A New Method to Express Functional Permissibilities for LUT based FPGAs and
Its Applications

Shigeru Yamashita, Hiroshi

Sawada and Akira Nagoya

NTT Communication Science Laboratories

2-2 Hikaridai, Seika-cho, Sora

ku-gun, Kyoto 619-02, JAPAN

{ger, sawada, nagoy@cslab.kecl.ntt.jp

Abstract

This paper presents a new method to express functional
permissibilities for look-up table (LUT) based field pro-
grammable gate arrays (FPGAs). The method represents
functional permissibilities by using sets of pairs of func-
tions, not by incompletely specified functions. It makes
good use of the properties of LUTs such that their internal
logics can be freely changed. The permissibilities ex-

pressed by the proposed method have the desired property

that at many points of a network they can be simultaneously
treated. Applications of the proposed method are also pre-
sented; a method to optimize networks and a method to
remove connections that are obstacles at the routing step.
Preliminary experimental results are given to show the
effectiveness of our proposed method.

1 Introduction

Because of their low cost, re-programmability and rapid
turnaround times, field programmable gate arrays (FPGAS)

have emerged as an attractive means to implement low

volume applications and prototypes[1]. FPGAs also offer
the possibility to design digital systems that can be easily
reconfigured. There are many types of commercially
available FPGASs[1]. One particularly popular type, look-

up table (LUT) based FPGAs, consist of an array of
programmable logic blocks which contain LUTs and a

programmable routing network to connect the LUTs. Each
LUT can realize any boolean function with (typically 4

or 5) inputs.

The traditional design flow for LUT based FPGAs is
as follows[1]. In the first step, a logic optimizer performs
technology independent optimization[2, 3]. Next, a tech-
nology mapper[4, 5, 6, 7, 8, 9, 10, 11] maps networks to
LUTs. Finally, placement and routing are done. Networks
are optimized in the first step using the number of literals
for the cost function expected to be realized with gate
arrays or standard cells. In the second step, most of the
technology mappers start from multi-level networks whose

nodes are represented by sum-of-product forms obtained in

the first step. Thus LUT networks obtained by the technol-
ogy mappers usually have some functional redundancies.
On the other hand, some technology mappers[7, 9, 11]
directly generate LUT networks from primary output func-
tions in terms of primary inputs represented by an ordered
binary decision diagram (or simply BDD)[12]. These
methods are not effected by intermediate sum-of-product
forms and usually generate better LUT networks than the

ICCAD '96
1063-6757/96 $5.00 O 1996 |IEEE

former technology mappers. However, they can not treat
large networks because of limited BDD power. Large
networks, therefore, must be divided and recombined to
apply these methods. In such cases, there are some func-
tional redundancies around the boundaries between divided
networks. Either way, there are some functional redun-
dancies in LUT networks after technology mapping. Such
redundancies can be expressed by incompletely specified
unctions such aSatisfiability Don’t Cares (SDCs) Ob-
servability Don’t Cares (ODCs)[13, 14] or Compatible

Sets of Permissible Functions (CSPFR]]. Thereis an at-
tempt to optimize redundant LUT networks by CSPFs[15].
Although redundant networks can be optimized very ef-
ficiently by using incompletely specified functions, such
flexibility as freely changing the internal logic of an LUT
cannot be expressed by incompletely specified functions.

In this paper, we propose a new method to express
functional permissibilities for LUT based FPGAs. The
method utilizes not incompletely specified functions, but
sets of pairs of functions. The sets are call8dts of Pairs
of Functions to be Distinguished (SPFDS) SPFDs
represent functional permissibilities utilizing properties of
LUTs such that their internal logics can be changed, and
are suitable for expressing functional permissibilities in
LUT networks. SPFDs can be calculated as efficiently
as CSPFs. Furthermore, the permissibilities expressed
by SPFDs have the desired property of being able to be
simultaneously treated at many points of a network as
CSPFs. As an application of SPFDs, a method to change
connections in LUT networks is proposed. This method
can be applied to optimize LUT networks and to remove
unroutable connections in the routing step.

This paper is organized as follows. In Section 2, we ex-
plain basic terminology and give an example of expressing
don't care sets. In Section 3, the notion of SPFDs is intro-
duced. The way to calculate SPFDs and their comparison
with CSPFs are also described in Section 3. In Section 4,
we discuss applications of SPFDs. Section 5 gives prelim-
inary experimental results and our observations. Finally,
Section 6 concludes this paper and mentions future work.

