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Abstract
We propose a novel graceful degradation scheme, L/U re-

configuration, which can tolerate a single permanent fault
in each hardware class of ASIC datapaths. In the pro-
posed scheme, dynamic hardware rebinding and operation
rescheduling are performed by a systematic perturbation
of the original configuration. A high-level synthesis pro-
cedure, which automatically generates such fault-tolerant
systems, is also presented. Experiments show that our re-
configurable AISC designs, as compared to optimal non-
fault-tolerant designs, achieve optimal pre-reconfiguration
and near-optimal post-reconfiguration speed performance.

1 Introduction
Graceful degradation, a time redundancy approach [2],

tolerates permanent faults by using dynamic reconfigura-
tion. Unlike standby sparing, graceful degradation enables
high levels of hardware utilization both before and after
reconfiguration and demands smaller levels of interconnec-
tion. It is most suitable for applications where small chip
area and superior initial performance are required. How-
ever, implementing graceful degradation is not simple be-
cause reconfiguration implies dynamic reordering of oper-
ations and concomitant rearrangement of resource usage.
These two tasks raise the complexity of the controller and
interconnect, and as a result, graceful degradation is usually
applied to systems with structural or functional regularity
such as memory systems [5] and multi-processor arrays [6].
In this paper, we will demonstrate that, by using careful
hardware planning and intelligent design methodology, this
fault-tolerance technique can be practical for general ASICs
that lack structural and functional regularity.

The intelligent exploration methodology required for de-
signing such complex fault-tolerant systems can be deliv-
ered by high-level synthesis. The nature of the reconfig-
urable design problem requires sophisticated planning in
both operation scheduling and hardware binding, and these
tasks fall squarely within the problem domain of high-level
synthesis. In fact, high-level synthesis of fault-tolerant de-
signs has been investigated and implemented in [3], [7]
and [8]. Moreover, the procedural approaches in high-level
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synthesis advocate a systematic definition of the underly-
ing architecture, which in turn assists efficient planning of
reconfigurable system designs.

In this paper, we propose a novel reconfiguration scheme
and a high-level synthesis methodology to provide grace-
ful degradation capability to general ASIC datapaths. Our
objectives are reduction of controller and interconnect over-
head, reduction of performance degradation, and increase in
hardware utilization. The proposed fault-tolerance scheme,
called L/U reconfiguration, targets a single permanent fault
in each functional unit class included in the datapaths and
provides a single level of reconfiguration. Any fault detec-
tion and location technique can be applied independently
with this proposed scheme. Fault diagnosis issues are con-
sequently orthogonal to the central focus of this paper and
are not herein further covered.

The organization of the rest of the paper is as follows:
Section 2 presents the reconfiguration scheme and outlines
a set of synthesis constraints imposed by incorporating re-
configuration. Section 3 covers the associated high-level
synthesis procedure. Experimental results are given in sec-
tion 4 and conclusions provided in section 5.

2 L/U Reconfiguration
In this section, we examine the details of the L/U reconfig-

uration scheme with particular emphasis on its conceptual
mechanism; the hardware implementation aspects are given
in [1]. We start first with the basic building block of the pro-
posed scheme, namely the canonical L/U block. The canon-
ical L/U block can deliver full pre- and post-reconfiguration
hardware utilization. However, it imposes severe restric-
tions on block size and component types, and additionally
worsens the performance degradation after reconfiguration.
Subsequently, we extend the canonical form to handle large
dataflow graphs (DFG). As partial ordering of operations in
any given DFG may be violated by rescheduling, we outline
a set of synthesis constraints on scheduling and resource us-
age to resolve any data and structural hazards. Finally, we
extend the proposed scheme to cover heterogeneous hard-
ware classes.

2.1 Canonical L/U Reconfiguration
Graceful degradation tolerates permanent faults by fault

detection, fault location, and fault recovery. Upon locating a



faulty hardware unit, fault recovery is triggered to perform
hardware reconfiguration. The faulty unit is deactivated
and operational status of the system is regained. Without
standby sparing, other existing hardware units must replace
the faulty one in order to complete all computations. If a
replacement unit is available, the system must provide the
necessary data and control signals to the replacement so that
it can perform the original operations executed by the faulty
unit. On the other hand, if all existing hardware units are
busy, resource conflicts force some operations to be delayed
until a replacement unit becomes available. Accordingly,
hardware rebinding and operation rescheduling need to be
performed, which complicate the designs of controllers and
interconnects. In order to reduce the hardware complexity
and cost, we present a novel solution, the L/U reconfigura-
tion scheme.

