
ric. Instead we propose a technique based on static-analy-
sis of the model that allows us to focus on the control-state
interactions that affect the datapath, and remove from the
state-graph any variables which can be tested indepen-
dently. This reduces the number of transition edges that
need to be covered while maintaining the quality of the
metric. With fewer transition edges and fewer state-vari-
ables to consider, we can highlight the important interac-
tions without the cluttering effects of the independent
state-variables. In our experience, this yields much better
feedback for the designers.

These independent state-variables arise in many large
designs because only a subset of all the variables directly
control the datapath actions. It is the cross-product of these
variables that need to be exercised to test interactions in
the datapath. So long as we have found all sequences of
such cross-products, we do not need to further consider the
independent state-variables, which can then be tested by
themselves. We generalize this observation, in Section 2,
by defining the concept of acontrol event, which identifies
the cross-products which are of interest. We then show
how a graph of control events can be generated from a full
state-graph and used for coverage analysis, with examples
of practical application from the Stanford FLASH project
[4], described in Section 3.

The drawback with this technique, as with all tech-
niques that use state-space exploration, is thestate-explo-
sion problem. However, after analyzing the examples from
FLASH, we have developed some techniques that allow us
to obtain useful feedback despite large state-spaces. One
technique performs an analysis of the RTL to find portions
of the state-graph that can be pruned. This is possible in
situations where the RTL is structured so that some of the
state-variables can bedon’t care values. A second tech-
nique is to analyze an over-approximation of the state-
space. These are both described in Section 4.

2  Control Events as a Coverage Metric

Ideally, we would like to make the identification of
interesting behaviors in a design automatic. This is possi-
ble since the RTL-model of the design encapsulates the
detailed description of its functionality. We can extract this
information by translating the RTL to cooperating finite-
state-machines (FSM) and finding the global state-graph.

Validation Coverage Analysis for Complex Digital Designs*

Richard C. Ho and Mark A. Horowitz

Computer Systems Laboratory,
Stanford University,
Stanford, CA 94305.

Abstract

The functional validation of a state-of-the-art
digital design is usually performed by simulation of a reg-
ister-transfer-level model. The degree to which the test-
vector suite covers the important tests is known as the cov-
erage of the suite. Previous coverage metrics have relied
on measures such as the number of simulated cycles or
number of toggles on a circuit node, which are indirect
metrics at best. This paper proposes a new method of ana-
lyzing coverage based on projecting a minimized control
finite-state graph onto control signals for the datapath
part of the design to yield a meaningful metric and provide
detailed feedback about missing tests. The largest hurdle
is state-space explosion. We describe two methods of deal-
ing with this in a practical manner and give results of
applying this coverage analysis to parts of the node con-
troller of the Stanford FLASH multiprocessor.

1  Introduction

Functional verification of a circuit is usually done by
simulation of a register-transfer-level (RTL) model. The
test vectors used can be generated by a variety of means
including pseudo-random generators [1], constraint-solv-
ers [2] or hand-written by designers. No matter how the
test vectors were generated, it is important that they cause
the RTL-model to be exercised in “interesting ways” that
will hopefully expose bugs that may be present in the
design. In general, this means generating vectors that test
corner-cases, simultaneous events and rare control paths,
which is a difficult task.

A coverage metric is often used to check that the test-
vector suite does an adequate job of exercising the model.
There are many ways to calculate coverage; one of the
more complete measures is to use state-transition coverage
of the control logic [3]. This gives a good picture of how
many of the possible interactions in the control logic have
actually been tested. However, we have found that many
of the tests that are required by this metric turn out to be
equivalent and result in an over-pessimistic coverage met-

* This work was supported by ARPA contract DABT63-94-C-0054 and
Rockwell Semiconductor.
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This global state-graph containsall the possible behaviors
of the design.

In practice, except for the simplest of designs, con-
verting an entire circuit to FSM representation is infeasi-
ble. Instead, we focus on the control logic since many of
the hard bugs are the result of multiple control-logic
events, as shown in [5]. We can extract the FSMs associ-
ated with just the control sections and model the remain-
ing parts of the design and the external environmentnon-
deterministically. In the context of finding the global state-
graph, non-determinism (ND) means trying all possible
input sequences in all cycles. The ND-environment pro-
vides the most generality, it captures all possible behaviors
of the FSM model. If a test-vector suite manages to exer-
cise all interactions of the FSM model under the full ND-
environment, we can assume good coverage of the inter-
esting behaviors. Unfortunately, sometimes the ND-envi-
ronment is too general and leads to control behaviors that
are not possible in the design. When this situation arises,
extra constraints need to be placed on the environment.

