform the mergings and

update the reachable states, and the existing logic is

preserved as much as possible as it contains valuable

information on the structure of the circuit. Thus the

computations required remain tractable for our very

large circuits, and the resulting additional combina-

tional logic (which is usually the most limiting factor

in incremental re-encoding algorithms) is controllable.

The transformation is proven to preserve behav-

ior on the reachable state set and remains correct for

every over-approximation of the reachable state set.

Therefore it could be used in conjunction with e�cient

techniques for approximate reachability analysis [3].

2.2 Circuit Transformation

The transformation is illustrated in Figure 1. The

original FSM isM and the transformed one isM 0. We

call L = flk j 1 � k � ng the set of latches of M . A

transformation will remove latches with indices in a set

I . For convenience, we keep the same indices for the

remaining latches inM 0: L0 = fl0
k
j 1 � k � n; k 62 Ig,

and we assume that L0 has m latches. The next state

vector for L in M is generated by C and called Y .

In M 0, the encoding function E has type Bn ! Bm

and it is given by a vector of functions Ek : Bn ! B,

1 � k � n; k 62 I . The decoding function D has type

Bm ! Bn and is given by a vector Dk : Bm ! B,

1 � k � n.

Let R � Bn (resp. R0 � Bm) be the set of reach-

able states inM (respM 0), and let R : Bn ! B (resp.

R0 : Bm ! B) denote the characteristic function of R

(resp. R0). Thus r 2 R implies R(r) = 1. Let r0 and

r00 denote the initial states of M and M 0.

In this context we say that M is equivalent to M 0

if r0 = D(r00) and D(E(r)) = r for all r 2 R. This is

the property our transformations will satisfy.

Functions will be represented by polynomials or

BDDs. The input variables will be consistently called

yk for E, l
0

k
for D, lk forR, and l0

k
forR0. If F denotes

a polynomial or BDD over a set of variablesX and if Y

is another set of variables where jX j = jY j, we denote

by F [Y=X ] the result of the substitution of the xk by

the yk, and F [Y =X ] the result of the substitution of

the xk by the complements yk. We respectively denote

by Fx and F�x the positive and negative cofactor of F

with respect to x.

3 Algorithms

In this section, several algorithms for latch removal

are described. In summary:

1. single-latch removal: determine which latches

can be removed individually and replaced by a

combinational function of the other latches.

2. 2-by-1 : determine pairs of latches that can be re-

moved and replaced by a single latch whose input

is a combinational function of the other latches.

3. n-by-(n-1) : replacement of n latches by n �

1 latches with a new combinational function for

each latch.

Each is speci�ed according to

� the condition under which latches are removed,

� the logical transformation required in the circuit,

i.e. the speci�cation, of D and E in Figure 1,

� a brief description of the algorithm (proofs are

omitted).The new initial state is trivially com-

puted from the encoding function E and hence

not discussed further.

3.1 Transformation single-latch

Condition: A single latch li can be replaced by a

combinational function of the others if

Rli
�R�li

= 0 (1)

This condition was originally given in [2]. Its satis-

faction implies that li does not distinguish any reach-

able states; the re-encoding will couple each reachable



state of the form l1l2 : : : li�10li+1 : : : ln with the un-

reachable state l1l2 : : : li�11li+1 : : : ln to produce the

state l01l
0

2 : : : l
0

i�1
l0
i+1

: : : l0
n
and similarly for 1=0.

In general, a subset of the latches will each satisfy

this condition. Once a single latch is removed, the re-

maining subset of removable latches may change. We

apply heuristic techniques, as described in the algo-

rithms below, to determine which latches to remove.

In [7], an exact branch-and-bound algorithm is used

to determine the maximum number of single latches

that can be removed. This algorithm is far too expen-

sive, and we have empirically observed results that

nearly match the single-latch algorithms with it.

Furthermore, we reduce the number of latches even

further with the algorithms described in the sequel.

