
ED&TC ’96
0-89791-821/96 $5.00  1996 IEEE

Timing Driven Placement Recon�guration for Fault Tolerance and

Yield Enhancement in FPGAs �

Anmol Mathur y C. L. Liu

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

The architectural regularity of FPGAs provides an in-

herent redundancy which can be exploited for fault tolerance

and yield enhancement. In this paper we examine the prob-

lem of recon�guring the placement of a circuit on an FPGA

to tolerate a given fault pattern in the array of CLBs. The

primary objective of the placement recon�guration is to min-

imize timing degradation. The concept of a slack neighbor-
hood graph is used as a general tool for timing driven re-

con�guration with a low increase in critical path delay. Our

algorithm simultaneously achieves both provably low timing

degradation and low re-programming cost. For a wide range

of fault probabilities and circuits our algorithm successfully

recon�gures the placement with less than 1% degradation in

the circuit delay.

1 Introduction

An FPGA is a regular array of programmable logic
blocks, also referred to as con�gurable logic blocks (CLBs)
which can be programmed to implement any boolean func-
tion of up to K inputs. In this paper, we will concentrate on
Xilinx-like architectures, where the CLBs are arranged in
a 2-dimensional grid with programmable routing resources
in the routing channels. The programmability of these ar-
chitectures makes recon�guration a powerful technique to
tolerate faults in logic blocks. In this paper we examine the
problem of recon�guring the placement of a combinational
circuit on an FPGA to tolerate a given fault pattern in the
array of CLBs. The primary objective of the recon�gura-
tion is to minimize the timing degradation, measured as the
increase in the delay in the critical paths in the implemen-
tation.

Introduction of fault tolerance in VLSI devices has been
advocated as a means of achieving both longer lifetime
(through on line recon�guration to avoid faults) and higher
production yield (through production time recon�guration
of partially faulty devices). Most FPGA-based designs have
a lot of unused (spare) CLBs (typical CLB utilizations are
between 70-80%). This makes recon�guration feasible and
e�ective for FPGAs.

FPGAs are being used more and more often in the �nal
marketed designs of digital systems. This emphasizes the

�Work partially supportedby NSF under grantMIP 92-22408.
yAuthor's current address: Silicon Graphics Inc., 2011 N.

Shoreline Blvd., Mountain View, CA 94043.

need for on-line algorithms for recon�guration in FPGAs
to tolerate faults in the logic blocks, in order to increase
the lifetime of the product. This is even more important in
real-time and embedded applications of FPGAs.

Recon�guration is also a useful technique for yield en-
hancement by tolerating faults in the FPGAs being used
to implement a design. In this scenario, a design has
been placed and routed to meet timing requirements, but
some faulty CLBs are discovered prior to programming the
FPGA. The placement and routing needs to be changed
in such a way that the performance of the implementation
does not degrade signi�cantly.

The results of Howard et al. [1] also provide compelling
evidence for the use of recon�guration for yield enhance-
ment in FPGAs. They argue that to overcome the rela-
tively low logic density of FPGAs many large designs need
to be split across multiple FPGAs resulting in large circuit
delay. To overcome this problem, the level of integration
of FPGAs needs to be increased and this leads to FPGAs
with larger chip area, and consequently greater probability
of faults. In order to get reasonable yield for such ultra
large scale FPGAs it is imperative that some recon�gura-
tion based fault tolerance scheme be employed.

Recon�guration for fault tolerance in FPGAs di�ers
from traditional processor array recon�guration in the fol-
lowing ways:

� In traditional recon�guration of faulty processor ar-
rays, the objective is to extract the largest possible
sub-array consisting only of non-faulty processors. For
FPGAs, the topology to be extracted from the faulty
array of CLBs depends on the circuit for which the
recon�guration is being done. So, in the context of
FPGAs, it is the placement of a particular circuit on
the FPGA that is recon�gured.

� The recon�guration of circuit placement alters the crit-
ical path delay of the circuit. Consequently, it becomes
necessary to develop recon�guration algorithms that
guarantee low timing degradation.

Howard et al. [1] explore various fault-tolerant FPGA
architectures. Narasimhan et al. [4] investigate algorithms
for recon�guring FPGAs using minimization of the total
wire length of the recon�gured design as the primary ob-
jective. The main contributions of this paper are:

� We present an algorithm for placement recon�guration
to minimize the timing degradation that also reduces
the amount of re-programming that needs to be done.

