
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

A New Method to Express Functional Permissibilities for LUT based FPGAs and
Its Applications

Shigeru Yamashita, Hiroshi Sawada and Akira Nagoya
NTT Communication Science Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN
fger, sawada, nagoyag@cslab.kecl.ntt.jp

Abstract
This paper presents a new method to express functional

permissibilities for look-up table (LUT) based field pro-
grammable gate arrays (FPGAs). The method represents
functional permissibilities by using sets of pairs of func-
tions, not by incompletely specified functions. It makes
good use of the properties of LUTs such that their internal
logics can be freely changed. The permissibilities ex-
pressed by the proposed method have the desired property
that at many points of a network they can be simultaneously
treated. Applications of the proposed method are also pre-
sented; a method to optimize networks and a method to
remove connections that are obstacles at the routing step.
Preliminary experimental results are given to show the
effectiveness of our proposed method.

1 Introduction
Because of their low cost, re-programmability and rapid

turnaround times, field programmable gate arrays (FPGAs)
have emerged as an attractive means to implement low
volume applications and prototypes[1]. FPGAs also offer
the possibility to design digital systems that can be easily
reconfigured. There are many types of commercially
available FPGAs[1]. One particularly popular type, look-
up table (LUT) based FPGAs, consist of an array of
programmable logic blocks which contain LUTs and a
programmable routing network to connect the LUTs. Each
LUT can realize any boolean function withm (typically 4
or 5) inputs.

The traditional design flow for LUT based FPGAs is
as follows[1]. In the first step, a logic optimizer performs
technology independent optimization[2, 3]. Next, a tech-
nology mapper[4, 5, 6, 7, 8, 9, 10, 11] maps networks to
LUTs. Finally, placement and routing are done. Networks
are optimized in the first step using the number of literals
for the cost function expected to be realized with gate
arrays or standard cells. In the second step, most of the
technology mappers start from multi-level networks whose
nodes are represented by sum-of-product forms obtained in
the first step. Thus LUT networks obtained by the technol-
ogy mappers usually have some functional redundancies.
On the other hand, some technology mappers[7, 9, 11]
directly generate LUT networks from primary output func-
tions in terms of primary inputs represented by an ordered
binary decision diagram (or simply BDD)[12]. These
methods are not effected by intermediate sum-of-product
forms and usually generate better LUT networks than the

former technology mappers. However, they can not treat
large networks because of limited BDD power. Large
networks, therefore, must be divided and recombined to
apply these methods. In such cases, there are some func-
tional redundancies around the boundaries between divided
networks. Either way, there are some functional redun-
dancies in LUT networks after technology mapping. Such
redundancies can be expressed by incompletely specified
functions such asSatisfiability Don’t Cares (SDCs), Ob-
servability Don’t Cares (ODCs)[13, 14] orCompatible
Sets of Permissible Functions (CSPFs)[3]. There is an at-
tempt to optimize redundant LUT networks by CSPFs[15].
Although redundant networks can be optimized very ef-
ficiently by using incompletely specified functions, such
flexibility as freely changing the internal logic of an LUT
cannot be expressed by incompletely specified functions.

In this paper, we propose a new method to express
functional permissibilities for LUT based FPGAs. The
method utilizes not incompletely specified functions, but
sets of pairs of functions. The sets are called “Sets of Pairs
of Functions to be Distinguished (SPFDs)”. SPFDs
represent functional permissibilities utilizing properties of
LUTs such that their internal logics can be changed, and
are suitable for expressing functional permissibilities in
LUT networks. SPFDs can be calculated as efficiently
as CSPFs. Furthermore, the permissibilities expressed
by SPFDs have the desired property of being able to be
simultaneously treated at many points of a network as
CSPFs. As an application of SPFDs, a method to change
connections in LUT networks is proposed. This method
can be applied to optimize LUT networks and to remove
unroutable connections in the routing step.

This paper is organized as follows. In Section 2, we ex-
plain basic terminology and give an example of expressing
don’t care sets. In Section 3, the notion of SPFDs is intro-
duced. The way to calculate SPFDs and their comparison
with CSPFs are also described in Section 3. In Section 4,
we discuss applications of SPFDs. Section 5 gives prelim-
inary experimental results and our observations. Finally,
Section 6 concludes this paper and mentions future work.

2 Preliminaries
2.1 Terminology

In this section, we provide the terminology for the rest
of this paper. We treat loop-free multi-level combinational
networks that consist of LUTs and connections between
them, and call such networks as LUT networks. The

g
3

g
2 v

1

v
3

v
2

g
1

Figure 1: A part of a network

maximum number of inputs of an LUT is fixed (typically
4 or 5). Let f(Li) (or f(cj)) be the logic function in
terms of primary inputs realized at LUTLi (or connection
cj). The set of permissible functions[3] of an LUT
(or a connection) is the set of functions; we can change
the function realized at the LUT (or the connection) to
a member of the set of the functions without changing
the functionalities of the primary outputs of the network.
CSPF[3] is one of thesets of permissible functionswith
the property that we can change functions of many LUTs to
their CSPFs at the same time. The CSPF of an LUT (or a
connection) is represented with an incompletely specified
function whose values are 1, 0 or� (meansdon’t care).

