
Automatic Synthesis of Extended Burst-Mode Circuits Using Generalized
C-elements�

Kenneth Y. Yun
Department of Electrical and Computer Engineering

University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093-0407 USA

kyy@UCSD.EDU

Abstract

This paper presents a new automatic synthesis technique
for extended burst-mode circuits, a class of asynchronous
circuits that allow multiple-input changes between state
transitions and a choice of next states based on input signal
levels. The target implementation is a pseudo-static asym-
metric CMOS complex gate per each output, known as gen-
eralized C-element [3, 12]. The synthesis algorithm gener-
ates hazard-free covers for set and reset functions of each
output using Nowick and Dill’s exact hazard-free logic min-
imization algorithm [14]. Each output circuit is formed by
mapping its set and reset logic to N and P stacks of an asym-
metric CMOS gate connected to a sustainer; long series
stacks are decomposed into static gates followed by short
stacks. A simple heuristic is used to ensure that no short
circuit paths exist from Vdd to ground. The resulting cir-
cuits for small-to-medium size extended burst-mode specifi-
cations are 40% smaller and 30% faster than two-level cir-
cuits generated by the 3D synthesis tool [19] and signifi-
cantly smaller and faster than complex-gate circuits gener-
ated by the method of Kudva et al [9].

1. Introduction

With clock speeds exceeding 300MHz in high perfor-
mance microprocessor designs, designers are discovering
the limitations of synchronous designs: complex clock skew
management, high peak power dissipation, worst case de-
sign requirements, etc. Many have been advocating asyn-
chronous design as a possible solution to these problems.
As a result, there have been many recent advances in asyn-
chronous design techniques, particularly in the area of au-
tomated synthesis [1, 15, 4, 8, 10, 12, 13, 17]. There have
been some attempts at real system designs employing asyn-
chronous techniques as well [16, 2, 5, 7, 11]. It is be-
coming increasingly clear that system designers recognize
asynchronous design as a viable alternative to strictly syn-

�This research was supported in part by a gift from Intel Corporation.

chronous design at least for interface modules and key per-
formance or power critical areas of system designs.

Arguably the most difficult part of asynchronous design
is controller design, because of complex hazard avoidance
requirements and its implications on performance of over-
all circuits. This paper focuses on the performance side of
controller design, namely an efficient synthesis technique
for extended burst-mode circuits [19, 17, 20], which have
proved to be practically useful and promised good perfor-
mance. The new synthesis algorithm described in this pa-
per is geared toward synthesizing high performance circuits
for small-to-medium size extended burst-mode specifica-
tions. Previous synthesis techniques for (extended) burst-
mode specifications targeted two-level AND-OR circuits
[19, 13] or multi-level circuits reduced from multiplexor
trees [20]. These implementations are derived from on-set
covers of next-state logic. These synthesis techniques pro-
duced efficient, high-performance circuits for large specifi-
cations, utilizing a global logic minimization algorithm [14].
However, while attempting to synthesize circuits for speci-
fications with very stringent performance requirements (as
a part of the Asynchronous Instruction Decoder Project at
Intel Corporation), it was determined that two-level circuits
may be inefficient in some cases. The natural course of ac-
tion at that point was to investigate alternate circuit struc-
tures. After a series of experiments by this author and other
researchers, it was discovered that pseudo-static asymmetric
CMOS complex gates, known as generalized C-elements,
are faster in the operating environment than fully comple-
mentary logic gates because they tend to have less input ca-
pacitance and higher output drives than static CMOS gates
with equivalent number of fanins. A model of generalized
C-element is shown in figure 1. This paper thus presents
a new synthesis algorithm for extended burst-mode circuits
using generalized C-elements as target implementations. In
addition, the synthesis results are compared to the imple-
mentations generated by Yun’s 3D synthesis tool [17] and
by the complex-gate method of Kudva et al [9].

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

N

P

f

weak

f

Figure 1: A generalized C-element with a sustainer: P 6= N

The synthesis procedure consists of two steps: state as-
signment and logic implementation. The state assignment
step ensures that every transition specified in the specifica-
tion is function-hazard-free. As in the 3D synthesis method,
each specification state is assigned to a layer; compatible
layers are merged to minimize the number of layers; finally,
layers are encoded so that every specified transition between
the layers is free of critical races. The logic implementation
step finds covers for the set and reset regions for each out-
put and maps the minimized set and reset logic to N and P
stacks of a CMOS gate followed by a sustainer.