2.1  Defining Control Events
Since thefull control state graph of a design is a com-

prehensive representation of its control behaviors, the
straight-forward definition of coverage based on control
transition coverageas defined in [3] provides a good start-
ing point. This coverage metric presupposes that every
transition of the control state graph must be tested to
achieve full test coverage. There are two parts; a state cov-
erage metric (SCM) and a transition coverage metric
(TCM):

The SCM and TCM measures give numbers that rep-
resent how much of the total control state space has been

SCM
Number of States Visited
Total Reachable States

-----------------------------------------------------------=

TCM
Number of Transitions Taken
Total Reachable Transitions
----------------------------------------------------------------------=

tested. If both these metrics are 1, then we can be quite
sure that every important test has been tried in the test-
vector suite. However, our experience in using coverage
metrics is that it is often difficult to reach an SCM or TCM
of 1 except for the simplest of circuits. One reason is that
in many designs, not all control transitions that appear in
the full control state-graph need to be exercised to fully
test functionality. A typical example is shown in
Figure 2.1.

In this example, there are three variables, two of
which control the datapath (Var1 andVar2), with the third
read only by the FSM representingVar2. If we take the full
control state-graph, we have 8 states and 16 edges that
need to be exercised in tests. However, some of these
edges represent redundant tests. For example, the edge

is equivalent to  from a testing
viewpoint since the datapath observes the same sets of
commands from both edges.Var3 can be ignored since its
contribution to the behavior of the design has been made
explicit by the state-space exploration that composed the
individual FSMs. It does not directly control the datapath,
so it is sufficient to exercise the edge . This sim-
ply says that one or the other of those edges need to be
tested, but not necessarily both. By applying this principle
to the entire state-graph, we obtain the reduced graph
shown in the lower right of Figure 2.1. This graph contains
just 4 states and 5 edges that need to be exercised. We can
generalize this observation by redefining the coverage
metric in terms of possiblecontrol events.

Definition:

A control event is a unique set of control variable val-
ues when projected onto the set of variables observed by
the datapath.

In other words, a control event represents a particular
set of commands to the datapath. Intuitively, this gives a
better measure of an interesting event than a simple cross-

Figure 2.1. Example of State Graph Redundancy

Var 1 Var 2 Var 3

1

2

3

A

B

C D

X

Y

1AX 1AY

2BX 2BY

3CX 3CY 3DX 3DY

1A

2B

3C 3D

C D X Y

(Latches Input)

Full Graph

Graph with
Vars that control

datapathVar 1 & Var2 control Datapath

derived
from

full graph

2BX 3CX→ 2BX 3CY→

2B 3C→



product of all control-state variables since it takes into
account which variables actually control the datapath
actions and focuses our attention on the control-datapath
interface.

2.2  Control Event Graph
A graph of control events can be created by projecting

the full control state-graph onto the set of datapath-visible
variables. A datapath-visible variable is one which
directly, or through some combinational logic, controls the
datapath. This graph represents all possible sequences of
control events as given by the RTL description.

More formally, we can define a projection function
proj (proj: ), whereS is the finite set of states
with each state composed of individual state variables
v0...vn from a setV of state variables;ρ is the finite set of
sets of those state variables, ( ) andSp is the
set of finite states, each composed only of state variables
in π, ( ). The functionproj takes its two arguments,

, , and returns a statesp which is composed of
only the state variables inπ, such that if , then the
value ofvi in sp is equal to the value ofvi in s. Informally,
proj extracts the state variables in the setπ from s to create
sp. With the projection function, we can formally describe
the control-event graph as a projection from the full con-
trol state-graph.

We can now cast the SCM and TCM metrics in terms
of the control-event graph Ge to obtain a measure of cov-
erage based on how the control logic interacts with the
datapath:

The assumption made by control events is that the
datapath does not hold any control state, so that only the
sequencing of datapath commands matter, not their timing
and duration.