2.2 Expressing Functional Permissibilities by
CSPFs

Here, how to express functional permissibilities by
CSPFs is explained by the following example.

Figure 1 shows a part of a network. Letv1 be an output
gate of the network andg1, g2 and g3 be intermediate
functions that are expressed by the primary inputsx1, x2
andx3. g1, g2 and g3 are shown in Fig. 2. Here, the
functions realized at gatesv1, v2 andv3 aref(v1), f(v2)
and f(v3) in Fig. 2, respectively. If the bit off(v1)
is don’t care when(x1; x2; x3) is (1;1; 1) (external don’t
care), the CSPF ofv1 is expressed as “CSPF (v1)” in Fig.
2. If a bit of f(v1) is 1, the corresponding bit of either
f(v2) or f(v3) must be 1, but the other’s is don’t care
sincev1 is an OR gate. For example, when(x1; x2; x3) is
(0;0; 1), the bit of f(v3) is 1; therefore, the bit off(v2)
is don’t care. In this way, the CSPFs of input functions
of v1 are calculated as “CSPF (v2)” and “CSPF (v3)” in
Fig. 2. For other kinds of gates, the CSPFs of the gates’
inputs are calculated by the same notion. The functional
permissibilities expressed by CSPFs are calculated from
primary outputs in the direction of primary inputs of a
network. If a gate has more than two fanouts, the CSPF
of the gate is calculated by the intersection of the fanouts’
CSPFs. In this example, the CSPFs of the connections
concerningg1, g2 andg3 are calculated as “CSPF (g1)”,
“CSPF (g2)” and “CSPF (g3)” in Fig. 2, respectively.
“CSPF (g1)”, “CSPF (g2)” and “CSPF (g3)” will be
compared with our new expression in Section 3.

I Y� ��

[
�

�

�

�

�

�

�

�

�

[[
� �

��

��

��

� �

��

[
�

I Y� ��

�

�

�

�

�

�

�

�

[[
� �

��

��

��

� �

��

I Y� ��

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

J
�

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

J
�

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

J
�

[[
� �

�

�

�

�

�

�

�

�

[
�

��

��

��

� �

��

&63) J� ��

�

�

£

�

�

�

£

£

[[
� �

[
�

��

��

��

� �

��

&63) J� ��

[[
� �

£

�

�

�

�

£

�

£

[
�

��

��

��

� �

��

�

�

�

�

�

�

�

£

[[
� �

[
�

��

��

��

� �

��

&63) J� ��&63) Y� ��

�

£

�

�

�

�

�

£

[[
� �

[
�

��

��

��

� �

��

&63) Y� ��

�

�

£

£

�

�

£

[[
� �

[
�

��

��

��

� �

��

�

&63) Y� ��

�

�

�

�

�

�

£

[[
� �

[
�

��

��

��

� �

��

�

Figure 2: Calculation of CSPFs

3 Functional Permissibility Expression for
LUT based FPGAs

3.1 Sets of Pairs of Functions to be Distinguished
The CSPF ofLi is represented by an incompletely spec-

ified function. This means that the alternative functions
for f(Li) must be 1 or 0 when the CSPF is 1 or 0, respec-
tively. Such expression of the conditions of alternative
functions is very useful in networks where the internal
logic of each node is fixed. In an LUT network, however,
the internal logic of each node can be changed; therefore,
another method can be used for expressing the conditions
of alternative functions. To explain such a method, some
definitions are introduced here.

Definition 1 A function f is said todistinguish a pair
of functionsg1 andg2 if either one of the following two
conditions is satisfied.

condition 1 (f = 1 when g1 = 1) and (f = 0 when
g2 = 1).

condition 2 (f = 0 when g1 = 1) and (f = 1 when
g2 = 1).

Note that (g1 � g2) must be the function that is constantly 0.

For example, functionf (in Fig. 3) distinguishes a pair
of functionsf1a andf1b (in Fig. 3) becausef = 1 when
f1a = 1, andf = 0 whenf1b = 1. f also distinguishes a
pair of functionsf2a andf2b.

Definition 2 A set of pairs of functionsf(f1a; f1b);
(f2a; f2b); � � � ; (fna; fnb)g represents the conditions of
functions such that the functions must distinguishfia and
fib for each pair(fia; fib) in the set.

For example, functionf (in Fig. 3) satisfies the con-
ditions represented byf(f1a; f1b); (f2a; f2b)g becausef
distinguishesf1a andf1b, andf2a andf2b.

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

I

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

I
E�

I
D�

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

I
E�

I
D�

Figure 3: Functions to be distinguished

In LUT networks, we propose using a set of pairs of
functions to represent the conditions of alternative func-
tions instead of incompletely specified functions and intro-
duce the following definition.