Transformation: The latch li is removed and the

logic for functions D and E are added, where E is

de�ned by Ek(Y ) = yk for k 6= i. For D, we set

Dk(L
0) = l0

k
for k 6= i and

Di(L
0) = Rli

[L0=L] (2)

Algorithm : The pseudo-code for the algorithm

is shown in Figure 2. It greedily selects and re-

moves one latch at a time based on a cost function

related to the potential for removing other latches.

We use the branching heuristic of [7], so cost() sets

Cli
= jRj � abs(jRli

j � jR�li
j), where jRj is the on-

set size of the BDD R. The absolute value term is

highest for those latches with the most potential for

distinguishing states. By selecting the latch with the

lowest cost Cli
, we leave the latches with the high-

est potential, and thus greedily maximize the chances

of removing more latches. Furthermore, this heuris-

tic implies a minimum number of minterms that are

changed in the encoding space, which we observe to

help control the size of the overall logic. After select-

ing the latch, R is updated as though the latch had

already been removed, and the process is iterated. Af-

ter a set of latches that can be removed simultaneously

have been computed, they are removed and replaced

by combinational logic that depends only on the re-

maining latches. This algorithm computes a maximal

removable set, and hence iteration is not necessary.

We have also used a cost function based on the size

of the support of the BDD for Di. This is not a tight

measure of implementation size, but there is a correla-

tion. In this case is_removable() is modi�ed so that

a latch is removed only if the support of the BDD is

less than a given bound. Typically the algorithm is

iterated while relaxing the bound.

Note that upon removing the latch, the out-

put variable implementing the input of the latch

single-latch(M, R(L))
{

R_temp = R;
removed_list = �;

/* Find and remove latches. */
while (1) {

best_latch_cost =1;
foreach latch li {

if is_removable(R_temp, li) {
/* By condition (1) */

Cli
= cost(li, R_temp);

if (Cli
< best_latch_cost) {

best_latch_index = i;
best_latch_cost = Cli

;

}
}

}
if (best_latch_cost � 1) break;
i = best_latch_index;
R_temp  9li R_temp;
removed_list  removed_list [ li;

}
if (removed_list � �) return;

/* Compute D and modify M. */
R_new = R;
foreach li 2 removed_list {

Di = R;
foreach lj 2 removed_list, j 6= i {

Di  9ljDi;

}
Di  Dili

[L0=L]
/* By transformation (2) */
add_logic(M, Di);
remove_latch(M, li = 0);
R_new  9liR_new;

}
R R_new;

}

Figure 2: single-latch removal

is discarded, which results in simpli�cation of the

combinational logic C by sweeping. In addition,

each Dk is computed directly from the initial R by

smoothing all the other variables that will be re-

moved: if l1; l2; : : : lj are simultaneously removable,

D1 = (9l2 ; 9l3 ; � � � 9lj :Rl1
)[L0=L], and similarly for

D2; D3; � � � ; Dj . Furthermore, the operations can be

performed in any order since they commute. Alter-

nately, R could be updated as each variable is re-

moved, and the next Di computed from the updated

R. This latter technique requires less computation at

each removal, but creates functions that depend upon

variables that will be eventually removed and hence

increases the levels of logic. As we strive to control

size and depth of the logic and as computation time

is not signi�cant, we prefer the former method.

3.2 Transformation 2-by-1

Condition: Two latches li and lj can be replaced

by a single latch l0
j
if

Rlilj
�R�li

�lj
+R

li
�lj
�R�lilj

= 0 (3)

The satisfaction of this condition implies that there is

again a valid pairing of reachable states and unreach-



able states. The re-encoding will couple each reach-

able state l1l2 : : : li�10li+1 : : : lj�10lj+1 : : : ln with the

unreachable state l1l2 : : : li�11li+1 : : : lj�11lj+1 : : : ln
to produce l01l

0

2 : : : l
0

i�1
l0
i+1

: : : l0
j�1

0l0
j+1

: : : l0
n
. That is,

lilj = 00 or 11 is replaced by lj = 0 and lilj = 01 or

10 is replaced by lj = 1.