� Our algorithm for timing driven recon�guration is sig-
ni�cantly faster than doing placement and routing
again to avoid the faulty CLBs.

� We present another application of the concept of slack
neighborhood graph introduced in [2] for timing driven
placement in regular architectures. This shows that
this technique is robust and can be applied to diverse
domains.

2 The Fault Model

In this paper we consider only faults in CLBs. Faults
in the routing blocks are not considered. This is realistic
because in the current FPGA designs the CLBs are much
more complex than the routing blocks. We use a block
level fault model, which assumes that any fault in a CLB
completely disables the CLB. This is a much stronger fault
model than the \stuck at" fault model traditionally used
for modeling faults in combinational logic. Thus, when a
CLB becomes faulty, it will be discarded and an attempt
will be made to map its functionality on a di�erent CLB. A
more re�ned fault model would take into account the fact
that a faulty CLB may still be able to implement some (but
not all) combinational functions.

We used two di�erent models for the distribution of
faults in our experiments:

� Independent Fault Model: This model assumes
that the faults in CLBs are independent { that is the
probability that a CLB is faulty is not dependent on
the state (faulty/non-faulty) of the neighboring CLBs.
The probability of a CLB being faulty is referred to as
the fault probability.

r P(r)

1.0

0.5

0 1 2 3 4 5

Fault center

r

(a) (b)

Fig. 1: (a) A clustered fault of radius 2. (b) The exponen-

tial probability distribution for fault radius.

� Clustered Fault Model: This model assumes that
faults occur in clusters. Thus, if a CLB is faulty then
its neighbors have a higher probability of being faulty.
We simulate this model by assuming that a CLB has
a �xed probability (termed cluster fault probability) of
being the center of a fault cluster of radius r. All the
CLBs within distance r from the center are assumed
faulty. The radius r is assumed to have an exponen-
tially decreasing probability distribution (see Fig. 1).

3 Problem Formulation

The input to the timing driven recon�guration problem
is a combinational circuit, its implementation on an FPGA
speci�ed by the placement of the modules and the routing

of the interconnections, and the set of CLBs identi�ed to
be faulty (the fault pattern). The circuit is speci�ed by its
interconnection topology, module delays and the signal ar-
rival times and required times at the primary inputs and
primary outputs respectively. The output is a new place-
ment that avoids the faulty CLBs obtained by recon�guring
the original circuit placement.

The main objectives of the recon�guration algorithm are:

� Minimize the increase in the critical path delay as a
result of recon�guration.

� Minimize the amount of re-programming to be done
to achieve the recon�guration.

The �rst objective is a natural one for high performance
ASICs designed using FPGAs. Low re-programming over-
head may be important when FPGAs are used in a system
that requires high availability. However, this objective is
relevant only when the FPGA architecture allows for selec-
tive re-programming of CLBs and routing blocks. Some of
the more recent FPGA architectures, such as the Concur-
rent Logic CLi6000 series and Algotronix FPGAs, have this
feature.

4 Timing Driven Recon�guration

In this section, we give an overview of our algorithm for
timing driven placement recon�guration. Many of the de-
tails are omitted due to lack of space. The
owchart in Fig.
2 gives an overview of the main steps involved in our tim-
ing driven recon�guration algorithm. Our recon�guration
algorithm attempts to relocate all the modules currently
mapped to faulty CLBs in such a way that increases in the
delays will not be excessive. The main steps involved in
this process are:

1. Computing Distributed Edge Slacks: The slack

of an edge measures the amount by which the delay of
the edge can be increased without violating any timing
constraints. Edge slacks can be computed e�ciently
by �nding the arrival and required times at the des-
tination of the edge, and taking the di�erence of the
required time and the arrival time. The slacks of the
edges incident to a module determine the neighbor-
hood within which the module can be moved without
violating the timing requirements. Since several circuit
modules may move simultaneously during recon�gura-
tion, we use a variant of the zero-slack algorithm [3]
to compute distributed edge slacks. The delays of all
the edges can be simultaneously be increased by an
amount equal to their distributed slacks without any
timing violations. Often, a certain increase in criti-
cal path delay is acceptable, and it is not necessary to
have the mobility of the modules completely restricted
by the distributed slacks. We introduce a relaxation
parameter(�) that allows the recon�guration algorithm
to increase the values of distributed edge slacks. The
distributed edge slacks augmented by the relaxation
parameter are referred to as relaxed slacks.