Definition 3 A set of pairs of functions that represents
the conditions of the alternative functions forf(Li) (or
f(cj)) is called the “Set of Pairs of Functions to be
Distinguished (SPFD)” of Li (or cj). If a function g
satisfies the conditions represented by an SPFD,g is said
to “satisfy” the SPFD.

An intuitive explanation of SPFDs is given as follows.
In Fig. 4, LUTLi has two inputs whose functions areg1
andg2, which are shown in Fig. 4. The internal logic ofLi

is OR; therefore,f(Li) is expressed as shown in Fig. 4. If
f(Li) is used as an input of another LUTLj , the role of
f(Li) is to distinguish the two functionsfa andfb, which
are expressed as shown in Fig. 5.fa andfb are the ON-set
and the OFF-set off(Li), respectively. Therefore, the
SPFD ofLi is f(fa; fb)g. Only f(Li) andf(Li) satisfy
the SPFD ofLi. For example,f(Li) distinguishesfa and
fb becausef(Li) is 1 whenfb is 1 andf(Li) is 0 when
fa is 1. If f(Li) is changed tof(Li), we only modify the
internal logic ofLj to negate the input function fromLi.

g1 (in Fig. 4) can distinguishg1a andg1b (in Fig. 5)
which are the ON-set and the OFF-set ofg1, respectively. If
the internal logic ofLi can be freely changed,f(Li) can be
changed to distinguish functions that can be distinguished
by using bothg1 andg2 (how to changef(Li) is shown in
Section 4.1). Thus, if the SPFD ofLi and functiong1 are
not changed,g2 must distinguishg2a andg2b; therefore, the
SPFD of the input connection concerningg2 isf(g2a; g2b)g.
This is because the conditions expressed byf(fa; fb)g are
the same as those expressed byf(g1a; g1b); (g2a; g2b)g.
This is an intuitive way to calculate the SPFD ofg2. The
formal way to calculate SPFDs is shown in Section 3.2.

Functiong0

2 in Fig. 5 distinguishesg2a andg2b; there-
fore,g2 can be replaced withg0

2. If g2 is replaced withg0

2,

the internal logic ofLi must be modified to(g1+g0

2). How
to modify the internal logic of an LUT is shown in Section
4.1.

J
�

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

J
�

[[
� �

�

�

�

�

�

�

�

�

[
�

��

��

��

� �

��

[
�

�

�

�

�

�

�

�

�

[[
� �

��

��

��

� �

��

I���/L��

J
�

J
�

/
L

I���/L��

/
M

Figure 4: An LUT in a network

[
�

�
�
�
�

�
�
�
�

[[
� �

��

��

��

� �

��

[
�

�
�
�
�

�
�
�
�

[[
� �

��

��

��

� �

��

[
�

�
�
�
�

�
�
�
�

[[
� �

��

��

��

� �

��

[
�

�
�
�
�

�
�
�
�

[[
� �

��

��

��

� �

��

J
D�

I
E

I
D

J
E�

[
�

�
�
�
�

�
�
�
�

[[
� �

��

��

��

� �

��

[[
� �

[
�

�
�
�
�

�
�
�
�

��

��

��

� �

��

[[
� �

�
�
�
�

�
�
�
�

[
�

��

��

��

� �

��

J
D�

J
E�

J

�

Figure 5: Functions in SPFDs

In this example, the permissibility ofg2 expressed by the
SPFD is the same as that expressed by the CSPF. In more
complicated cases, however, the permissibilities expressed
by SPFDs are different from those expressed by CSPFs,
and this is shown in Section 3.2.

3.2 Calculating SPFDs
3.2.1 Calculating the SPFDs of the Input Connections

of an LUT

The procedure to calculate the SPFDs of the input connec-
tions of LUT L is formally stated as follows.L hasn
input connections (c1; � � � ; cn), and the functions realized
at (c1; � � � ; cn) are (g1; � � � ; gn), respectively. Let the SPFD
of L bef(f1; f0)g, which has already been calculated.

Below, a functionf is said to beincluded in a function
g if f � g is the function that is constantly 0. Initially, let
the SPFDs of (c1; � � � ; cn) be empty.

step 1 Calculate 2n logical products for all possible com-
binations of (g1; � � � ; gn), where eachgi is negated or
not (e.g., (g1 � g2�; � � � ; �gn), (g1 � g2�; � � � ; �gn), and so
on). Let these products be (b0���0; � � � ; b1���1), where
the index ofbk is ann bits binary number that satisfies
the following condition.

� The i-th bit (from the left) ofk is 0 or 1,
depending on whethergi is negated or not inbk.