Transformation: If li and lj satisfy the above con-

dition, one can remove li and set�
Ej(Y ) = yi��yj + �yi�yj
Ek(Y ) = yk; k =2 fi; jg

(4)

8<
:

Dk(L
0) = l0k; k =2 fi; jg

Di(L
0) = (lj �Rli

�lj
+ �lj �Rlilj )[L

0=L]

Dj(L
0) = (lj �R�lilj

+ �lj �Rlilj )[L
0=L]

(5)

Algorithm: Each latch pair is examined and re-

placed by a single latch if possible. Note that in this

case, the entry yi of the removed latch li cannot be

discarded, because Ej depends on it. Therefore, there

is no subsequent logic reduction in C.

3.3 Transformation n-by-(n-1)

The n-by-(n-1) algorithm considers the entire en-

coding space when searching for a state-pair merging,

rather than restricting to merging across a plane or

a small cube (as the case for single and 2-by-1).

The algorithm has two parts. First, the encoding is

modi�ed (without removing latches) by clustering the

existing encodings toward the all-0 encoding. This is

called migrate-states. Next, the resulting encoding

is checked to see if each reachable state can be paired

with its mirror state (all variables complemented).

3.3.1 Transformation migrate-states

Condition: The condition that some encodings can

be shifted toward the origin is given by

9li s:t: Rli
�R�li

6= 0 (6)

The reachable states in li�Rli
�R�li

are re-encoded as
�li�Rli

�R�li
. Since �li�Rli

�R�li
6� R, this transformation

safely maps a state in the reachable set to an unused

encoding (in the unreachable set).

Transformation: Given li that satis�es (6), the

machine is re-encoded as follows:�
Ej(Y ) = yj ; j 6= i

Ei(Y ) = (li�Rli
�R�li

)[Y=L]
(7)

�
Dj(L

0) = l0
j
; j 6= i

Di(L
0) = l0

i
+ (Rli

�R�li
)[L0=L]

(8)

Algorithm: The encodings are moved in a greedy

fashion towards the origin in the Boolean space. The

algorithm is implemented simply by iterating over the

latches, checking the condition and performing the

transformations if possible. The motivation is that

the subsequent fold-states operation can be per-

formed if all the reachable states are Hamming dis-

tance dn
2
e � 1 of the origin1. We could choose any

point in the Boolean space around which to cluster the

encodings, but the all-0 encoding is a good choice for

Esterel circuits (and, we believe, for others generated

from high-level descriptions). The reason is that, while

the initial encodings are not one-hot, they are close to

one-hot, and �group-hot�; as such they contain many

0's. migrate-states can add an exorbitant amount of

logic, so rather than iterating to completion, we check

the fold-states condition at each iteration and stop

when it is satis�ed. The reachable states are updated

after each latch is visited as follows:

R0 = l0
i
�(Rli

�R�li
)[L0=L] + �l0

i
�(R�li

+Rli
�R�li

)[L0=L]

3.3.2 Transformation fold-states

The re-encoding is done by choosing a latch li, and

for each state encoding, if li = 1 the encoding is un-

changed, while if li = 0 the other state variables are

inverted. The latch li is then removed. For exam-

ple, if R = f000; 110; 010; 011g the condition is satis-

�ed. Choosing the �rst bit for li, the new encoding is

R0 = f11; 10; 01; 00g.
Condition: The condition under which the states

can be merged is given by

R[ �L=L]�R = 0 (9)

Transformation: The transformation removes

register li and sets

Ej(Y ) = �yi��yj + yi�yj ; j 6= i (10)�
Di(L

0) = Rli [L
0=L]

Dj(L
0) = l0j �Di + �l0j � �Di; j 6= i

(11)

Algorithm: The implementation follows directly

from (10) and (11). The reachable states are updated

as follows:

R0 = Rli
[L0=L] +R�li

[L0=L]

3.4 Comments on the Algorithms

It must be emphasized that in selecting algorithms

and heuristics, we do not focus primarily on tradi-

tional logic optimization metrics. Our goals while ex-

ploring the latch/logic tradeo� are instead to

� maintain the initial existing logic structure to the

extent possible, as it re�ects the structure given

by the high-level description,
1This is a su�cient but not necessary condition.