The experimental results show that this new approach
has many advantages over other synthesis methods [13,
17], which implement the next-state functions as two-level
AND-OR or multi-level circuits. In most cases, the circuits
synthesized using this new method are considerably smaller
(have fewer literal counts) than the circuits synthesized by
other methods, and thus faster. This is because the number
of dynamic transitions (0 ! 1 or 1 ! 0) for most out-
puts are substantially fewer than the total number of 0! 1,
1! 1 and 1! 0 transitions.

There is a long line of automated synthesis techniques for
(extended) burst-mode circuits which produce efficient cir-
cuits. Also, generalized C-elements have been used in asyn-
chronous circuit designs elsewhere [3, 6, 12], and, of course,
set/reset logic, such as SR-latches and C-elements, has been
used by many asynchronous synthesis tools. However, this
synthesis technique brings those two together with a global
logic minimization algorithm.

2. Overview

2.1. Specification

Figure 2 describes an extended burst-mode state machine
(biu-fifo2dma) having 4 inputs (ok, cntgt1, fain, dackn) and
2 outputs (frout, dreq). Signals not enclosed in angle brack-
ets, such as ok, fain, and dackn are edge signals. Edge sig-
nals ending with + or � are terminating signals; the ones
ending with � are directed don’t cares. If a state transition
is labeled with a directed don’t care a�, then the following
state transition must be labeled with a� or a+ or a�. A ter-
minating signal a+ denotes a 0 ! 1 transition of a if a
was initially 0, and no transition at all if a was initially 1.

0

1

23

4

5

ok+ /
frout+

fain+ /
dreq+ frout−

<cntgt1+>
fain* dackn− /
dreq−

fain− dackn+ /
frout+

fain+ /
dreq+ frout−

<cntgt1−>
fain* dackn− /
dreq−

ok− fain− dackn+ /

Figure 2: Biu-fifo2dma specification.

A sequence of state transitions labeled with a� and termi-
nated with a+ represents a single 0 ! 1 transition of a at
any point in the sequence. A terminating signal not imme-
diately preceded by a directed don’t care represents a com-
pulsory transition. Signals enclosed in angle brackets, such
as cntgt1, represent conditional or level signals. hcntgt1+i
and hcntgt1�i denote conditional clauses “if cntgt1 is high”
and “if cntgt1 is low.”

An input burst is a non-empty set of input edges (termi-
nating or directed don’t care) at least one of which must be
a compulsory transition. An output burst consists of a pos-
sibly empty set of output edges. If a state transition is not la-
beled with a level signal, the signal may change freely dur-
ing the transition. However, if an edge signal is not men-
tioned in a transition, it is not allowed to change.

In a given state, when all the specified conditional signals
have correct values and when all the specified terminating
signals in the input burst have changed, the machine gen-
erates the corresponding output burst and moves to a new
state. Specified edges in the input burst may appear in arbi-
trary temporal order. However, the conditional signals must
stabilize to correct levels before any compulsory edge in the
input burst appears and must hold their values until after all
of the terminating edges appear. Outputs may be generated
in any order, but the next set of compulsory edges from the
next input burst may not appear until the machine has stabi-
lized.

2.2. Example

The biu-fifo2dma example in figure 2 is used to illustrate
the synthesis procedure. The first step of the synthesis pro-
cedure is the state assignment step. Details of this step will
not be discussed, because it is virtually identical1 to the same
step in the 3D synthesis [17]. In summary, each specification
state is assigned to a layer (there are 6 layers initially); com-
patible layers are merged to minimize the number of lay-

1Only the definition of DHF-compatibility is modified.

ok− fain− dackn+ / z0−

fain− dackn+ /
frout+ z1−

<cntgt1−>
fain* dackn− /
dreq− z0+

<cntgt1+>
fain* dackn− /
dreq− z1+

0

1

23

4

5

ok+ /
frout+

fain+ /
dreq+ frout−

<cntgt1+>
fain* dackn− /
dreq−

fain− dackn+ /
frout+

fain+ /
dreq+ frout−

<cntgt1−>
fain* dackn− /
dreq−

ok− fain− dackn+ /

Figure 3: Biu-fifo2dma specification with state variable tran-
sitions annotated.

ers (there are 3 layers after minimization); finally, layers are
encoded so that every specified transition between layers is
free of critical races. Because the synthesis step assumes
that state variable transitions are done concurrently with out-
put transitions, state variable transitions can be backanno-
tated to the initial specification to form a specification with
a unique next-state code property [17] as shown in figure 3.