For example, whenn = 3, b011 = g1 � g2 � g3.

step 2 For all bi, calculateai = bi � (f1 + f0).

step 3 From (a0���0; � � � ; a1���1), select all of the functions
that are included inf1 and not constantly 0. Let the
set of these functions beF1. From (a0���0; � � � ; a1���1),
select all of the functions that are included inf0 and
not constantly 0. Let the set of these functions beF0.

step 4 Calculate the cartesian productF = F1� F0.

step 5 Select an element inF as(ai; aj) one by one, and
go to step 6. If there is no element to select, halt.

step 6 If the different bits ofi andj are thek1; k2; � � � ; ks-
th bits (from the left), select an arbitrarykt from them,
add(ai; aj) to the SPFD ofckt , and go to step 5.

If the SPFD ofL has more than two elements, the above
procedure is applied for all elements in the SPFD ofL,
and the SPFD ofci is calculated by the union of all the
calculated SPFDs forci. Although the procedure consumes
O(22n) time for the worst case wheren is the number of
inputs of an LUT (even if the calculation time of logic
functions is thought to be constant), in practice it does
not consume so much time becausen is typically a small
number (4 or 5). Therefore, this procedure is very suitable
for LUT networks whose nodes have a small number of
fanins.

J
�

J
�

J
�

/ �

J
�

J
�

J
�

/ �

&
�

&
�

&
�

Figure 6: An LUT network

The procedure is explained using the following example.
Figure 6 shows an LUT network. LUTL1 has three input
connectionsc1; c2 and c3, and the functions realized at
c1; c2 andc3 areg1; g2 andg3, respectively.g1; g2 andg3
are shown in Fig. 2. The internal logic ofL1 is expressed
as(g1 � g2 �g3+ g1 � g2 � g3) (shown in Fig. 6). The SPFD of
L1 has already been calculated asf(f1; f0)g, wheref1 and

f0 are the ON-set and the OFF-set of “CSPF (v1)” shown
in Fig. 2. f1 andf0 are shown in Fig. 7. The internal logic
of L1 has the same functionalities as the network shown
in Fig. 1. Therefore, the conditions of this example are
the same as those of the example in Section 2.2. Here, the
SPFDs ofc1; c2 andc3 are calculated as follows.

F

S

Z

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

D

J J J I I

���

� � � � �
 x �� �

D

J J J I I

���

� � � � �
 x �� �

D

JJ J I I

���

� � � � �
 x �� �

D

JJJ I I

���

� � � � �
 x �� �

[[
� �

�

�

�

�

�

�

�

�

[
�

��

��

��

� �

��

D

JJ J I I

���

� � � � �
 x �� �

D

J J J I I

���

� � � � �
 x �� �

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

D

JJ J I I

���

� � � � �
 x �� �

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

D

JJ J I I

���

� � � � �
 x �� �

�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

I�

�

�

�

�

�

�

�

[[
� �

[
�

��

��

��

� �

��

�

I�

�

�

�

�

�

�

�

[[
� �

��

��

��

� �

��

�

[
�

Figure 7: Calculating SPFDs (1)

step 1 Calculate 23 logical products for all possible com-
binations ofg1; g2 andg3, where eachgi is negated or
not (e.g.,b000 = g1 � g2 � g3, b111 = g1 � g2 � g3, and so
on).

step 2 For (b000; � � � ; b111), calculateai = bi � (f1 + f0).
(a000; � � � ; a111) are shown in Fig. 7. This step
removes don’t care bits of the SPFD ofL1 from bi.

step 3 Since a001 and a111 are included inf1, let F1
be fa001; a111g. Sincea000, a011, a101 and a110 are
included inf0, letF0 befa000; a011; a101; a110g. There
is no need to considera010 anda100 because they are
functions that are constantly 0.

step 4 The setF is calculated from the cartesian product
F1� F0. F1, F0 andF are shown in Fig. 8.F is
a set of pairs of functions that must be distinguished
by any one of the input functions ofL1. At step 5 and
step 6, the pairs inF are divided into the SPFDs of
the input connections ofL1.

step 5 For the first element inF (i.e., (a001; a000)), go to
step 6.

step 6 The third bits of(001) and(000) are different from
each other, which means thatg3 can distinguisha001
and a000. This is because the difference between
(g1 � g2 � g3) and(g1 � g2 � g3) is whetherg3 is negated
or not. Therefore,(a001; a000) is added to the SPFD
of c3.

^ `) D D D D�
��� ��� ��� ���

 � � �

^ `) D D�
��� ���

 �
)

D D D D D D D D

D D D D D D D D

­
®
°

°̄

½
¾
°

¿°

� � ��� � ��� � ��� � ��

� � ��� � ��� � ��� � �

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

Figure 8: Calculating SPFDs (2)

For the remaining elements inF , step 5 and step 6 are
done in the same way. For(a111; a000), all bits of(111) and
(000) are different, which means that all ofg1, g2 andg3
can distinguisha111anda000. Therefore,(a111; a000) can be
added to any one of the SPFDs ofc1, c2 or c3 (this selection
corresponds to the selection ofki fromk1; k2; � � � ; ks at step
6 in the above procedure). Ifc1 is selected in such cases,
the SPFDs ofc1, c2 andc3 are calculated as “SPFD(c1)”,
“SPFD(c2)” and “SPFD(c3)” in Fig. 9. For example, the
conditions of alternative functions forg1 are represented
by the SPFD ofc1 as follows.