Figure 1(a) shows a computation schedule with arbitrary
functional unit binding. Each column in the diagram rep-
resents one functional unit, and each row depicts one clock
cycle. In figure 1(a), there are five identical functional units
executing eighteen operations in four clock cycles. Hard-
ware utilization is full in the second and the fourth cycle but
not in the other two. The staircase line drawn at the middle
of the diagram is defined as the L/U band partition line.
All operations in the upper “triangle” above the partition
line belong to the U band, and similarly, operations lying
in the lower “triangle” belong to the L band. The rectangle
containing both bands is defined as a canonical L/U block.
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Figure 1: A canonical L/U block (a) before reconfiguration, (b)
after reconfiguration.

When a faulty functional unit is detected, both opera-
tion rescheduling (software reconfiguration) and functional
unit rebinding (hardware reconfiguration) must be executed.
The proposed scheme accomplishes both tasks in a system-
atic fashion as shown in figure 1(b). The U band remains
stationary, while the L band can be imagined as being first
shifted down by one clock cycle and then shifted right by
one unit. The final canonical block presents a new schedul-
ing and binding scheme using one less functional unit but
one extra clock cycle.

Figure 1(b) only shows the logical rebinding which indi-
cates what operations are executed by each hardware unit.
Figure 2 shows the physical rebinding of operations. In
this figure, all L operations have already been delayed by
one clock cycle. The arrows show the required shifting di-
rections of all operations in order to bypass a faulty unitHi.
Incoming data of each functional unit are routed to either its

right or left topological neighbor, or passed directly to the
unit without shifting. The rebinding rules governing these
horizontal movements are given below, where unit Hi is
assumed to be faulty.

1. A U operation originally bound to Hj, j � i, will be
shifted left, i.e. rebound to Hj�1.

2. An L operation originally bound to Hj, j � i, will be
shifted right, i.e. rebound to Hj+1.

3. The remaining operations retain their original binding.
HiFaulty Unit

shift right

shift left

pass through

no operation

U operation

L operation

Figure 2: Rebinding directions of operations.

As shown in figure 1, the original N � (N � 1) L/U
block reconfigures into the new (N � 1)�N block, where
N is the number of intact functional units on chip before
reconfiguration. These rigid dimensions restrict the use
of the canonical L/U block to small DFGs. A canonical
L/U block can be filled up with N (N � 1) operations to
yield 100% utilization rate under both configurations. In
practice, this may not be always possible due to the lack
of parallelism in the DFGs. Using this intrinsic under-
utilization characteristic of most DFGs, we can extend the
canonical block format to tackle long DFGs without actual
loss of hardware utilization.

2.2 Extension of Canonical L/U Block
AnN�(N�1) canonical L/U block becomes inadequate

when a longer DFG is encountered. Figure 3 shows a long
computation process that utilizes relatively small number of
functional units. In this case, the tall rectangle is partitioned
into several L/U blocks. The division line between any two
blocks is called L/U block cut. The reconfiguration scheme
given in figure 1 is applied to individual L/U blocks, and
the new schedule after reconfiguration is shown in figure 3.
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Figure 3: The L/U block cutting scheme.

As shown in figure 3, each L/U block contributes a perfor-
mance penalty of one extra clock cycle after reconfiguration.
To minimize this performance degradation, the whole com-
putational process should be divided into as few L/U blocks



as possible. In other words, taller blocks are desirable. To
obtain taller blocks, space can be appended above or under
the canonical blocks. The original canonical L/U block is
now embedded into a general L/U block as the body. How-
ever, unlike a canonical L/U block, the vertical dimension
of the body part in a general L/U block can be less than
(N � 1). The appended space above the body is defined
as head, and the space below as tail. Figure 4 shows the
format of a legitimate L/U block with maximal hardware
utilization.

head

body

tail

L U

Figure 4: A legitimate L/U block with maximum utilization.

To avoid resource conflicts after reconfiguration, one
functional unit per clock cycle within the head and tail sec-
tions must be idle. This subsequent under-utilization can be
masked by matching it to the inherent parallelism deficit in
the DFG. By mapping the fully parallel portions of the DFG
into bodies and the under-utilized portions into heads and
tails, the effective hardware under-utilization, necessitated
by graceful degradation, is minimized.

2.3 Design Constraints
The L/U reconfiguration scheme places two types of de-

sign constraints to the synthesis procedure. These con-
straints only govern individual L/U blocks, and no con-
straints are needed for regulating the inter-relationships
among different blocks. The first type of constraints is
the band-delay constraints. Since data dependence exists
among the operations of a DFG, direct application of L/U
reconfiguration may result in data hazards. Delaying an
L operation by one clock cycle after reconfiguration, may
result in its concurrent execution with its data-dependent
operations in the U block. Incorrect data may consequently
be provided to the U operations. Such data-dependency
hazards are called band-delay hazards, and the constraints
added to eliminate these hazards are thus named band-delay
constraints.