3  Application to the Stanford FLASH Node
Controller

This work used as a driving example, and was per-
formed as part of, the Stanford FLASH (FLexible Archi-
tecture for SHared Memory) multiprocessor project.
FLASH is a scalable shared-memory multiprocessor with
up to 4k processing nodes. Each node contains a processor
(MIPS R10000), a portion of the global memory and a
flexible memory controller, called MAGIC (Memory And
General Interconnect Controller). MAGIC contains an
embedded RISC-processor core, some interfaces that man-
age and queue requests from several sources, an internal

S ρ× Sp→

π ρ∈ π, V⊆

π ρ∈
s S∈ π ρ∈

vi π∈

SCM
e

Num. Control Events Visited
Total Reachable Control Events
-----------------------------------------------------------------------------=

TCM
e

Number of Transitions in Ge Taken
Total Reachable Transitions in Ge
-------------------------------------------------------------------------------------=

scheduler and a DRAM controller. A block diagram of the
functional units of MAGIC is shown in Figure 3.1.

Self-checking diagnostics were used as the main vali-
dation technique. This was supplemented with some auto-
matic test generation [5] for the Protocol Processor, for
which an instruction set simulator provided the correct-
ness check.

3.1  Coverage Analysis Toolset
To check the coverage of the validation tests, a cover-

age analysis toolset was implemented. This toolset con-
sists of three steps: first, a translator that reads structural
Verilog and produces an FSM description; second, a state-
exploration program that creates a global state-graph; and
finally, a coverage analysis program that implements con-
trol-event graph extraction and coverage marking. The
three stages are illustrated in Figure 3.2.

The translator extracts the pertinent control-logic
FSMs with the help of some user-supplied annotations in
the Verilog. The annotations are comment-embedded
directives that highlight some of the important state-vari-
ables in the control-logic. The translator then applies a
transitive set-of-support algorithm to capture the logic
which those state-variables depend on. The process stops
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at the module boundary of the control-logic, based on the
assumption that the design has already been partitioned
into control and datapath sections for synthesis. The trans-
lator also performs the structural analysis of the Verilog
description to find which variables directly, or through
combinational logic, control the datapath and which are
independent. This information is saved to file and used by
the coverage program in the third step.

The FSM description language is a descendant of
Murϕ [6] called MPP (Murϕ ++). The accompanying
MPP verifier takes the FSM description of the system and
finds all its reachable states from reset. It produces a glo-
bal state-graph and hash-table of states.

The third step in the toolset takes the global state-
graph and the set of independent variables to produce the
control-event graph. It then reads state-dumps from tests
run in simulation on the RTL. These state transitions are
marked on the control-event graph and the individual
state-variables, giving the coverage metric. Detailed feed-
back is given to the designer in the form of transition
edges not exercised.

4  Coping with State Explosion

Any method that utilizes a state-space exploration
needs to deal with the state-space explosion problem. Our
experience has been that this can strike rapidly with even
small changes in a design. We found that the design
increased in complexity as it underwent timing tweaks:
logic was moved around a fair amount to improve critical
paths, some functions became pre-computed with a select,
and some moved into other units. In general, interfaces
became less clean and more state was introduced.

Although there is no universal solution to state-explo-
sion, we have developed some techniques that help allevi-
ate or postpone its onset so that some useful information
can still be obtained even if the full state-space is too large
to manipulate.

4.1  Graph Pruning using Don’t Cares
In many large designs, it is often true that portions of

the state-space are equivalent, meaning that pairs or
groups of states can be represented by a single state with-
out loss of information. Numerous techniques have been
proposed to find such equivalences and hence reduce the
state-space. Many of these have used the original graph as
a starting point for finding equivalences, making them
ineffective at dealing with the state-explosion problem.
However, when dealing with state-graphs derived auto-
matically from RTL descriptions, we have found that
many equivalences can be traced back directly to the
structure of the RTL. As a consequence of the logic struc-
ture, some sections of the resulting state-graph will inevi-
tably be equivalent. For example, in Figure 4.1 we have a

global state variable that is composed of two component
variables and we show a portion of the RTL code that sets
the next-state. AssumeStateB is set every cycle from an
input. In this situation, the value ofStateB is irrelevant
whenStateA is not equal to zero and can always safely be
set to zero without losing any information. This is true
sinceStateB is not even looked at whenStateA is not zero
and sinceStateB is set every cycle from the input, the next
global state is the same no matter what valueStateB is. So
the sixteen possible values ofStateB can be coalesced into
a single representative state, reducing the overall state-
space.