2. Constructing the Slack Neighborhood Graph
(SNG): Increase in the delay of an edge can be trans-
lated into an increase in the length of the intercon-
nection corresponding to the edge. Hence, the re-
laxed slack of an edge can be interpreted as an up-
per bound on the amount by which the length of the

interconnection can be increased. These bounds on
the distance that a module can move without signi�-
cant timing degradation, imply that a module can only
be moved to certain CLBs in the neighborhood of the
CLB it currently occupies. Informally, the neighboring
CLBs to which a module can be moved without sig-
ni�cant timing degradation are referred to as its slack
neighborhood. The graph in which the adjacency re-
lation re
ects these slack neighborhoods is referred to
as the slack neighborhood graph (see Fig. 3 (b)). The
slack neighborhood graph is computed by searching
the neighborhood of each module for CLBs to which
it can be moved without increasing the delay of any
edge incident to the module by an amount more than
its relaxed slack. Notice that slack neighborhoods of
IO modules are limited to the peripheral CLBs, and
those of logic modules to the CLBs in the interior of the
FPGA. This prevents IO modules from moving into
the interior of the CLB array (and vice versa) during
recon�guration. Also, faulty CLBs are not included in
the slack neighborhood of any module.

3. Finding Recon�guration Paths: In order to re-
con�gure the circuit placement, we need to move the
modules occupying faulty CLBs to non-faulty spare
CLBs. We accomplish this by �nding vertex disjoint
paths in the slack neighborhood graph from the faulty,
occupied CLBs to non-faulty spare CLBs, and then
moving modules along these paths. Since these recon-
�guration paths are paths in the SNG, the resulting
recon�guration has low timing degradation. In order
to �nd vertex disjoint recon�guration paths e�ciently,
and incorporate low re-programming cost as an objec-
tive in recon�guration, we use min-cost
ow in a
ow
network derived from the SNG.

The sources in this
ow network are the faulty, oc-
cupied CLBs and the sinks are the non-faulty, spare
CLBs. The edges are the same as in the SNG and
have capacity of 1 unit of
ow. In addition , each ver-
tex has a
ow capacity of 1 unit. Each edge, (u; v), of
the
ow network is associated with a cost that depends
on the following factors:

� The cost is low if the CLB corresponding to v

is spare (this encourages shorter recon�guration
paths, and lower timing degradation).

� The cost is low if moving a module occupying
CLB u has fewer nets incident to it (this en-
courages the min-cost
ow to �nd recon�guration
paths with low re-programming cost).

Finding the min-cost
ow in the
ow network de-
scribed above yields paths from the faulty, occupied
CLBs to non-faulty, spare ones. These paths are ver-
tex disjoint due to the node capacity constraints, and
they result in low re-programming cost because of the
way we de�ne the edge costs. If the SNG is not
dense enough to allow the relocation of all the mod-
ules mapped to faulty CLBs, min-cost
ow still yields
a partial recon�guration. In such a scenario, the relax-
ation parameter is increased to allow more edges in the
SNG, leading to a successful recon�guration. Unlike
several other recon�guration algorithms, our algorithm
does not simply compute a matching from the faulty
CLBs to the spare CLBs.

graph (SNG)

Circuit Graph; Arrival and required times;

.

Reconfigured placement with

Placement and routing assuming no faults

Compute and distribute slacks

Compute slack neighborhood

Assign edge costs to reflect

reconfiguration cost and
congestion

Construct a flow network

from the SNG

Use mincost flow to find

node disjoint paths that

define the reconfiguration
mapping

low timing degradation

Fig. 2: Flowchart for our timing driven recon�guration
algorithm.

x3 x4

x4x3

: FAULTY CLB

: NON_FAULTY

 OCCUPIED CLB

: NON_FAULTY

 SPARE CLB

RELOCATION

MINCOST FLOW(a)

(b)

(c)(d)

f
1

f
2

x
1

x
2

x 5

a

d

j
f

g

b

c
h

e

x
d

a

h

c

b

f g

e

x
3

i
x

x

x
5

4

2

1

f
1

f
2 f

1
f

2

x1

x2

x 5

f

b

c

a

d
e

g

h

i

f
1

f
2

x
1

x
2

x 4 x 5

b

c

a

x3

d
e

j f g

h

Fig. 3: An example illustrating the timing driven recon-

�guration algorithm. (a) A placed and routed circuit and

a fault pattern. (b) The slack neighborhood graph (SNG)

for the circuit in (a). (c) The vertex disjoint paths in the
SNG computed using min-cost
ow. (d) The recon�gured

circuit.