� use metrics that relate to the perform of our algo-

rithms and to the size of the D, E logic which we

have the most control over: we try not to overly

pessimize logic synthesis,

� leave the logic optimization to existing tools that

are specialized for this purpose.

Heuristics: The most important heuristic that

we have not described is related to don't care con-

ditions for selecting D and E. In each case, there

is actually a set of combinational functions that can

be used, not just a single one. The set arises from

the use of the unreachable states as don't care con-

ditions; we have not indicated this choice in our de-

scription of the D and E functions. For example, in

the single-latch algorithm, any function that sat-

is�es Rli
[L0=L] � Di(L

0) � (Rli
+R�li

)[L0=L] would
be correct. We experimented with di�erent choices,

and found that the functions were small enough that

this degree of �exibility was not useful at this level.

Furthermore, since it arises solely from the reachable

state set, the same information can be used instead in

subsequent logic optimization.

There are many other heuristics that can be em-

ployed for selecting a latch, for minimizing the BDDs,

for minimizing the implementation, for optimizing al-

gorithm performance, etc. We focus on �nding good

implementations and exploring a reasonable subset of

the latch/logic tradeo� given the available tools (state-

of-the-art BDD technology, logic optimization, etc.)

for the designs in our domain, rather than attempting

to implement any exact algorithms or thoroughly test

a large set of heuristics whose �nal value is di�cult to

measure. We tested a number of heuristics (especially

for selecting D and E) and our choices in function im-

plementation re�ect the results of these experiments.

Other similar algorithms: Note that the 2-by-1

is a generalization of the single latch removal algo-

rithm, which can be further generalized to replace 3
registers by 2, etc. We found that such a successive

generalization did not improve the results su�ciently

to justify its rapidly increasing cost. (Note that the

n-by-(n-1) algorithm described above is not a gener-

alization of 2-by-1).

Completeness: The single_latch algorithm is

complete in that when it is �nished, no single latch

can be removed while maintaining the same reach-

able state set on Y . Algorithm 2-by-1 is not com-

plete in that it may be possible for two latches to be

replaced by one latch with additional combinational

logic and not replaced by this algorithm . Similarly,

the n-by-(n-1) algorithm is not complete.

4 Implementation and Results
Experiments have shown that �nding a good latch

encoding before performing optimization is very im-

portant as the encoding strongly e�ects optimization.

We know that a log2 jRj encoding usually implies ex-

orbitant combinational logic, but given a particular

encoding we cannot predict what the size of the com-

binational logic will be. The same intuition applies

to the tradeo� between the number of latches and the

performance of veri�cation algorithms.

The aim of our implementation was to develop a

tool which allows us to make estimates over the start-

ing points of combinational optimization for hardware

and software designs and for veri�cation. These met-

rics imply the need for di�erent strategies.

4.1 Implementation

We implemented our program rem_latch using the

TiGeR library [4] for BDDs and reachable states, and

the Berkeley SIS environment [10] to perform com-

binational logic optimization. We used mainly two

scripts for logic optimization in SIS: a fast but less

robust one (COMBOPT), and a more expensive one

(BLIFOPT). Where actual logic cost is estimated, lit-

eral count in SIS is computed.