� The bits ofg1 corresponding to the bits of “A” and
“A” in “Conditions bySPFD(c1)” (in Fig. 9) must
be different from each other.

� The bits ofg1 corresponding to the bits of “B” and
“B” in “Conditions bySPFD(c1)” (in Fig. 9) must
be different from each other.

Thus, the bits of either “A” or “A” must be 1, but the bits of
the other must be 0. There are two assignments of 1 and 0 to
“A” and “A”. In the same way, there are two assignments
of 1 and 0 to “B” and “B”. There are two assignments of
1 and 0 to “�” in “Conditions bySPFD(c1)” in Fig. 9.
Therefore, the number of functions that satisfy the SPFD
of c1 is 8. The CSPF ofc1 is shown as “CSPF (c1)” in
Fig. 9 (It is the same as “CSPF (g1)” in Fig. 2). The
number of functions that satisfy “CSPF (c1)” is 2 because
the CSPF has one don’t care bit. In this example, we can
find more alternative functions forg1 using SPFDs than
using CSPFs. Comparisons of the SPFDs and the CSPFs
of c1, c2 andc3 are shown in Fig. 9. In this example, the
internal logic ofL1 is not redundant. If the internal logic
of an LUT is redundant, the difference between SPFDs and
CSPFs becomes larger.

3.2.2 Calculating the SPFD of an LUT

The SPFD of LUTLi is obtained by the union of all the
SPFDs of the output connections ofLi. For example, ifLi

has two fanoutsc1 andc2, and the SPFDs ofc1 andc2 are
f(f11; f10)g andf(f21; f20)g respectively, the SPFD ofLi

is calculated asf(f11; f10); (f21; f20)g unless(f11; f10) and
(f21; f20) are the same. There are some cases where the
number of elements in the SPFD ofLi obtained by such
a calculation becomes too large. In such cases, the SPFD
of Li can be filtered to have less elements. For example,
the SPFD ofLi in the above example can be filtered to be
f(f11+ f21; f10+ f20)g in the following cases (we can also
do the same type of filtering in other cases).

�

�

�

�

�

�

�

£

[[
� �

[
�

��

��

��

� �

��

[[
� �

[
�

��

��

��

� �

��

[[
� �

[
�

��

��

��

� �

��

[[
� �

[
�

��

��

��

� �

��

�

�

£

�

�

�

£

£

[[
� �

[
�

��

��

��

� �

��

[[
� �

£

�

�

�

�

£

�

£

[
�

��

��

��

� �

��

&63)�F
�
�E &63)�F

�
�E&63)�F

�
�E

�� ��

��� ��

��� �� �� ���

�� �� ��� ��

�&RQGLWLRQV�E\�63)'�F
�
�E �&RQGLWLRQV�E\�63)'�F

�
�E �&RQGLWLRQV�E\�63)'�F

�
�E

^

�63)'�F��E

� � �D D
� � � � � �

� � �D D
� � � � � �

� � �D D
� � � � � �

� � �D D
� � � � � �

`

�

�

�

�63)'�F��E

� � �D D
� � � � � �

� � �D D
� � � � � �

`

^ �

�63)'�F��E

� � �D D
� � � � � �

� � �D D
� � � � � �

^

`

�

$$

%

%

£

$

%

%

£$

$

%

£

%

£

%

%$

£

%

£

£

$

%

Figure 9: Comparisons of SPFDs with CSPFs

g'
3

0
1
1

1
0
1
1

x x1 2

00

01

10

0 1

11

1

x 3

Figure 10: An alterative function forg3

� whenf11 andf21 are both included inf(Li), andf10

andf20 are both included inf(Li).

� whenf11 andf21 are both included inf(Li), andf10
andf20 are both included inf(Li).

Note thatf11, f10, f21 and f20 are always included in
either f(Li) or f(Li). By this filtering, the number of
elements in SPFDs becomes smaller, which contributes
toward reducing the calculation time.

4 Applications of SPFDs
In this section, we discuss about applications of SPFDs.

SPFDs at many points of a network can be simultaneously
treated as CSPFs. Therefore, SPFDs can be used in the
same way as CSPFs.
4.1 Changing Connections Using SPFDs

In LUT networks, we can exchange connectionci with
the output ofLj , if f(Lj) satisfies the SPFD ofci.

In the example mentioned in Section 3.2.1, the con-
ditions represented by the SPFD ofc3 are expressed as
“Conditions bySPFD(c3)” in Fig. 9. g0

3 shown in Fig.