2 Preliminaries

2.1 Terminology

In this section, we provide the terminology for the rest
of this paper. We treat loop-free multi-level combinational
networks that consist of LUTs and connections between
them, and call such networks as LUT networks. The

g, &, g3 S (v
AR 0 1 xR0 1 YN0 1 YN0 1
00|01 001 00|01 00|01
01| 011 01011 01110 01110
10011 10110 10 | 111 10010
M1]1 1M[1]0 1Mm1]1 1M[1]0
f(ve) f(vs) CSPF(vi) CSPF(v2)
VN0 1 N0 1 N0 1 N0 1
00010 o0 011 00[0]1 oo [0] *
01110 01| 010 01110 o1 L]0
. 10010 10010 10010 10/ 010
Figure 1: A part of a network 11[0]0 1m[1]0 1 []* 11 [*
CSPF(vs) CSPF(g1) CSPF(g2) CSPF(gs)
AN 0 1 N0 1 X0 1 N0 1
o001 oo 01 oo L x11 oo 0]1
. . N . 01| *x10 01| 011 01| 01 * 01| 110
maximum number of inputs of an LUT is fixed (typically 10[010 10011 10110 NEIE
4 or 5). Letf(L;) (or f(c;)) be the logic function in 1m[1]* n [+ 1 [1]* 1[I+

terms of primary inputs realized at LUII; (or connection
¢;). The set of permissible functiong3] of an LUT
(or a connection) is the set of functions; we can change Figure 2: Calculation of CSPFs
the function realized at the LUT (or the connection) to
a member of the set of the functions without changing
the functionalities of the primary outputs of the network.
(;]SPF[C%] is Onhe of thesets r?f perr]pissible fur}ctionswith 3 Functional Permissibility Expression for
the property that we can change functions of many LUTs to
their CSPFs at the same time. The CSPF of an LUT (or a LUT based_ FPGAs) .)
connection) is represented with an incompletely specified 3.1 ~Sets of Pairs of Functions to be Distinguished
function whose values are 1, 0-e(meangdon’t care). The CSPF of; is represented by an incompletely spec-
ified function. This means that the alternative functions
for f(L;) must be 1 or 0 when the CSPFis 1 or 0, respec-
. . o tively. Such expression of the conditions of alternative
2.2 Expressing Functional Permissibilities by fynctions is very useful in networks where the internal
CSPFs logic of each node is fixed. In an LUT network, however,
) o the internal logic of each node can be changed; therefore,
Here, how to express functional permissibilities by another method can be used for expressing the conditions
CSPFs is explained by the following example. of alternative functions. To explain such a method, some

Figure 1 shows a part of a network. Lgtbe an output definitions are introduced here.

gate of the network angi, g, and g3 be intermediate npofinition 1 A function £ is said todistinguish a pair
functions that are expressed by the primary inptitse, of functionsg; and g if either one of the following two
andzs. g1, g» and g3 are shown in Fig. 2. Here, the 1CHOTIS g1 alltl g2 9

! ' conditions is satisfied.

functions realized at gates, v, andws are f(v1), f(v2)
and f(vs) in Fig. 2, respectively. If the bit off (v1) condition1 (f = 1 wheng; = 1) and (f = 0 when
is don't care wher(z1, 2, x3) is (1,1,1) (external don't g2 = 1).

care), the CSPF af; is expressed a<’'S PF (v1)” in Fig. N

2. If a bit of f(v;) is 1, the corresponding bit of either condition2 (f = 0 wheng; = 1) and (f = 1 when
f(v2) or f(vs) must be 1, but the other’s is don't care g2 =1).

sincew; is an OR gate. For example, whénm, x, 23) IS . .

0,0, 1)1, the bit Ofgf(vg) is 1: thergfore, tf?ghbitzof%z)z) Note that ¢ - g») must be the function that is constantly 0.

is don't care. In this way, the CSPFs of input functions For example, functiorf (in Fig. 3) distinguishes a pair
of vy are calculated a”’'SPF(vz)" and “"C'SPF(v3)” in of functions f1, and fy, (in Fig. 3) becausg = 1 when
Fig. 2. For other kinds of gates, the CSPFs of the gates’ t, "— 1 andf = 0 whenfy, = 1. f also distinguishes a
inputs are calculated by the same notion. The functional pair of functionsfs, and fa.

permissibilities expressed by CSPFs are calculated from ¢

primary outputs in the direction of primary inputs of a Definition 2 A set of pairs of functions{(fi., fu),
network. If a gate has more than two fanouts, the CSPF (f,,, f5), -, (fra» fno)} represents the conditions of
of the gate is calculated by the intersection of the fanouts’ functions such that the functions must distingufshand
CSPFs. In this example, the CSPFs of the connections f;, for each pai(f;., ;) in the set.

concerninggi, g» andgs are calculated asC'SPF(g1)”,

“CSPF(gz)" and “CSPF(g3)” in Fig. 2, respectively. For example, functiory (in Fig. 3) satisfies the con-
“CSPF(g1)", “CSPF(g2)" and “CSPF(g3)” will be ditions represented b¥(fi., fis), (f24, fov)} becausef
compared with our new expression in Section 3. distinguishesf,, andf,, andfa, and fo,.

f fia flh
x xR 0 1 xx 3 0 1 x,x,X] 0 1
oof[1]1 oo 1]1 0[0]0
01| 110 o1 | 110 01| 041
10[0]1 10010 10[0]0
1110 1 11(0]0 1[(0]0
f2a f2b
EEE NG 1 6, x.N 0 1
00/0]0 00/0]0
01(0]0 01(0]0
10[110 10[01]1
11| 1 0 11/0]0

Figure 3: Functions to be distinguished

In LUT networks, we propose using a set of pairs of
functions to represent the conditions of alternative func-
tions instead of incompletely specified functions and intro-

duce the following definition.