The specification annotated with state variable transitions
as above maps directly to a next-state table, a 3-dimensional
tabular representation of the next-state function � : X�Y �
Z ! Y � Z, where X is a non-empty set of primary input
symbols, Y a non-empty set of primary output symbols, and
Z a possibly empty set of internal state variable symbols.

The second step of the synthesis procedure is the
logic implementation step. From the next-state table
and the specified transitions in the annotated specifica-
tion, a set of states (minterms in the next-state table)
that enable each output to rise is determined. For ex-
ample, for the state variable z0, there are just two states
(ok cntgt1 fain dackn frout dreq z0 z1 = 10x00100)
that enable z0 to rise (see state 2 in figure 3). The
set logic for z0 is the function z0set whose on-set is
ok cntgt1 fain dackn frout dreq z0 z1 = 10x00100 and
whose off-set is the same as z0’s. This logic is minimized
using Nowick and Dill’s exact two-level logic minimizer,
which ensures that every 0 ! 1 transition of z0set is
dynamic-hazard-free. Similarly, the logic minimization is
carried out on the function z0reset, whose on-set is the set
of states that enable z0 to fall and whose off-set is the same
as z0’s on-set, to find the reset logic for z0.

The resulting logic is guaranteed to be hazard-free for
all the specified transitions in the annotated state diagram.
When both z0set and z0reset are at 0, the sustainer will hold
the logic value.

fain

dreq

P1

N1

N2

N3

N4

reset

fain

dackn

ok

dreq
z0

frout

P2

P

N

N

3

P4

5

6

weak

weak

Figure 4: Biu-fifo2dma circuit (z0 and z1 gates not shown).

2.3. Circuit Operation

A machine cycle consists of an input burst followed by
a concurrent output and state burst. Initially or after com-
pletion of the previous output and state burst, the machine
waits for an input burst to arrive. When the machine detects
all of the terminating edges of the input burst, it generates a
concurrent output/state burst. As in the 3D implementation
of extended burst-mode circuits, no fed-back output or state
variable change arrives at the gate input until all of the spec-
ified edges in the output and state burst have appeared at the
gate output. These conditions are met by inserting delays in
the feedback paths as necessary.

Consider the example, biu-fifo2dma, shown in figures 3
and 4. When the machine is reset, reset goes low causing
frout and dreq to fall. During reset, transistors P2, P4, N1,
N2, and N4 are on but all other transistors are off, because
fain dackn ok frout dreq z0 = 01000. When reset goes
high turning off P2 and P4, the weak inverters are used to
sustain the logic levels. When the environment raises ok,
N3 turns on, causing frout to rise, which in turn causes N6

to turn on. Once frout rises, the machine is in state 1, wait-
ing for the environment to raise fain. When fain rises, N5

turns on, causing dreq to rise. Concurrently, as fain falls,
N1 turns off and P1 turns on, causing frout to fall.

3. Logic Implementation

The synthesis method in this paper (3D-gC) produces
two-level AND-OR circuits for both set logic (fset) and re-
set logic (freset). The N stack of the generalized C-element
in figure 1 is simply the N stack of the fully complemen-
tary complex AND-OR-NOT gate that implements fset; the
P stack of the generalized C-element is the P stack of the
full complementary complex AND-OR-NOT gate that im-
plements freset.

3.1. Hazards in Generalized C-elements

The hazard avoidance techniques used for two-level
AND-OR apply directly here, because of the way pull-down
and pull-up stacks are implemented as described above. The

only difference is that no special precautions are necessary
to make 1! 1 transitions hazard-free.

In the generalized C-element implementations described
in this paper, a property of the AND-OR structure is used
to avoid static hazards: namely, all 0 ! 0 transitions free
of function hazards are also free of logic hazards [17, 14].
When f undergoes a 1 ! 1 transition, freset remains low,
keeping the P stack turned off. The N stack, in the mean-
time, may remain turned on or off, but the old value will be
maintained by the sustainer (In fully complementary MOS
gates, static hazards are possible because the N and P stacks
are duals of each other, i.e., when the N stack is turned off,
the P stack is on and vice versa). The key point is that both
N and P stacks are derived from two-level AND-OR logic
so that certain properties of two-level AND-OR can be ex-
ploited for hazard freedom.