The possible type of constraints, called geometrical con-
straints, is added to resolve resource conflicts after recon-
figuration. These constraints regulate the maximum hard-
ware utilizations throughout an L/U block. In particular,
the geometrical constraints ensure that the number of op-
erations scheduled at each clock cycle does not exceed the
number of available functional units, either before or after
reconfiguration.

The following five rules outline all synthesis constraints
introduced by L/U reconfiguration. The first rule inserts
band-delay constraints, while the last four rules correspond
to geometrical constraints. The notation j�ij denotes the to-
tal number of operations scheduled in band �; � 2 fL;Ug,

at clock cycle i.

1. If a U operation depends on the output of an L operation
which is executed at clock cycle i, the U operation must
be scheduled no earlier than clock cycle i+2.

2. If 9 i 2 fi : jLij + jUij = Ng, a staircase L/U band
partition line must be included and span vertically at
least from clock cycle j = min(i) to k = max(i), 8 i.
The section of an L/U block with a staircase partition
line is defined as the body. The space above the body
is defined as the head, and the one below as the tail.

3. (a) jLi+1j = jLij+ 1; 8 i 2 body

(b) jUi+1j = jUij � 1; 8 i 2 body

4. (a) jLij < jLbeginningof bodyj; 8 i 2 head.
(b) jUij � jUbeginning of bodyj; 8 i 2 head.

5. (a) jUij < jUendof body j; 8 i 2 tail.
(b) jLij � jLendof bodyj; 8 i 2 tail.

2.4 Reconfiguration for Heterogeneous Hard-
ware Classes

When multiple classes of functional units are present,
the L/U reconfiguration scheme can be directly applied to
each homogeneous hardware class. In the current imple-
mentation, a homogeneous L/U block cutting approach is
accompanied with a synchronous rescheduling approach.
All hardware classes have their L/U block cuts at the same
set of clock cycles, and rescheduling is simultaneously per-
formed in all classes even though only one class contains
a faulty unit. Figure 5 shows the resulting scheme when
these two approaches are used. Although figure 5 shows
rebinding on both hardware classes, rebinding needs to be
performed only in the class with the faulty unit. When a
second fault hits another hardware class, only rebinding is
executed in that class. No further rescheduling is required.
We can thus conclude that the L/U reconfiguration scheme
can tolerate one fault per hardware class.

Hardware
Class 1

Hardware
Class 1

Hardware
Class 2

Hardware
Class 2

Before Reconfiguration

After Reconfiguration
Figure 5: Homogeneous block cutting and synchronous
rescheduling.

The homogeneous block cutting and the synchronous
rescheduling approach reduce both the hardware and per-
formance overheads. First, the proposed approaches reduce
controller overhead by sharing the same core finite state
machine [1] for various classes. Second, except for the
band-delay constraints within each homogeneous hardware
class, the proposed approaches do not impose any additional
design constraints across L/U blocks and hardware classes.



3 Synthesis Procedure
High-level synthesis (HLS) procedures typically con-

sist of three major steps: hardware allocation, operation
scheduling and hardware binding. This traditional three-
step procedure is, however, insufficient for handling the
complex algorithmic information required to produce recon-
figurable designs. In our HLS procedure for generating L/U
reconfigurable ASICs, functional unit allocation is specified
by the user as an input constraint. Then, the algorithm per-
forms L/U partitioning, scheduling and block cutting one
block at a time. After successful L/U block scheduling,
hardware binding can be performed to complete the synthe-
sis procedure.

3.1 L/U Block Scheduling
The L/U block scheduling algorithm performs three tasks:

(1) divide all operations into L and U bands, (2) schedule
all operations while conforming to band-delay constraints,
and (3) determine homogeneous block cuts for all hardware
classes. Figure 6 shows the iterative L/U scheduling algo-
rithm, which cuts, partitions and schedules L/U blocks for
all hardware classes simultaneously in a top-down fashion.

At first, a tentative block height is estimated, and all op-
erations that can be potentially scheduled within this block
are identified. The next step partitions these operations into
L and U by using the Kernighan-Lin algorithm [4] with two
partitioningcriteria: (i) the L-to-U dataflow is minimized so
that the number of band-delay constraints can be reduced;
(ii) the L and U bands are forced into their respective tri-
angular shapes and sizes by using scheduling probability
distributions [9].
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Figure 6: The L/U block scheduling algorithm.

After successful L/U partitioning, band-delay constraints
are inserted between operations with L-to-U data depen-
dence by modifying their scheduling intervals. The initial
scheduling intervals are obtained from ASAP and ALAP
scheduling. Band-delay constraints are enforced by setting
the scheduling interval of the U operation to start and to
terminate two clock cycles behind the scheduling interval
of the L operation.