Definition 3 A set of pairs of functions that represents

the conditions of the alternative functions f¢(L;) (or
f(c;)) is called the Set of Pairs of Functions to be
Distinguished (SPFD}) of L; (or ¢;). If a function g
satisfies the conditions represented by an SRFDB,said
to “satisfy’ the SPFD.

An intuitive explanation of SPFDs is given as follows.
In Fig. 4, LUT L; has two inputs whose functions aje
andg», which are shown in Fig. 4. The internal logic bf
is OR; thereforef (L;) is expressed as shown in Fig. 4. If
f(L;) is used as an input of another LUT;, the role of
f(L;) is to distinguish the two function§, and f,, which
are expressed as shown in Fig. f3.and f; are the ON-set
and the OFF-set of (L,), respectively. Therefore, the

SPFD ofL; is {(f., f»)}. Only f(L;) and f(L;) satisfy
the SPFD ofL;. For examplef(L;) distinguishesf, and
f» becausef(L;) is 1 whenf, is 1 andf(L;) is O when
fais 1. If f(L;) is changed tgf (L;), we only modify the
internal logic ofL; to negate the input function from; .
g1 (in Fig. 4) can distinguisty;, and gy, (in Fig. 5)
which are the ON-set and the OFF-seygfrespectively. If
the internal logic ofL.; can be freely changed(L;) can be

the internal logic of; must be modified tdg1 +g_§). How
to modify the internal logic of an LUT is shown in Section
4.1.

g
1
g |
L
1
&4 &) S(L;)
x,xoNL0 1 xR0 1 X, x0N8 1
oo [1]1 00| 110 oo | 1]1
o1 [110 o1 [1]0 o1 LL]O
10010 w001 wl0]1
1mn[0]1 1m|0]1 nlofl1
Figure 4: An LUT in a network
fa fh gla glb
xR 0 1 x0] 0 1 xR 0 1 xR 0 1
oo LLI1 00l 010 oo LLI1 00l 010
o1 | L1901 o1 011 o L3101 o1 011
10(0111 4o 101 4o0JO) qofL}]1
1110711 11110 1110711 111110
g g !
2a 2b g2
N0 1 o0 1R 01
01} 0401 o1 [O]Lf o1|0]1
w001 10 L]0 10110
11 [(0]0 111110 1m1]1

Figure 5: Functions in SPFDs

In this example, the permissibility g6 expressed by the
SPFD is the same as that expressed by the CSPF. In more
complicated cases, however, the permissibilities expressed
by SPFDs are different from those expressed by CSPFs,

changed to distinguish functions that can be distinguished gnd this is shown in Section 3.2.

by using bothy; andg, (how to changef(L;) is shown in
Section 4.1). Thus, if the SPFD @f; and functiong, are
not changedy, must distinguishy,, andgy,; therefore, the
SPFD of the input connection concernifgs { (924, g2») }-
This is because the conditions expressed by, f)} are
the same as those expressed {§¥1., 915), (924, 92) }-
This is an intuitive way to calculate the SPFD@f The
formal way to calculate SPFDs is shown in Section 3.2.
Functiong in Fig. 5 distinguisheg,, andgz; there-
fore, g» can be replaced withy,. If g- is replaced withys,

3.2 Calculating SPFDs

3.2.1 Calculating the SPFDs of the Input Connections
of an LUT

The procedure to calculate the SPFDs of the input connec-
tions of LUT L is formally stated as follows.L hasn
input connectionsdy, - - -, ¢,,), and the functions realized
at(cy, - -,c,) are @y, -, gn), respectively. Let the SPFD

of L be{(f1, fo)}, which has already been calculated.

Below, a functionf is said to bancluded in a function
g if f - g is the function that is constantly 0. Initially, let
the SPFDs ofdy, - - -, ¢,,) be empty.

step 1 Calculate 2 logical products for all possible com-
binations of ¢4, - - -, g.), where eacly; is negated or
not (e'g'1 ﬁ “g20 g_n)v (gl “g2,c 'gn)v and so
on). Let these products bé(.o, - - -, b;1...1), Where
the index of,, is ann bits binary number that satisfies
the following condition.

e The i-th bit (from the left) ofk is O or 1,
depending on whethey; is negated or not ify.