On the other hand, special steps must be taken to avoid
dynamic hazards. As in two-level AND-OR logic, for a
0 ! 1 transition to be hazard-free, all on-set minterms in
each trajectory of the transition must be covered by a sin-
gle cube, and every cube that intersects the trajectory must
also include the end-point of the trajectory [17, 14]. Con-
sider a transition a � b+ (a = b = 0 and c = d = 1 ini-
tially), in which f is supposed to rise monotonically when
b rises, regardless of the behavior of a. Suppose that a and
b change as shown in figure 5. f starts to discharge while b
and a are both high, stops whena falls, and starts again when
N3 is fully turned on (after the AND output rises). Although
it is very unlikely that complex gates exhibit glitches as il-
lustrated in figure 5, it may be worthwhile to avoid any such
possibilities. The synthesis algorithm removes any possibil-
ities of dynamic hazards using a dynamic-hazard-free state
minimization algorithm similar to the one used in [19] and
Nowick and Dill’s dynamic-hazard-free logic minimization
algorithm [14].

To summarize, for the output of a generalized C-element
(see figure 1) to be hazard-free for a set of specified transi-
tions, the following requirements must be met:

1. All specified transitions are function-hazard-free;

2. There are no reachable states in which both P and N
stacks are on;

3. N stack is hazard-free for all specified 0 ! 1 transi-
tions; P stack is hazard-free for all specified 1 ! 0

transitions.

The state assignment step ensures that the requirement 1 is
met. The requirement 2 is met by ensuring that the on-set
of fset (freset) is devoid of off-set (on-set) minterms of f .
Nowick and Dill’s logic minimization algorithm in conjunc-
tion with the state assignment step ensures that the require-
ment 3 is met.

cb N1

N2 N3

N4

P weak

b

f

a

f

d

b

a

f

b d b d

knee

Figure 5: Dynamic hazard in generalized C-elements.

3.2. Signal Placement and Decomposition of Long
Series Stacks

In (extended) burst-mode circuits, the order of signal ar-
rivals is largely pre-determined, so the signal placement
can be optimized for performance. In the 3D-gC synthe-
sis method, primary input signals that enable an output to
change, i.e., trigger signals for the output, are placed at the
top of the stack (farthest from Vdd/Ground). Fed-back out-
puts and state variables are placed at the bottom of the stack
(nearest to Vdd/Ground), because feedback signals do not
enable outputs to change.

In general combinational circuits, long series stacks are
not acceptable, because the worst-case delay grows quadrat-
ically as the stack size and the order of signal arrivals is not
known a priori. However, in most (extended) burst-mode
circuits, only 2-3 signals at the top of the stack are late ar-
riving signals. Thus the actual delay grows closer to linearly
than quadratically as the stack size. Post-layout simulations
for actual designs [18] show that the circuits with the stack
size of 5-6 and 2-3 trigger signals have roughly the same de-
lays as the worst-case delay for the stack size of 4.

Although somewhat longer series stacks can be used in
(extended) burst-mode circuits than in conventional combi-
national circuits, larger specifications and deep submicron
designs require a capability to decompose long stacks. The
most straight-forward way to decompose a long stack is to
partition the signals and map every partition with more than
one signal to a static AND/NAND followed by a transis-
tor as shown in figure 6. This decomposition is hazard-free
because each series stack corresponds to an AND gate in
the AND-OR network that implements fset or freset and de-
composing AND gates recursively is hazard-free. However,
arbitrary partitioning is not allowed because it can lead to
DC-path problems during dynamic transitions. Consider the
frout circuit in figure 6b. In state 1, the N stack is on and the
P stack is off while the machine awaits fain to rise. When
fain falls, the P and N stacks should turn on and off simul-
taneously (as do basic CMOS gates when they switch). But
in the circuit in figure 6b, both the N and P stacks are on for
the duration of the AND gate delay — there exists a short

fain
dackn

ok

frout

fain

dackn

ok

dreq
z0

(a) (b)

frout

dreq

z0

Figure 6: Decomposition.

circuit path from Vdd to Ground.
A simple constraint used to avoid this problem is as fol-

lows: when partitioning long series stacks for freset (fset),
the trigger signals forfset (freset) are never placed in a parti-
tion with more than one signal. In other words, when a trig-
ger signal toggles, enabling a series stack, say, an N stack
to turn on, the PMOS transistors driven by the same signal
should turn off immediately, in order to prevent a DC-path.
Of course, it is only a sufficient condition to avoid DC-path
problems, but this method works well in practice.