4.1.1 Strategy 1: Implementation

The �rst strategy is oriented to hardware and software

implementations, where we use single_latch with a

cost function based on BDD size. The transition from

BDDs to logic can be costly, and we found that BDD

support size was the best measure for controlling this

blow-up. Recall that single-latch actually reduces

the size of C, so the overall logic cost (using the post-

synthesis measure of literal count) varies very little as

the registers are removed (see Section 4.2).

During the experiments we observed that very at-

tractive con�gurations can be discovered even for cir-

cuits where large intermediate BDDs are generated. In

these cases, subsequent logic optimization successfully

reduced the implementation sizes. For this reason, we

iterate single-latch while relaxing the cost condi-

tions, continue with 2-by-1, allow a logic increase,

and optimize later.

4.1.2 Strategy 2: Veri�cation

Experiments demonstrate that reducing the number

of latches has a positive e�ect on the performance

of veri�cation techniques: the BDDs for the reach-

able states decrease in size and the combinational logic

grows slowly. The reason for this is primarily that the

number of latches has a strong e�ect on the BDD sizes



(there are two BDD variables per latch for FSM veri�-

cation). Strategy 2 uses single-latch to remove the

maximum number of latches followed by 2-by-1 iter-

ated to completion. This latter is applied alternatively

with logic optimization (BLIFOPT) to control the im-

plementation size. For the largest circuits, we used

the COMBOPT script. The logic grew more quickly

and consequently we were restricted in the number

of latches that were removed. Nonetheless, we were

able to reduce latches and improve veri�cation times

where we were not able to perform any optimization

previously.

4.1.3 Strategy 3: Exploration

The goal of the third strategy was to minimize the

number of latches to study the behavior of the algo-

rithms and properties of the �nal circuits. Interest-

ingly, we were able in almost all cases to reduce the

number of latches to log2(jRj) + 1, which gives an in-

dication of the power of our algorithms2.

4.1.4 Controlling the Encoding/Decoding

Logic

We already tailor our algorithms to �nd state pairs

that are easy to merge and re-encode, and thereby

minimally modify the reached state set. We also con-

trol BDD sizes. We implement the new logic from the

BDD generated by TiGeR. The TiGeR package cre-

ates logic from BDDs that is linear in the number of

BDDs nodes. In some cases, we use the formulas for

D and E to generate the logic gates, computing other

functions as BDDs and substituting the BDD results

into the created logic gates. This technique can in-

crease the number of levels of the circuit, so it must

be used with caution.

4.2 Results

The run-times for all algorithms are comparable to

the reachable state computation and hence are not

reported here.

The �rst set test is the ISCAS-89 sequential test

benchmarks, which we used for comparison with the

exact single latch algorithm in [7]. The results are

shown in Table 1. Only for s444 are the results of

the exact algorithm better.

The other benchmarks we used are all synthesized

by the Esterel v5 compiler. Some of them are simply

test programs, but others are large industrial designs.

tcint, renault, snecma, seq, and trappes are particularly

large and interesting examples. We have two possible

2Theoretically, n-by-(n-1) is guaranteed to reduce the num-

ber of latches to 2 � log
2
(jRj), but no further.

Circuit states reg exact single min
s208 17 8 5 5 5
s298 218 14 12 12 8
s382 8865 21 18 18 14
s400 8865 21 18 18 14
s444 8865 21 17 18 14
s526 8868 21 19 19 14
s641 1544 19 14 14 11
s713 1544 19 14 14 11

Table 1: single-latch vs exact single removal

initial rem_latch
Circuit I/O states min reg lit reg lit
abc 4/12 16 4 13 239 4 173
abcdef 7/24 128 7 25 476 8 485
ctrl 10/8 24 5 20 364 5 1025
ctrlct 10/8 211 8 23 404 9 1323
renault 23/166 257 9 66 2022 9 4253
runner 6/5 5182 13 30 362 14 972
seq 55/98 109415 17 121 1790 60 1021
snecma 23/5 10241 14 70 1705 14 1676
tcintnct 19/20 310 9 90 1036 26 328
trappes 53/154 135718 18 157 44900 20 1193
ww 8/99 41 6 35 1098 6 435

Table 2: Initial version vs Minimum-latch version

starting points. The designs generated directly from

the Esterel compiler have a manageable initial imple-

mentation in terms of encoding and logic, but far too

many redundant registers. The other case arises from

examples that initially have combinational cycles. The

causality analysis program [11] generates an acyclic

implementation directly from the BDDs and is thus

huge in terms of logic (e.g., trappes).