For example, when = 3,b011 =91 - ¢2 - g3.
step 2 For allb;, calculaten; = b; - (f1 + fo).

step 3 From (ao...0, - - -, a1...1), Select all of the functions
that are included irf; and not constantly 0. Let the
set of these functions 1. From @g...0, - - -, a1...1),
select all of the functions that are includedfinand
not constantly 0. Let the set of these functiongiie

step 4 Calculate the cartesian product= F'1 x FO.

step 5 Select an element if" as(a;, a;) one by one, and
go to step 6. If there is no element to select, halt.

step 6 If the different bits ofi andyj are theky, ko, - - -, ks-
th bits (from the left), select an arbitraky from them,
add(a;, a;) to the SPFD ofy, , and go to step 5.

If the SPFD ofL has more than two elements, the above
procedure is applied for all elements in the SPFDLof
and the SPFD of; is calculated by the union of all the
calculated SPFDs far;. Although the procedure consumes
0O(2?") time for the worst case whereis the number of
inputs of an LUT (even if the calculation time of logic

functions is thought to be constant), in practice it does

not consume so much time becausés typically a small

number (4 or 5). Therefore, this procedure is very suitable
for LUT networks whose nodes have a small number of

fanins.

LU T2 W B B S
VN g

Figure 6: An LUT network

The procedure is explained using the following example.

Figure 6 shows an LUT network. LUT; has three input
connectionsey, ¢, and ¢z, and the functions realized at
c1,c2 andeg are gy, g2 andgs, respectively. gi, g2 andgs
are shown in Fig. 2. The internal logic &f is expressed
as(g1-g2-9s+91-92- g3) (shownin Fig. 6). The SPFD of
L, has already been calculated{dg:, fo)}, wheref; and

fo are the ON-set and the OFF-set 6fS PF'(v1)” shown

in Fig. 2. f; and fp are shown in Fig. 7. The internal logic

of L1 has the same functionalities as the network shown
in Fig. 1. Therefore, the conditions of this example are
the same as those of the example in Section 2.2. Here, the
SPFDs ofy, ¢, andcs are calculated as follows.

" 1 [0]o

a a
000 ‘001 %o %n
=000 e + a =00 =gog . : =g 3 .
g2+ 88,20+ 88 U+ ggg U +1)
X, 00N xR PN RN
00 00 00 00
01 01 o1 01
10 10 10 10
11 11 1 1
%00 Yol %10 a4y
R R AR DU VA R (W
X0 EIEAN ol FIERN
00 00 00 00
01 01 o1 01
10 10 10 10
11 1 1 1

Figure 7: Calculating SPFDs (1)

step 1 Calculate 2 logical products for all possible com-
binations ofg1, g» andgs, where eacly; is negated or
no; (€.9-booo = 91 - 92 - g3, b111 = g1 - g2 - g3, and so
on).

step 2 For (booo, - - -, b111), calculatea; = b; - (f1 + fo)-
(agoo, - - - ,a111) are shown in Fig. 7. This step
removes don’t care bits of the SPFD bf from b;.

step 3 Since agp; and aj1; are included inf;, let F1
be {0,001, 0,111}. Sinceaooo, ap11, @101 and aiyp are
included inf(), letFO be{aooo, ap11, @101, allo}. There
is no need to consideiy;o anda;og because they are
functions that are constantly 0.

step 4 The setF is calculated from the cartesian product
F1x FO. F1, FO andF are shown in Fig. 8.F is
a set of pairs of functions that must be distinguished
by any one of the input functions @f;. At step 5 and
step 6, the pairs itF’" are divided into the SPFDs of
the input connections af;.

step 5 For the first element i (i.e., (aoo1, @oo0)), 9o to
step 6.

step 6 The third bits 0f(001) and(000) are different from
each other, which means thaf can distinguishugo;
and agge. This is because the difference between
(91-92 - g3) and(g1 - 92 - g3) is whetherys is negated
or not. Therefore(agos, aooo) is added to the SPFD
of C3.