4. Experiments

A minor modification was made to the state assignment
part of the 3D synthesis tool to account for the new definition
of state compatibility. A new program was devised to inter-
face the modified 3D front end to Fuhrer and Nowick’s im-
plementation of the exact logic minimizer. Of the 20 exam-
ples synthesized, 14 required no decomposition, i.e., every
output and state variable can be mapped to a single general-
ized C-element with no series stack with more than 4 tran-
sistors. Out of the 6 examples that required decomposition
(the ones with * next to its name in table 1), 3 examples had
just one output that required 5 or 6 transistors in series with
no more than 3 trigger signals, which means that alternative
direct gC implementations (without decomposition) would
not degrade the performance.

The total literal counts were considerably fewer than two-
level solutions. The literal counts in the table actually repre-
sent the total number required for both N and P stacks; thus
the actual transistor counts (excluding sustainers and reset
logic) are equal to the literal counts, whereas for two-level
solutions the transistor counts are more than double the lit-
eral counts shown in the table.

The worst-case performance of the gC circuit can be ap-
proximated by an equivalent AND gate with the number of
fanins equal to the number of transistors in the longest series
stack. According to a series of post-layout SPICE simula-
tions [18], gC circuits (for diffeq examples) are at least 30%
faster than equivalent two-level circuits.

The results were then compared to the complex-gate im-
plementations by Kudva et al [9] (see table 2). Output f

Specification State vars Literals
States I/O 3D gC 3D gC

iccad93ex 3 2 / 2 2 0 20 8
edac93ex 4 3 / 2 2 1 32 13
condtest 4 3 / 2 2 1 30 18
dff 4 2 / 2 2 0 28 16
q42 4 2 / 2 1 1 27 15
select2ph 4 2 / 2 2 0 42 24
selmerge2ph 8 3 / 2 2 1 89 52
ring-counter* 8 1 / 2 1 1 45 160
binary-counter 32 1 / 4 3 3 94 56
pe-send-ifc* 11 5 / 3 2 2 90 57
pe-rcv-ifc* 12 4 / 4 3 2 84 54
dramc* 12 7 / 6 1 0 71 38
stetson-p3 8 4 / 2 1 0 16 8
fifocellctrl 3 2 / 2 1 1 11 10
scsi-targ-send* 7 4 / 2 3 3 53 35
scsi-init-send 7 4 / 2 2 2 31 22
diffeq-ALU1 7 3 / 5 2 2 43 38
diffeq-ALU2* 14 5 / 7 3 2 141 25
diffeq-MUL1 4 3 / 3 1 1 42 32
diffeq-MUL2 3 3 / 3 0 0 15 13

Table 1: Experimental Results.

in their synthesis method is implemented with an asymmet-
ric complex gate, P and N stacks of which correspond to
pass transistor networks of f and f in sum-of-products form
respectively. In some cases, their implementations have
smaller area and better performance than two-level SOP im-
plementations generated by the 3D tool, because 1! 1 tran-
sitions need not be covered with single cubes. However, the
implementations produced by the 3D-gC method are signif-
icantly better (smaller area and delay) than theirs. Because
the set of required cubes for fset (freset) is a proper subset of
f (f) but the dynamic-hazard-free covering constraints are
the same, the N stack (P stack) of the 3D-gC implementation
has strictly fewer transistors, thus fewer fanins and higher
current drives, than the P stack (N stack) of the implementa-
tions produced by Kudva’s method. In addition, the sustain-
ers attached to gC gates do not cost significantly. Most asyn-
chronous controller outputs need to drive large capacitive
loads; thus having an extra inverting stage is almost never a
burden. In fact, driving large capacitive loads directly with
complex gates may be more inefficient because enlarging
the transistors for higher drives means higher fanin loads.

5. Conclusion

Based on a detailed analysis of hazard avoidance tech-
niques for generalized C-elements, a new automatic synthe-
sis method for extended burst-mode circuits implemented
with generalized C-elements was devised. The experimen-
tal results show that gC circuits for small-to-medium size
extended burst-mode specifications are 40% smaller and
30% faster than two-level circuits generated by the 3D syn-

Tallest Stack
Kudva 3D-gC

Specification Output P N N P
chu-ad-opt lr 4 1 4 1

dr 2 2 1 1
zr 4 1 4 1

vanbek-ad-opt lr 4 1 4 1
dr 2 3 1 3
zr 2 3 1 3

sendr-done DoneS 3 1 3 1
zzz00 2 2 2 1

sbuf-read-ctl Ack 3 1 3 1
RamRdSBuf 2 2 2 2
BusReq 4 1 4 1
zzz00 2 2 1 1

q42 a4 2 3 1 3
r2 2 2 2 2
zzz00 3 2 2 2

Table 2: Comparison to Kudva’s.

thesis tool. For further optimization, technology mapping
techniques to optimize average-case delays need to be ex-
amined. Finally, because generalized C-elements are com-
posed of series stacks, we need to pay close attention to
charge sharing problems. Presently, the output-driving in-
verter is made large in order to reduce the charge sharing
problem. In the future, automatic charge sharing reduction
techniques will be investigated.