The next step schedules all operations within the tenta-
tive block height based on the modified scheduling intervals.
The list-based algorithm is chosen [9] to perform a resource-
constrained scheduling. One modification to the original
list-based algorithm is to check on any band-delay con-
straint violation while preparing the ready operation list. If
scheduling fails, the algorithm backtracks by perturbing the
existing L/U partitioning (exchanging a few nodes), insert-
ing the subsequent band-delay constraints, and performing
another scheduling.

A successful schedule may exceed the tentative L/U block
height. L/U block scheduling for different hardware classes
may terminate at disparate clock cycles. A final homoge-
neous block cut must be determined. This task is performed
by a pattern matching algorithm which searches for a legit-
imate L/U block format with maximal block height for the
successful schedule. Operations excluded from the current
L/U blocks (one per hardware class) will be reconsidered by
the subsequent blocks. If no successful block cut is secured,
the algorithm backtracks to L/U partitioning.

4 Experimental Results
We have randomly generated several DFGs to demon-

strate the performance and hardware efficiency of the L/U
reconfiguration scheme. Two algorithmic DFGs are also
included: the elliptic filter (EF) with homogeneous hard-
ware classes (ALUs) and a 3 � 3 Fast Fourier Transform
(FFT). All experimental results (performance comparisons
only) are given in table 1, and the final L/U partitioning and
schedule of the FFT example are given in figure 7.

To measure the performance overheads of the L/U re-
configuration scheme, two types of comparisons are made.
First, the speed performance of reconfigurable designs is
compared against optimal non-fault-tolerant (NFT) designs.
As compared to the optimal NFT designs (manually con-
structed), pre-reconfiguration performance overhead of the
reconfigurable designs is 0.0%. Post-reconfiguration per-
formance of the reconfigurable designs (also compared to
the optimal NFT designs) has on average an 8.2% over-
head. Pre-reconfiguration comparisons are made between
the reconfigurable designs (column 10) and the optimal NFT
designs with comparable hardware resources (column 6).
Similary, post-reconfiguration comparisons are made be-
tween the reconfigurable designs (column 11) and the opti-
mal NFT designs with a single hardware unit from various
classes removed (column 7 to 9).

In the second type of comparisons, the pre- (column 10)
and post-reconfiguration (column 11) performances of the
reconfigurable designs are compared to yield the degrada-
tion percentages (column 12). On average, this performance
degradation is 30.2%. This degradation is, however, mainly
contributed by the reduction in hardware resources.

Figure 7(a) shows the DFG performing the 2-D 3�3 FFT.
The L/U band partition and the pre-reconfiguration sched-
ule are shown in Figure 7(b). To complete all operations
in five clock cycles (critical-path length), eight adders, six



resource Number of clock cycles Performance overhead %
DFG No. alloc. Non-fault-tolerant L/U Reconfig. w.r.t. non-fault-tol.

nodes + � - full rm+ rm� rm- full rec. %deg. full rm+ rm� rm-

DFG1 15 3 – – 6 8 – – 6 8 33.3 0.0 0.0 – –
DFG2 21 5 – – 6 7 – – 6 7 16.7 0.0 0.0 – –
DFG3 27 3 – – 10 14 – – 10 14 40.0 0.0 0.0 – –
DFG4 33 3 3 – 7 8 10 – 7 10 42.9 0.0 25.0 0.0 –
DFG5 40 4 3 – 10 11 12 – 10 13 30.0 0.0 18.2 8.3 –
DFG6 39 3 3 3 5 7 7 6 5 8 60.0 0.0 14.3 14.3 33.3
DFG7 47 3 3 3 9 10 10 9 9 11 22.2 0.0 10.0 10.0 22.2
EF 34 4 ALUs 14 15 (with 3 ALUs) 14 15 7.1 0.0 0.0 0.0 0.0
FFT 49 8 6 5 5 6 6 6 5 6 20.0 0.0 0.0 0.0 0.0

Average 30.2 0.0 8.2

Table 1: Experimental results.

multipliers and five subtracters are allocated. The whole
computation process is included in one level of L/U blocks
that results consequently in a post-reconfiguration perfor-
mance overhead of one clock cycle only.

5 Conclusion
A novel graceful degradation scheme and an associated

high-level synthesis methodology have been presented. Our
approach can be applied to general ASICs with multiple
hardware classes and irregular datapath structures. Small
performance degradations are achieved, in conjunction with
(1) the synthesis algorithm and (2) the novel reconfiguration
scheme, due to aggressive exploitation of under-utilizations
embedded in DFGs. The advantages of the proposed grace-
ful degradation technique include superior pre- and post-
reconfiguration hardware utilization, instant reconfigurabil-
ity, and small hardware and performance overheads.
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Figure 7: The 3 � 3 FFT example: (a) The dataflow graph. (b)
The L/U partition and schedule before reconfiguration.
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