10 satisfies the conditions because the bits ofg0

3 corre-
sponding to the bits of “A” and “A” in “Conditions by
SPFD(c3)” are 0 and 1, and the bits ofg0

3 corresponding
to the bits of “B” and “B” are 1 and 0. Therefore, if
LUT Lj realizes functiong0

3, c3 can be replaced with the
output ofLj . If CSPFs are used,c3 can not be replaced
becauseg0

3 does not satisfy “CSPF (g3)” in Fig. 2. When
c3 is replaced with the output ofLj , f(L1) is changed
and does not satisfy the SPFD ofL1 anymore. Therefore,
the internal logic ofL1 must be modified as follows so
that f(L1) still satisfies the SPFD ofL1. ObservingF1
andF0 obtained at step 3 in the example of calculating
the SPFDs of input connections ofL1 in Section 3.2.1
(F1 = fa001; a111g, F0 = fa000; a011; a101; a110g), we can
see thatf(L1) must satisfy the following two conditions.

condition 1 f(L1) = 1 whena001 = 1, andf(L1) = 0
when (a000 = 1,a011 = 1,a101 = 1 anda110 = 1).

condition 2 f(L1) = 1 whena111 = 1, andf(L1) = 0
when (a000 = 1,a011 = 1,a101 = 1 anda110 = 1).

The internal logic ofL1 must be modified so thatf(L1)
satisfies the above two conditions.g2 = 1 whena001 = 1,
andg2 = 0 when (a011 = 1 anda110 = 1). g0

3 = 1 when
a001 = 1, andg0

3 = 0 when (a000 = 1 and a101 = 1).
Therefore, the function(g2 � g

0

3) satisfies condition 1. In
the same way, the function(g1 � g2 � g

0

3) satisfies condition
2. Therefore, the function(g1 � g2 � g

0

3+ g2 � g
0

3) satisfies the
above two conditions, which is the modified internal logic
of L1.

The procedure to modify the internal logic of LUTL
is formally stated as follows.L hasn input connections
whose functions are (g1; � � � ; gn). Note that (g1; � � � ; gn)
may be changed by replacing connections. LetF1 andF0
be the sets obtained at step 3 of the procedure to calculate
the SPFDs of input connections ofL (mentioned in Section
3.2.1). The modified internal logic is calculated as a sum-
of-product form, and the i-th product isli. Initially, let all
li be the function that is constantly 1.

step 1 Select the i-th element inF1 asai, and go to step
2. If there is no element to select, halt.

step 2 Select an element inF0 asaj one by one, and go
to step 3. If there is no element to select, go to step 1.

step 3 From (g1; � � � ; gn), select the function that distin-
guishesai andaj asgk, and go to step 4.

step 4 If gk is 1 whenai is 1, modifyli to (li � gk). If gk
is 0 whenai is 1, modifyli to (li � gk). go to step 2.

Finally, the modified logic is obtained as(l1+l2; � � � ;+lm),
wherem is the number of elements inF1.

The output functions of the LUTs that are the transitive
fanouts ofL1 may also change. The internal logics of such
LUTs must be changed in the same way.

4.2 Optimization Using SPFDs
The following procedure optimizes an LUT network

using SPFDs.

step 1 Calculate the SPFDs of all LUTs and connections
in the network.

step 2 Select a connection asci one by one, and go to step
3. If there is no connection to select, halt.

step 3 If the SPFD ofci is empty, removeci and go to step
5. Otherwise, go to step 4.

step 4 If ci can be replaced with the output ofLj, replace
it and go to step 5. Otherwise, go to step 2.

step 5 If the logic functions of some LUTs are changed
owing to removing or replacingci with the output of
Lj , change the internal logics of such LUTs properly
(by the method mentioned in Section 4.1). Go to step
2.

The order to selectci in step 2 and the order to select
Lj in step 4 are based on heuristics. For example, if the
optimized networks should have lower levels, the LUT
whose number of levels is the smallest is selected asLj in
step 4. If the optimized networks should have less LUTs,
the output of the LUT that has one fanout is selected first
asci in step 2. This is because if the output of the LUT
that has one fanout is replaced with another LUT’s output,
the LUT can be immediately removed.

4.3 Removal of Unroutable Connections Using
SPFDs

Because of limited routing resources in FPGAs, auto-
matic routing may fail in a congested area, even though
routing resources are available in a non-congested area. In
such a case, the design is usually modified manually and
the routing is tried again. We propose removing unroutable
connections or replacing them with other connections by
using our method mentioned in Section 4.1, and routing
again automatically. This approach raises the possibility
of successful automatic routing.

5 Experimental Results
We have implemented the methods presented here and

performed preliminary experiments on MCNC[16] bench-
mark circuits. BDD was used for representing functions,
and the maximum number of usable BDD nodes was lim-
ited to 1,000,000. Therefore, some large circuits, e.g.,
C3540, C7552, C2670, etc., could not be treated.