Fl= {”oor”m} \ F{(aml’aan)’(awl’am1)’("001’0101)’(‘1001"1110)’}

B @ o) @y 14 -5 1) SPFD(c,) SPFD(c,) SPFD(c;)
Fo:{“ooo’“ou’“lm’“lm} (IREETTRITIRIE U Gaggagyy), { Caggroagy),
oo @iia)s (axll’a|u|>} (alll‘nllo)}
(al 11’ a 000) >
Figure 8: Calculating SPFDs (2) (a, ag)
Conditions by SPFD(c,) Conditions by SPFD(c,) Conditions by SPFD(c3)
N0 1 N0 1 N0 1
o oo [BB o0 |12 oo LALlsB
For the remaining elements i, step 5 and step 6 are e o1 |- o1 (St
done in the same way. F(i111, agoo), all bits of (111) and e T =
(000) are different, which means that all ¢f, g> andgs 3 3 3
can distinguista; 11 andaooo. Therefore(as11, aogoo) can be g I 253
added to any one of the SPFDsgf ¢, or ¢3 (this selection
corresponds to the selectionigffromky, k», - - - , ks at step CSPF(c;) CSPF(c,) CSPF(cy)
6 in the above procedure). ¢f is selected in such cases, EFERN Q0 g x
the SPFDs ofy, ¢, andes are calculated as “SPFB(”", 2‘1’ oo | X l 8‘1’
“SPFD(,)” and “SPFD¢3)” in Fig. 9. For example, the T " 0 "
conditions of alternative functions fan are represented 1 * 1 * 1 [L1*
by the SPFD ot; as follows. ¥ $:
21=2 23=8 23=8
e The bits ofg; corresponding to the bits of4” and
bé dli?fe%%??rlg(r)r?zgghscﬁi?(cﬂ (in Fig. 9) must Figure 9: Comparisons of SPFDs with CSPFs
e The bits ofg; corresponding to the bits ofB” and
“B” in “Conditions by SPF D(c;)” (in Fig. 9) must '
be different from each other. « 93
X XS 0 1
Thus, the bits of either4” or * A” must be 1, but the bits of oof141
the other must be 0. There are two assignments of 1 and 0 to 01 2 2
“A”and “A”. In the same way, there are two assignments i(l’ 1

of 1 and 0 to ‘B” and “B”. There are two assignments of
1 and 0 to %" in “Conditions by SPFD(c1)” in Fig. 9. Fi 10: An al ive function f
Therefore, the number of functions that satisfy the SPFD igure 10: An alterative Tunction fof

of ¢; is 8. The CSPF o¢; is shown as € SPF(c1)” in

Fig. 9 (It is the same asC'SPF(g1)" in Fig. 2). The

number of functions that satisfy'S PF'(¢;)” is 2 because .)

the CSPF has one don’t care bit. In this example, we can ¢ When fi1 and f2; are both included irf(L;), and fio
find more alternative functions fay; using SPFDs than and f,q are both included irf (L;).

using CSPFs. Comparisons of the SPFDs and the CSPFs

of ¢1, ¢ andcs are shown in Fig. 9. In this example, the e when f1; and f»; are both included irf (L;), and f1o
internal logic of L; is not redundant. If the internal logic and fo0 are both included irf (L;).

of an LUT is redundant, the difference between SPFDs and

CSPFs becomes larger. Note that f11, fio, f21 and foo are always included in
either f(L;) or f(L;). By this filtering, the number of
3.2.2 Calculating the SPFD of an LUT elements in SPFDs becomes smaller, which contributes

toward reducing the calculation time.

The SPFD of LUTL; is obtained by the union of all the ot
SPFDs of the output connectionsbf. For example, if_; 4 Ap_pllcatlons of .SPFDS o

has two fanouts; andc,, and the SPFDs af, andc, are In this section, we discuss about applications of SPFDs.
{(f11, f10)} and{(f21, f20)} respectively, the SPFD df; SPFDs at many points of a network can be simultaneously
is calculated a$§f11, £10), (fo1, f20)} uniess(f1z, f10) and treated as CSPFs. Therefore, SPFDs can be used in the
(fo1, f20) are the same. There are some cases where thesame way as CSPFs. _ _

number of elements in the SPFD bf obtained by such 4.1 Changing Connections Using SPFDs

a calculation becomes too large. In such cases, the SPFD In LUT networks, we can exchange connectigmwith

of L; can be filtered to have less elements. For example, the output ofL;, if f(L,) satisfies the SPFD af.

the SPFD ofL; in the above example can be filtered to be In the example mentioned in Section 3.2.1, the con-
{(fi1+ f21, f10+ f20)} in the following cases (we can also ditions represented by the SPFD @f are expressed as

do the same type of filtering in other cases). “Conditions by SPF D(c3)” in Fig. 9. g5 shown in Fig.

10 satisfies the conditions because the bitgyjptorre-

sponding to the bits of A” and “A” in “Conditions by
SPFD(c3)” are 0 and 1, and the bits gf corresponding

to the bits of ‘B” and “B” are 1 and 0. Therefore, if
LUT L, realizes functiorys, cz can be replaced with the
output ofL If CSPFs are usedy can not be replaced
becausey does not satisfyC'SPF'(g3)” in Fig. 2. When

c3 is replaced with the output of;, f(L1) is changed
and does not satisfy the SPFD bf anymore. Therefore,
the internal logic ofZ.; must be modified as follows so
that f(L,) still satisfies the SPFD of;. ObservingF'l
and F'0 obtained at step 3 in the example of calculating
the SPFDs of input connections @f; in Section 3.2.1

(F1 = {aoo1, a111}, F'0 = {aooo, ao11, a101, a110}), WE can
see thatf (L;) must satisfy the following two conditions.

condition1 f(L;) = 1 whenagey = 1, andf(L1) =0
when @ooo = 1, ag11 = 1, a101 = 1 andayyo = 1).

condition 2 f(L;) = 1 whenaj; = 1, andf(L1) =0
when @ooo = 1, ao11 = 1, a101 = 1 andaio = 1).