This is analogous to the kill-set in compilers, where a
register is considereddead after it is last read and before it
has a new value written to it. For state-space exploration,
different values in thatdead register show up redundantly
as multiple states in the state-graph, whereas it is sufficient
to just zero it without losing any information.

It would be possible to analyze the RTL structure very
carefully to figure out dependencies and generate a com-
plete kill-set for each variable. However, to be of real help
in managing state-explosion, pruning the state-graph must
occur dynamically and with minimum overhead. Hence,
we introduce slightly stronger constraints on the kill-set to
make recognition of pruning situations easy. Instead of
doing multi-cycle analysis to figure out when a variable is
written, we will impose the constraint that the variable to
be pruned must be written every cycle. With this restric-
tion, it is only necessary to determine if the variable to be
pruned is read on any particular cycle. If not, it can be
zeroed for that cycle.

4.1.1  Static Analysis of Kill-Sets

Analysis of the RTL for kill-sets occurs once the
state-variables in the design have been determined. For
each of the state-variables, we look for structures where
the variable would not get read. A partial list of these
structures is given in Figure 4.2. For every variable that is
not read on occasion, we check the RTL to see if that vari-
able gets a new value on every cycle. If so, we can con-
struct a binary-decision-diagram (BDD) to represent the
set of conditions where it can be ignored. The BDD simply

Figure 4.1. Don’t Care Variable Analysis
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encodes the values of the other state-variables that allow
us to treat the variable being considered adon’t care value.

4.1.2  Dynamic Pruning with Don’t Cares

Once the kill-sets have been determined for every
state-variable, we simply modify the state-enumeration
tool to check each discovered state to see if it is one of the
situations in which a state-variable is adon’t care. If so, it
zeroes out that variable before the hash table lookup, mak-
ing all states that differ only in that state-variable equiva-
lent.

Even with the more stringent conditions for kill-set
creation that we imposed for efficiency reasons, we found
that this dynamic pruning can provide some state savings
with the examples from the FLASH project. Figure 4.3
shows the results for four units from MAGIC: the Inbox,
Outbox, IO and PP. The PP was also split into two sub-
parts: the instruction fetch unit and the loadstore unit.
Each of these were exercised to greater or lesser extents by
controlling the number of different input patterns applied.
The results given show that for some models, such as the
Inbox and the Outbox, dynamic pruning results in a sub-
stantial state-space reduction, accompanied by a reduction
in the running time. For the other units, there was a small
state-space reduction, but this was not enough to compen-
sate for the runtime overhead of dynamic pruning. On
closer examination of the kill-set BDDs from these units,
it was obvious that the pruning potential of these models
was small, that is, most state-variables did not fall into sit-
uations where they could be “killed”. Hence, it was possi-
ble to determine after the static-analysis that these models
were poor candidates for dynamic pruning, and it would
be better to run the non-pruning version of state-explora-
tion.

• Var. occurs in only one branch of an if-then-else statement.

• Var. occurs in a subset of all case branches.

• Var. is in a binary expression whose value is solely deter-
mined by the other variable, e.g. (0 AND x) or (1 OR x).

Figure 4.2. List of RTL Structures for Kill-Sets

Relative Graph Size Relative Running Time

(a) (b)

Figure 4.3. (a) Relative Graph Size and (b) Running Time of Pruned Graphs

4.2  Approximating the State Space
Unfortunately, many interesting circuits have state-

spaces that are too large to explore with available comput-
ing resources, even with pruning. In this situation, it would
be beneficial to provide some useful information, even if it
is not completely accurate.

One method is to approximate the model by treating
some state variables as non-deterministic inputs. Instead
of storing the value of these variables and using them to
compute the next state, the transition function uses a non-
deterministic value in their place. This reduces the size of
the global state vector which, in general, reduces the size
of the state-graph. Coverage can then be computed based
on the reduced global state vector.