Fig. 3 illustrates the steps involved in our timing
driven recon�guration algorithm. An example of the
vertex disjoint paths de�ning the recon�guration map-
ping for the slack neighborhood graph in Fig. 3 (b) is
shown in Fig. 3 (c). Notice that each path with non-
zero
ow starts at a faulty occupied CLB and ends
at a non-faulty spare CLB. Moving the modules along
these recon�guration paths results in the con�gura-
tion shown in Fig. 3 (d) in which all the modules are
mapped to non-faulty CLBs. We will show in the next
section that since the recon�guration is done in the
con�nes of the SNG, the timing degradation is low.

4.1 Analysis of Timing Degradation

Since the paths along which modules are moved to recon-
�gure the placement are found in the SNG, we can prove
that the worst case increase in the critical path delay is
bounded. The following theorems showing that our timing
driven recon�guration algorithm is good are stated without
proof.

The following theorem gives a na��ve bound on the worst
case increase in the delay of the critical path in the circuit.
Theorem 1. In the timing driven recon�guration, the

worst case increase in the delay along any path � in the
circuit is 2l(�)�, where l(�) is the number of edges in the

path and � is the relaxation parameter.

Corollary 1 No delay increase is incurred in the timing
driven recon�guration if � = 0. Thus, a recon�guration

with no additional slack does not cause any increase in the
critical path delays of the circuit.

The bound on the increase in delay during the timing
driven recon�guration given above is a worst case bound
and the performance degradation is expected to be much
lower on the average. We can prove much tighter bounds on
the worst case timing degradation that we omit due to lack
of space. From the above discussion we conclude that the
min-cost
ow based recon�guration can be accomplished in
a manner that guarantees low performance degradation.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

T
im

in
g

D
eg

ra
da

tio
n

Relaxation Parameter

CF
IF

Fig. 4: Results for circuit C432 with RP = 30. IF =
Independent Fault Model; CF = Clustered Fault Model.

5 Experimental Results

We implemented the slack neighborhood graph based al-
gorithm for timing driven recon�guration in C on a sparc10.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.0 5.0 10.0 15.0 20.0 25.0 30.0

T
im

in
g

D
eg

ra
da

tio
n

Relaxation Parameter

CF
IF

Fig. 5: Variation of timing degradation with relaxation

parameter for circuit C432.

0

10

20

30

40

50

60

70

80

90

100

0.0 5.0 10.0 15.0 20.0 25.0 30.0

N
um

be
r

of
 R

ec
on

fi
gu

re
d

Fa
ul

t P
at

te
rn

s

Relaxation Parameter

CF
IF

Fig. 6: Number of successfully recon�gured fault patterns
(measured as percent of the total number of fault patterns)

vs relaxation parameter.

RP = 0 RP = 5 RP = 10 RP = 15 RP = 20 RP = 25 RP = 30 Average

Circuit IF CF IF CF IF CF IF CF IF CF IF CF IF CF IF CF

C499 -0.1 -1.5 -0.1 -1.5 -0.4 -0.8 -0.4 -0.8 0.1 0.7 0.1 0.7 1.1 1 .6 0.1 -0.2

C432 -0.4 0.0 -0.4 0.0 0.1 0.3 0.1 0.3 1.7 2.2 1.7 2.2 2.3 3.8 0. 7 1.3

c8bl -0.1 0.0 -0.1 0.0 0.1 -0.1 0.1 -0.1 0.2 -0.1 0.3 -0.1 0.2 0.1 0.1 -0.0

b9 -0.1 -0.8 -0.1 -0.8 -0.5 -1.0 -0.7 -1.0 -0.2 -0.3 -0.2 -0.3 0.3 0.4 -0.2 -0.6

ttt2 -0.0 -0.1 -0.0 -0.1 0.1 -0.0 0.1 0.0 0.2 -0.0 0.2 -0.1 0.2 0. 1 0.1 -0.0

Table 1: Average percent timing degradation as a function of the relaxation parameter (RP). IF = Independent Fault Model;

CF = Clustered Fault Model.