The internal logic ofL; must be modified so that(L;)
satisfies the above two conditiong = 1 whenago: = 1,

andgz = 0 when 011 = 1 andaiio = 1). g5 = 1 when
agor = 1, andg_’g = 0 when @OOO = 1 andaio = 1)
Therefore, the functiorg; - g5) satisfies condition 1. In
the same way, the functidi, - g» - g3) satisfies condition

2. Therefore, the functiofy: - g2- g3+ 92 g5 gh) satisfies the
above two condltlons which is the mod|f|ed internal logic
of L.

The procedure to modify the internal logic of LU
is formally stated as follows.L hasn input connections
whose functions areg(,---,g,). Note that ¢1,- -, g,)
may be changed by replacing connections. E&tandF'0
be the sets obtained at step 3 of the procedure to calculat
the SPFDs of input connections bimentioned in Section
3.2.1). The modified internal logic is calculated as a sum-
of-product form, and the i-th productis Initially, let all
l; be the function that is constantly 1.

step 1 Select the i-th element iA'1 asa;, and go to step
2. If there is no element to select, halt.

step 2 Select an element iA'0 asa; one by one, and go
to step 3. If there is no element to select, go to step 1.

step 3 From (g1, - - -, g»), Select the function that distin-
guishesz; anda; asg;, and go to step 4.

step 4 If g, is 1 whena; is 1, modifyl; to (I; - g

i /)) If Gk
is 0 whena; is 1, modifyl; to (I;

J%). go to step 2.

Finally, the modified logic is obtained & +15, - - -
wherem is the number of elements ifil.

The output functions of the LUTs that are the transitive
fanouts ofL.; may also change. The internal logics of such
LUTs must be changed in the same way.

4.2 Optimization Using SPFDs

The following procedure optimizes an LUT network
using SPFDs.

,Flm),

step 1 Calculate the SPFDs of all LUTs and connections
in the network.

step 2 Select a connection asone by one, and go to step
3. If there is no connection to select, halt.

step 3 If the SPFD ofc; is empty, remove; and go to step
5. Otherwise, go to step 4.

step 4 If ¢; can be replaced with the output bf, replace
it and go to step 5. Otherwise, go to step 2.

step 5 If the logic functions of some LUTs are changed
owing to removing or replacing; with the output of
L;, change the internal logics of such LUTs properly
(by the method mentioned in Section 4.1). Go to step
2.

The order to select; in step 2 and the order to select
L; in step 4 are based on heuristics. For example, if the
0pt|m|zed networks should have lower levels, the LUT
whose number of levels is the smallest is selecteﬂ as
step 4. If the optimized networks should have less LUTs,
the output of the LUT that has one fanout is selected first
asc; in step 2. This is because if the output of the LUT
that has one fanout is replaced with another LUT’s output,
the LUT can be immediately removed.

4.3 Removal of Unroutable Connections Using
SPFDs

Because of limited routing resources in FPGAS, auto-
matic routing may fail in a congested area, even though
routing resources are available in a non-congested area. In
such a case, the design is usually modified manually and
the routing is tried again. We propose removing unroutable
connections or replacing them with other connections by
using our method mentioned in Section 4.1, and routing
cgain automatically. This approach raises the possibility
of successful automatic routing.

5 Experimental Results

We have implemented the methods presented here and
performed preliminary experiments on MCNC[16] bench-
mark circuits. BDD was used for representing functions,
and the maximum number of usable BDD nodes was lim-
ited to 1,000,000. Therefore, some large circuits, e.g.,
C3540, C7552, C2670, etc., could not be treated.

In the expenments a 5- input LUT architecture was
assumed. The SISA(System for Sequential Circuit
Synthesisof UC Berkeley) technology mapper commands
were used to generate initial networks, i.e., eliminate 2, gkx
-ac, simplify -d, xLpart.coll -m -g 2, xLcoll_ck, xI_partition
-m, simplify, xl_imp, xI_partition -t, xL.cover -e 30 -u 200,
xl_coll_ck -k. These commands are recommended by the
SIS package document.

Two preliminary experiments were done on the initial
networks to check the effectiveness of the proposed ap-
plications of SPFDs. One was to optimize networks and
the other was to count the number of connections that
could be removed or replaced with other connections. In
this section, “LUT”, “conn” and “lev’ mean the number

of LUTs, the number of connections and the number of
network levels.