The problem is that constraints on the transition func-
tion from the exact state values are now lost. This intro-
duces the possibility that some states found using the
approximate state vector are actually unreachable in the
real state-graph. Intuitively, this possibility is strongest
when the state variable being replaced is part of the com-
munication between other state variables retained in the
global state vector. This implies that the best state vari-
ables to approximate are those that are close to the ND-
inputs of the FSM model. Approximating these variables
should have the smallest impact on the state graph.

To gain some empirical evidence for this, we approxi-
mated the state graph of the instruction fetch unit of
MAGIC. The approximation was performed with two
variables, Var1, which passes signals between state
machines retained in the state vector, andVar2, which
passes signals from the inputs. To measure the accuracy of
the approximation, the exact graph was also found and
then projected to the reduced global state vector for each
variable. The results are shown in Table 1.

Table 1. Approximation Accuracy

Approx.
 States

Actual
States

Approx.
 Edges

Actual
 Edges

%
Wrong

Var1 424 424 6,250 5,275 18.5%

Var2 322 322 4,943 4,887 1.2%



a. Approximate state-space.

b. Designer restricted the variables of interest.

Table 2. FLASH Coverage Results

Unit of
Design

Graph
States

Graph
Edges

Control
Event
States

Control
Event
Edges

Simulated
 Cycles

Control
Event State
Coverage

Control
Event Edge
Coverage

Full
State

Coverage

Full
Edge

Coverage

Proto. Proc. 22,080a 2,189,553 76b 184 794,342 30.3% 26.6% <0.1% <0.1%

Instr. Fetch 1,586a 14,455 17b 47 391,967 94.1% 59.6% 7.8% 2.0%

Load Store 12,192a 1,106,688 132b 532 685,683 28.8% 12.4% <0.1% <0.1%

Inbox 426 3,968 28 236 249,336 82.1% 28.0% 19.3% 3.0%

Outbox 52 506 14 62 101,756 92.9% 54.8% 53.6% 13.8%

IO 3,209 70,211 142 1,778 67,828 16.3% 6.7% 1.0% <0.1%

Encouragingly, the results show that the approxima-
tion retained the correct number of states in both cases.
However, the approximation withVar1 resulted in a large
number of false edges in the graph, while approximation
with Var2 was more accurate. This supports the heuristic
of approximating state variables close to the inputs.

5  Coverage Results for FLASH

Coverage analysis of the FLASH design examples
with the control-event metric, and pruning and approxima-
tion as needed, is given in Table 2. These results are a
snapshot taken in the design process to show the differ-
ence between using a full state-graph metric and the con-
trol-event metric. The important point isnot that the
metric gives better numbers, but that ithighlights the
important tests which have been missed so that this infor-
mation is not lost in a swamp of other redundant warnings.

The feedback from our design team was that incre-
mental information is the most useful. When confronted
with a coverage metric that indicates huge numbers of
untested scenarios, it is difficult to identify the important
cases missed. Instead, giving information about 1 FSM
coverage, followed by pairs and so on, up to the full state
vector gave the best results. When given only a few miss-
ing scenarios at a time, it was easier to identify new test
vectors that had to be written to improve coverage.

In addition, it can be difficult to create aparticular
state transition ofall state variables in simulation. Issues
of controllability become important if the test writer must
set up a state containing the full vector. By using control
events and approximation, and doing so incrementally, the
metric focuses attention on the variables which are impor-
tant for the test cases only. The values of the other state
variables, which do not play a part in the interaction, are
ignored. This not only simplifies the analysis of the cover-
age data, but makes it easier for the test writer to formulate
the new test that sets the variables to the needed values.

6  Conclusion

In this paper, we have proposed a new functional vali-
dation coverage analysis metric based on control events
that focuses on the control-datapath interface. Our experi-
ence shows that this leads to better feedback of whether
the important tests in a design have been exercised than
existing metrics that we are aware of. The largest draw-
back is the use of the control state-graph, which poten-
tially grows exponentially with the number of control state
bits. Although this problem has no general solution, we
have proposed two techniques that help to postpone the
state-space blow-up so that useful information can still be
obtained from the design.

This toolset was used in the process of designing a
real chip as part of the Stanford FLASH project, making
usability and graceful degradation important issues rather
than afterthoughts.
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