Acknowledgment

Peter Beerel’s comment on don’t care set led to a simpli-
fication of the synthesis and better results.

References

[1] Peter A. Beerel. CAD Tools for the Synthesis, Verification,
and Testability of Robust Asynchronous Circuits. PhD thesis,
Stanford University, 1994.

[2] Erik Brunvand. The NSR processor. In Proc. Hawaii Interna-
tional Conf. System Sciences, volume I. IEEE Computer So-
ciety Press, January 1993.

[3] Steven M. Burns. Performance Analysis and Optimization
of Asynchronous Circuits. PhD thesis, California Institute of
Technology, 1991.

[4] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from
Graph-Theoretic Specifications. PhD thesis, MIT Laboratory
for Computer Science, June 1987.

[5] A. Davis, B. Coates, and K. Stevens. The Post Office experi-
ence: Designing a large asynchronous chip. In Proc. Hawaii
International Conf. System Sciences, volume I, pages 409–
418. IEEE Computer Society Press, January 1993.

[6] Paul Day and J. Viv Woods. Investigation into micropipeline
latch design styles. IEEE Transactions on VLSI Systems,
3(2), June 1995.

[7] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple,
and J. V. Woods. The design and evaluation of an asyn-
chronous microprocessor. In Proc. International Conf. Com-
puter Design (ICCD). IEEE Computer Society Press, Octo-
ber 1994.

[8] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin,
and Victor Varshavsky. Concurrent Hardware: The Theory
and Practice of Self-Timed Design. Series in Parallel Com-
puting. John Wiley & Sons, 1994.

[9] P. Kudva, G. Gopalakrishnan, H. Jacobson, and S. M. Now-
ick. Synthesis of hazard-free customized CMOS complex-
gate networks under multiple-input changes. In Proc.
ACM/IEEE Design Automation Conference. IEEE Computer
Society Press, June 1996.

[10] Luciano Lavagno. Synthesis and Testing of Bounded Wire
Delay Asynchronous Circuits from Signal Transition Graphs.
PhD thesis, U.C. Berkeley, November 1992. Technical report
UCB/ERL M92/140.

[11] Alain J. Martin. Compiling communicating processes into
delay-insensitive VLSI circuits. Distributed Computing,
1(4):226–234, 1986.

[12] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed
asynchronous circuits. IEEE Transactions on VLSI Systems,
1(2):106–119, June 1993.

[13] S. M. Nowick and B. Coates. Automated design of high-
performance asychronous state machines. In Proc. Interna-
tional Conf. Computer Design (ICCD). IEEE Computer So-
ciety Press, October 1994.

[14] S. M. Nowick and D. L. Dill. Exact two-level minimization of
hazard-free logic with multiple-input changes. IEEE Trans-
actions on Computer-Aided Design, 14(8):986–997, August
1995.

[15] K. van Berkel. Handshake Circuits: an Asynchronous Archi-
tecture for VLSI Programming, volume 5 of International Se-
ries on Parallel Computation. Cambridge University Press,
1993.

[16] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Ron-
cken, and F. Schalij. A fully-asynchronous low-power error
corrector for the DCC player. IEEE Journal of Solid-State
Circuits, 29(12):1429–1439, December 1994.

[17] K. Y. Yun. Synthesis of Asynchronous Controllers for Hetero-
geneous Systems. PhD thesis, Stanford University, August
1994. Technical Report CSL-TR-94-644.

[18] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and
J. Arceo. A low-control-overhead asynchronous differential
equation solver. To appear in ESSCIRC-96.

[19] K. Y. Yun and D. L. Dill. Unifying syn-
chronous/asynchronous state machine synthesis. In
Proc. International Conf. Computer-Aided Design (ICCAD),
pages 255–260. IEEE Computer Society Press, November
1993.

[20] K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas. Performance-
driven synthesis of asynchronous controllers. In Proc. In-
ternational Conf. Computer-Aided Design (ICCAD), pages
550–557, November 1994.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