Table 1: Results of the optimization methods

Circuits Initial Area Level

LUT conn| lev | LUT conn| lev CPU | LUT conn| lev CPU
C1908| 103 429 | 13 98 389 | 13 48.54 98 393 | 11| 32.95
C432 66 275 | 17 63 257 | 16 12.25 63 257 | 16| 10.03
alu2 | 109 482 | 19 97 378 | 17 1.75 97 378 | 17 1.45
alud | 208 862 | 24| 192 723 | 26 21.23| 198 745 | 22 5.5
apex6| 194 894 | 10| 181 803 | 10 5.23| 181 803 | 10 4.72
apex7 73 292 6 67 247 | 11 1.19 68 255 6 0.78
cordic 17 76 8 12 52 8 0.17 12 52 8 0.17
dalu| 331| 1393| 16| 286| 1115| 10 15.79| 287 | 1125 9 10.97
des| 1118 | 4663| 11| 1104 | 4407| 22| 3585.08| 1111 | 4508 | 11 | 681.79
example2| 105 451 5 100 396 8 414 | 101 415 5 2.04
frg2 | 339 | 1307 8| 278| 1019 9 22.08| 278 | 1039 8| 15.21
i9 138 679 5 137 675 5 6.88 | 137 675 5 4.75
k2 536 | 2325 9| 528 | 2144 | 13| 156.04| 533 | 2267 9 19.66
lal 36 142 4 30 102 8 0.46 31 121 3 0.17
rot | 192 753 | 14| 187 707 | 13 502.3| 187 707 | 13| 409.9
t481| 404 | 1738| 21| 379| 1505| 21 13.75| 379| 1505| 21| 11.75
terml 69 303 7 45 186 6 0.68 45 186 6 0.68
toolarge| 188 882 | 12| 179 805 | 12 36.65| 179 805| 12| 36.65
ttt2 53 237 4 46 189 5 0.28 47 196 4 0.36
vda| 246 | 1043 8 239 941 | 25| 280.19| 246 992 8 3.42
x1| 111 455 6 96 383 7 24 99 393 6 3.19
X2 13 56 3 12 48 3 0.04 12 48 3 0.04
x3 205 938 6 189 825 6 7.47| 189 830 5 3.43
x4 140 598 4 110 441 4 1.2 | 110 441 4 1.2
total | 4994 | 21273 | 240 | 4655 | 18737 | 278 | 4723.79| 4688 | 19136 | 222 | 1260.8

ratio | 1.00 1.00| 1.0| 0.93 0.88| 1.1 0.94 0.90| 09

5.1 Results of the Optimization Methods in implementing the program). Therefore, we expect that

We did an experiment to check the effectiveness of the better results can be obtained if the method is applied many
optimization method proposed in Section 4.2. Table 1 times and no filter is used.
shows the results of this experiment. In Table 1, “CPU”
shows the CPU run-time (sec.) on a SPARC station 20.
For the procedure mentioned in Section 4.2, two kinds of
heuristics were tried. In one, the output of the LUT having
one fanout was selected first @sin step 2; the objective
was to reduce “LUT". In the other, the LUT whose number
of levels was the smallest was selected.asn step 4; the
objective was to reduce “lev”. The results are shown in the

5.2 Possibility of Removing a Connection

We did another preliminary experiment to check the
effectiveness of the method proposed in Section 4.3. In
the experiment, the number of connections that could

columns “Area” and “Level” in the table, respectively. The 2€ removed or replaced with other connections (called
row “total” shows the total numbers of “LUT". “conn” changeable connections”) was counted. The column

“Area” and “Level” to “Initial”. Comparing the columns connections in a network, and the column “Ratio” in Table
“Area” and “Level”, we can observe the following. The 2 Shows the ratio(%) of changeable connections to all
method “Area” increases “lev’ in some cases, while the connections in the network.“ The"mean value of the ratios
method “Level” does not increase “lev”. In addition, the Was 73.8%. The column “CPU" in Table 2 shows the

method “Level” consumes less CPU time than the method CPU run-time (s.ec.% on a SPARC station 20 to check
“Area’. all connections in the network. From this experiment,

he imol q hod. th Lo hod Ve could observe that most of the connections could be
In the implemented method, the optimization method emgyed or replaced with other connections by our method.

was applied only once and all of the SPFDs of LUTs We plan tointegrate our method into routing tools and check
were filtered to have one element (because of simplicity the effectiveness of our method in the routing step.