In Table 2, the initial circuit is compared with

the minimum-latch rem_latch result optimized with

COMBOPT. We obtained close to the minimum num-

ber of latches on most examples.

In Table 3 we report our minimum-latch/BLIFOPT

results and those obtained from a combination of

state-graph extraction, exact state minimization, state

assignment with NOVA, and logic optimization in SIS

with both the SIS rugged script and BLIFOPT. Our

results compare favorably.

In Table 4, we compare the best logic optimiza-

tion results obtained from applying BLIFOPT to the

initial circuit to the best rem_latch results obtained

with a combination of latch removal and optimization.

For all small examples, we were able to reduce the

rem_latch NOVA/SIS
Circuit reg literals reg literals states
abc 4 111 4 197 16
abcdef 8 330 7 22197 128
ctrl 5 626 5 172 23
ctrlct 10 717 5 167 23
tcintnct 26 313 8 7692 231
tra�c 5 49 5 77 18
ww 6 250 6 777 41

Table 3: rem_latch minimum-latch vs NOVA/SIS



BLIFOPT remlatch
Circuit in out reg lit reg lit
abc 4 12 13 114 4 111
abcdef 7 24 25 227 9 215
ctrl 10 8 20 142 16 135
ctrlct 10 8 18 143 14 140
renault 23 166 37 507 28 497
runner 6 5 29 198 15 198
snecma 23 5 36 491 21 407
tcint 19 20 50 241 38 237
tcintnct 19 20 47 197 38 194
ww 8 99 13 220 6 217
seq 55 98 � � 60 1021
trappes 53 154 � � 20 1193

Table 4: BLIFOPT vs best_remlatch
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Figure 3: Design evolution during latch removal

number of latches to the minimum so thorough explo-

ration was possible. Here, we tried many combinations

of latch removal and optimization, and the algorithms

and strategies discussed in Sections 3 and 4.1 re�ect

this experience. On larger �les we couldn't obtain the

minimum (due to the size of the encoding logic and

not theoretical limits of the algorithms). Instead, we

used strategies similar to those that were successful

on small examples. The number of literals is compa-

rable, despite the fact that rem_latch must add en-

coding and decoding logic. Furthermore, the number

of latches is much lower. For seq and trappes, no sig-

ni�cant logic optimization can be done without �rst

removing latches, so we present novel results on these

examples.

The graph in Figure 3a shows the general evolu-

tion of the latch-literal tradeo� during the applica-

tion of the standard strategies (all of our examples be-

haved similarly): single-latch successively removes

latches and slightly decreases logic size, a logic op-

timization step is performed (the discontinuity) and

�nally 2-by-1 removes latches at a clear expense in

logic size. The graph in Figure 3b shows the gen-

eral evolution of the CPU time for self-veri�cation as

the number of latches decreases. The best point is ob-

tained after single and 2-by-1, but without iterating

2-by-1 to completion.

5 Future Work
The �rst goal is to use the results of this work as

a pre-processor to logic optimization. This is criti-

cal since the circuits produced by causal analysis (or

BDDs) are very large and di�cult to cope with.

The next step is to exploit particular properties

that can be gleaned from high-level speci�cations and

to use this information earlier in the process, i.e., re-

move latches before computing the full reachable state

set. It is important with large designs to exploit and

preserve the given natural circuit structure.

For hardware implementations using FPGAs, we

will explore increasing the number of latches via re-

timing to improve the critical path.
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