In the experiments, a 5-input LUT architecture was
assumed. The SIS (A System for Sequential Circuit
Synthesisof UC Berkeley) technology mapper commands
were used to generate initial networks, i.e., eliminate 2, gkx
-ac, simplify -d, xl part coll -m -g 2, xl coll ck, xl partition
-m, simplify, xl imp, xl partition -t, xl cover -e 30 -u 200,
xl coll ck -k. These commands are recommended by the
SIS package document.

Two preliminary experiments were done on the initial
networks to check the effectiveness of the proposed ap-
plications of SPFDs. One was to optimize networks and
the other was to count the number of connections that
could be removed or replaced with other connections. In
this section, “LUT”, “conn” and “lev” mean the number
of LUTs, the number of connections and the number of
network levels.

Table 1: Results of the optimization methods

Circuits Initial Area Level
LUT conn lev LUT conn lev CPU LUT conn lev CPU

C1908 103 429 13 98 389 13 48.54 98 393 11 32.95
C432 66 275 17 63 257 16 12.25 63 257 16 10.03
alu2 109 482 19 97 378 17 1.75 97 378 17 1.45
alu4 208 862 24 192 723 26 21.23 198 745 22 5.5

apex6 194 894 10 181 803 10 5.23 181 803 10 4.72
apex7 73 292 6 67 247 11 1.19 68 255 6 0.78
cordic 17 76 8 12 52 8 0.17 12 52 8 0.17

dalu 331 1393 16 286 1115 10 15.79 287 1125 9 10.97
des 1118 4663 11 1104 4407 22 3585.08 1111 4508 11 681.79

example2 105 451 5 100 396 8 4.14 101 415 5 2.04
frg2 339 1307 8 278 1019 9 22.08 278 1039 8 15.21

i9 138 679 5 137 675 5 6.88 137 675 5 4.75
k2 536 2325 9 528 2144 13 156.04 533 2267 9 19.66
lal 36 142 4 30 102 8 0.46 31 121 3 0.17
rot 192 753 14 187 707 13 502.3 187 707 13 409.9

t481 404 1738 21 379 1505 21 13.75 379 1505 21 11.75
term1 69 303 7 45 186 6 0.68 45 186 6 0.68

too large 188 882 12 179 805 12 36.65 179 805 12 36.65
ttt2 53 237 4 46 189 5 0.28 47 196 4 0.36
vda 246 1043 8 239 941 25 280.19 246 992 8 3.42
x1 111 455 6 96 383 7 2.4 99 393 6 3.19
x2 13 56 3 12 48 3 0.04 12 48 3 0.04
x3 205 938 6 189 825 6 7.47 189 830 5 3.43
x4 140 598 4 110 441 4 1.2 110 441 4 1.2

total 4994 21273 240 4655 18737 278 4723.79 4688 19136 222 1260.8
ratio 1.00 1.00 1.0 0.93 0.88 1.1 0.94 0.90 0.9

5.1 Results of the Optimization Methods
We did an experiment to check the effectiveness of the

optimization method proposed in Section 4.2. Table 1
shows the results of this experiment. In Table 1, “CPU”
shows the CPU run-time (sec.) on a SPARC station 20.
For the procedure mentioned in Section 4.2, two kinds of
heuristics were tried. In one, the output of the LUT having
one fanout was selected first asci in step 2; the objective
was to reduce “LUT”. In the other, the LUT whose number
of levels was the smallest was selected asLj in step 4; the
objective was to reduce “lev”. The results are shown in the
columns “Area” and “Level” in the table, respectively. The
row “total” shows the total numbers of “LUT”, “conn”,
“lev” and “CPU”. The row “ratio” shows the ratios of both
“Area” and “Level” to “Initial”. Comparing the columns
“Area” and “Level”, we can observe the following. The
method “Area” increases “lev” in some cases, while the
method “Level” does not increase “lev”. In addition, the
method “Level” consumes less CPU time than the method
“Area”.

In the implemented method, the optimization method
was applied only once and all of the SPFDs of LUTs
were filtered to have one element (because of simplicity

in implementing the program). Therefore, we expect that
better results can be obtained if the method is applied many
times and no filter is used.

5.2 Possibility of Removing a Connection

We did another preliminary experiment to check the
effectiveness of the method proposed in Section 4.3. In
the experiment, the number of connections that could
be removed or replaced with other connections (called
“changeable connections”) was counted. The column
“Num.” in Table 2 shows the number of changeable
connections in a network, and the column “Ratio” in Table
2 shows the ratio(%) of changeable connections to all
connections in the network. The mean value of the ratios
was 73.8%. The column “CPU” in Table 2 shows the
CPU run-time (sec.) on a SPARC station 20 to check
all connections in the network. From this experiment,
we could observe that most of the connections could be
removed or replaced with other connections by our method.
We plan to integrate our method into routing tools and check
the effectiveness of our method in the routing step.