Table 2: The number of changeable connections

Circuits Initial Num. | Ratio CPU
LUT | conn| lev

C1908| 103 | 429| 13 357 | 83.2 32.7

C432 66 | 275 17 245 | 89.1 8.79

alu2| 109 | 482| 19 464 | 96.2 1.18

alu4| 208| 862 | 24 831 | 96.4 3.46

apex6| 194 | 894 | 10 447 | 50.0 4.08

apex7 73| 292 6 159 | 54.4 0.15

cordic 17 76 8 69 | 90.7 0.05

dalu| 331| 1393| 16| 1335| 95.8 7.8

des| 1118 | 4663 | 11| 3780 | 81.1| 422.32

example2| 105| 451| 5 171] 37.9 1.31

frg2 | 339 1307| 8 883 | 67.5| 11.89

i9| 138 679| 5 364 | 53.6 3.43

k2 | 536|2325| 9| 2184| 93.9| 13.17

lal 36| 142| 4 77| 54.2 0.06

rot | 192 | 753 | 14 380 | 50.4| 334.48

t481 | 404 | 1738| 21| 1735| 99.8| 10.56

terml 69| 303| 7 268 | 88.4 0.17

toolarge| 188 | 882 | 12 868 | 98.4| 32.01

ttt2 53| 237| 4 148 | 62.4 0.1

vda| 246 | 1043| 8 917 | 87.9 2.35

x1| 111| 455| 6 345 | 75.8 2.48

X2 13 56 3 30| 53.5 0.02

x3 | 205| 938| 6 497 | 52.9 1.97

x4 | 140| 598 | 4 342 | 57.1 0.4

6 Conclusion and Future Work
We have presented a new method to express functional
permissibilities for LUT based FPGAs. The method uti- [11]
lizes “sets of pairs of functions” that are call&PFDs

The SPFD of an LUT (or a connection) is a set of pairs

of functions that must belistinguished by the function

realized at the LUT (or the connection). SPFDs make good
use of properties of LUTs such that their internal logics can
be changed. We have also proposed applications of SPFD

(4]

(5]

(6]

(7]

(8]

Networks Based on Permissible Function$EEE
Trans. Computersvol. 38, pp. 1404-1424, Oct. 1989.

R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Improved Logic Syn-
thesis Algorithms for Table Look Up Architectures,”
in International Conference on CApp. 564-567,
Nov. 1991.

R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf:
Fast Technology Mapping for Lookup Table-Based
FPGAs,” in28th ACM/IEEE Design Automation Con-
ference pp. 227-233, June 1991.

K. Karplus, “Xmap: a Technology Mapper for Table-
lookup Field-Programmable Gate Arrays,” #&8th
ACM/IEEE Design Automation Conferengp. 240—
243, June 1991.

M. Tsai, T. Hwang, and Y. Lin, “Technology Mapping
for Field Programmable Gate Arrays Using Binary
Decision Diagram,” inProc. of the Synthesis and
Simulation Meeting and International Interchange
pp. 84-92, 1992.

S. Chang and M. Marek-Sadowska, “Technology
Mapping via Transformations of Function Graphs,”
in International Conference on Computer Design
pp. 159-162, Oct. 1992.

[9] T. Sasao, “FPGA design by generalized functional

[10]

121

and presented preliminary experimental results to show the
effectiveness of SPFDs. SPFDs used in large networks
could not be calculated because of limited BDD power. [13]

Therefore, we plan to treat larger networks by methods
such as network division. We also plan to integrate the
method of removing connections into routing tools and

check the effectiveness of SPFDs in the routing step.

References

[1] S.D.Brown, R.J. Francis, J. Rose, and Z. G. Vranesic,

FIELD-PROGRAMMABLE GATE ARRAYKluwer

Academic Publishers, 1992.
[2] R.K.Brayton, R. Rudell, A. Sangiovanni-Vincentelli,

and A. R. Wang, “MIS: A Multiple-Level Logic
Optimization System,lEEE Trans. Computer-Aided
Design vol. CAD-6, pp. 1062-1081, Nov. 1987.

[3] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N.
Culliney, “The Transduction Method-Design of Logic

[14]

[15]

[16]

decomposition,” inLogic Synthesis and Optimiza-
tion (T. Sasao, ed.), pp. 233-258, Kluwer Academic
Publishers, 1993.

J. Cong and Y. Ding, “FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization
in Lookup-Table Based FPGA DesignEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systemsol. 13, pp. 1-11, Jan. 1994.

H. Sawada, T. Suyama, and A. Nagoya, “Logic Syn-
thesis for Look-up Table Based FPGAs Using Func-
tional Decomposition and Support Minimization,” in
International Conference on CAPp. 353-358, Nov.
1995.

R. E. Bryant, “Graph-based algorithm for Boolean
function manipulation,” IEEE Trans. Computers
vol. C-35, pp. 667-691, Aug. 1986.

K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M.
Jacoby, and C. R. Wang, “Multi-level Logic Mini-
mization Using Implict Don’t Cares,” ilternational
Conference on CADpp. 723-740, June 1988.

H. Savoj and R. K. Brayton, “The Use of Observ-
ability and External Don’t Cares for Simplification of
Multi-Level Networks,” in 27th ACM/IEEE Design
Automation Conferen¢g@p. 297-301, June 1990.

S. Yamashita, Y. Kambayashi, and S. Muroga, “Opti-
mization Methods for Lookup-Table-Based FPGAs
Using Transduction Method,” iPASP-DAC '95
pp. 353-356, Aug. 1995.

S. Yang, Logic synthesis and optimization bench-
marks user guide version 3.MCNC, Jan. 1991.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