In this section we discuss the results obtained by running
our algorithm on benchmark circuits assuming random fault
patterns with di�erent fault probabilities.

We performed two sets of experiments. In the �rst set
of experiments fault patterns were generated using the in-
dependent fault model, while in the second set of exper-
iments fault patterns were generated using the clustered
fault model described in Section 2. The input for each run
of the algorithm consisted of an initial placement that satis-
�es all the timing constraints and a fault pattern determin-
ing the faulty CLBs. The initial placements were generated
using the sysdias package [2]. Ten di�erent fault patterns
were generated for each value of fault probability ranging
from 0.015 to 0.055 (in steps of 0.005). The size of the CLB
array was 20 by 20 for all the experiments. For each cir-
cuit, recon�guration was done using values of the relaxation
parameter ranging from 0 to 30 (where a value of 10 corre-
sponds to a distance of 1 in the CLB grid array) to study
the dependence of the timing degradation on the relaxation
parameter. Timing degradation for a circuit as a result of
recon�guration was measured as the percentage increase in
the average of the arrival times at all the primary outputs
of the circuit. The variation in the maximum of the ar-
rival times at the primary outputs was also observed to be
similar to the average arrival time(in fact for all our exper-
iments the degradation in the maximum arrival time was
less than in the average arrival time). Table 4.1 summarizes
the average timing degradation for the 5 circuits used in our
experiments for various values of the relaxation parameter.
Notice that for circuits C432 and C499 the timing degra-
dation is consistently higher for the clustered fault model
than for the independent fault model. However, for circuits
c8, b9 and ttt2 the degradation is almost identical for the
two models. This is probably because these circuits have
fewer modules and hence the number of spares available is
higher making recon�guration easier. The CPU time for
one recon�guration run was around 15-20 seconds.

Figure 4 shows the timing degradation as a function of
fault probability for circuit C432 when the relaxation pa-
rameter is 30. The worst timing degradation was observed
for C432, and it was around 6%. The average timing degra-
dation for C432 was 0.7% for the independent fault model
and 1.3% for the clustered fault model. For all the other
circuits that we used, the average timing degradation was
less than 1%. For many of the recon�gurations (specially
with low fault probability) there was actually a decrease in
the average arrival time. This demonstrates that our tim-
ing driven recon�guration algorithm is able to successfully
recon�gure faulty FPGAs with very low timing penalty. In

general, with increase in fault probability there is an in-
crease in the timing degradation since the presence of more
faults restricts the slack neighborhoods and increases the
value of
ow required in the SNG for successful recon�gu-
ration.

It is interesting to study the variation in timing degra-
dation with changes in the relaxation parameter. As pre-
dicted by Corollary 1, there is no timing degradation when
the recon�guration is done with relaxation parameter set
to zero. However, several fault patterns cannot be recon-
�gured when the relaxation parameter is zero. Increasing
the relaxation parameter enables us to recon�gure more
fault patterns. However, the timing degradation increases.
This behavior is observed in the Figures 5 and 6. Also,
more faults can be recon�gured when the fault patterns are
generated using the independent fault model than for the
clustered fault model.

References

[1] N. J. Howard, A. M. Tyrrell, N. M. Allinson,

The Yield Enhancement of Field-Programmable Gate
Arrays, IEEE Trans. on VLSI Systems, Vol. 2, 04

1994, pp. 115{123.

[2] A. Mathur, C. L. Liu, Compression-Relaxation: A
New Approach to Performance Driven Placement for
Regular Architectures, Proc. Intl. Conf. on Computer-
Aided Design, 1994.

[3] R. Nair, C. L. Berman, P. S. Hauge, E. J. Yoffa,
Generation of Performance Constraints for Layout,
IEEE Trans. on Computer-Aided Design, Vol. 8, Aug.
1989, pp. 860{874.

[4] J. Narasimhan, K. Nakajima, C. S. Rim,

A. T. Dahbura, Yield Enhancement of Pro-
grammable ASIC Arrays by Recon�guration of Circuit
Placements, IEEE Trans. on Computer-Aided Design,
Vol. 13, Aug. 1994, pp. 976{986.

	CDROM Home Page
	1996 Home Page
	EDTC 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