Table 2: The number of changeable connections

Circuits Initial Num. Ratio CPU
LUT conn lev

C1908 103 429 13 357 83.2 32.7
C432 66 275 17 245 89.1 8.79
alu2 109 482 19 464 96.2 1.18
alu4 208 862 24 831 96.4 3.46

apex6 194 894 10 447 50.0 4.08
apex7 73 292 6 159 54.4 0.15
cordic 17 76 8 69 90.7 0.05

dalu 331 1393 16 1335 95.8 7.8
des 1118 4663 11 3780 81.1 422.32

example2 105 451 5 171 37.9 1.31
frg2 339 1307 8 883 67.5 11.89

i9 138 679 5 364 53.6 3.43
k2 536 2325 9 2184 93.9 13.17
lal 36 142 4 77 54.2 0.06
rot 192 753 14 380 50.4 334.48

t481 404 1738 21 1735 99.8 10.56
term1 69 303 7 268 88.4 0.17

too large 188 882 12 868 98.4 32.01
ttt2 53 237 4 148 62.4 0.1
vda 246 1043 8 917 87.9 2.35
x1 111 455 6 345 75.8 2.48
x2 13 56 3 30 53.5 0.02
x3 205 938 6 497 52.9 1.97
x4 140 598 4 342 57.1 0.4

6 Conclusion and Future Work
We have presented a new method to express functional

permissibilities for LUT based FPGAs. The method uti-
lizes “sets of pairs of functions” that are calledSPFDs.
The SPFD of an LUT (or a connection) is a set of pairs
of functions that must bedistinguished by the function
realized at the LUT (or the connection). SPFDs make good
use of properties of LUTs such that their internal logics can
be changed. We have also proposed applications of SPFDs
and presented preliminary experimental results to show the
effectiveness of SPFDs. SPFDs used in large networks
could not be calculated because of limited BDD power.
Therefore, we plan to treat larger networks by methods
such as network division. We also plan to integrate the
method of removing connections into routing tools and
check the effectiveness of SPFDs in the routing step.

References
[1] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic,

FIELD-PROGRAMMABLE GATE ARRAYS. Kluwer
Academic Publishers, 1992.

[2] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,
and A. R. Wang, “MIS: A Multiple-Level Logic
Optimization System,”IEEE Trans. Computer-Aided
Design, vol. CAD-6, pp. 1062–1081, Nov. 1987.

[3] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N.
Culliney, “The Transduction Method-Design of Logic

Networks Based on Permissible Functions,”IEEE
Trans. Computers, vol. 38, pp. 1404–1424, Oct. 1989.

[4] R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Improved Logic Syn-
thesis Algorithms for Table Look Up Architectures,”
in International Conference on CAD, pp. 564–567,
Nov. 1991.

[5] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf:
Fast Technology Mapping for Lookup Table-Based
FPGAs,” in28th ACM/IEEE Design Automation Con-
ference, pp. 227–233, June 1991.

[6] K. Karplus, “Xmap: a Technology Mapper for Table-
lookup Field-Programmable Gate Arrays,” in28th
ACM/IEEE Design Automation Conference, pp. 240–
243, June 1991.

[7] M. Tsai, T. Hwang, and Y. Lin, “Technology Mapping
for Field Programmable Gate Arrays Using Binary
Decision Diagram,” inProc. of the Synthesis and
Simulation Meeting and International Interchange,
pp. 84–92, 1992.

[8] S. Chang and M. Marek-Sadowska, “Technology
Mapping via Transformations of Function Graphs,”
in International Conference on Computer Design,
pp. 159–162, Oct. 1992.

[9] T. Sasao, “FPGA design by generalized functional
decomposition,” inLogic Synthesis and Optimiza-
tion (T. Sasao, ed.), pp. 233–258, Kluwer Academic
Publishers, 1993.

[10] J. Cong and Y. Ding, “FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization
in Lookup-Table Based FPGA Design,”IEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 13, pp. 1–11, Jan. 1994.

[11] H. Sawada, T. Suyama, and A. Nagoya, “Logic Syn-
thesis for Look-up Table Based FPGAs Using Func-
tional Decomposition and Support Minimization,” in
International Conference on CAD, pp. 353–358, Nov.
1995.

[12] R. E. Bryant, “Graph-based algorithm for Boolean
function manipulation,” IEEE Trans. Computers,
vol. C-35, pp. 667–691, Aug. 1986.

[13] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M.
Jacoby, and C. R. Wang, “Multi-level Logic Mini-
mization Using Implict Don’t Cares,” inInternational
Conference on CAD, pp. 723–740, June 1988.

[14] H. Savoj and R. K. Brayton, “The Use of Observ-
ability and External Don’t Cares for Simplification of
Multi-Level Networks,” in 27th ACM/IEEE Design
Automation Conference, pp. 297–301, June 1990.

[15] S. Yamashita, Y. Kambayashi, and S. Muroga, “Opti-
mization Methods for Lookup-Table-Based FPGAs
Using Transduction Method,” inASP-DAC ’95,
pp. 353–356, Aug. 1995.

[16] S. Yang, Logic synthesis and optimization bench-
marks user guide version 3.0. MCNC, Jan. 1991.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

