
Abstract

Concurrent verification of hardware and software as part
of the development process can shorten the time to
market of complex systems. The objectives of the Virtual
CPU approach is to provide a solution for code
development in a simulation environment before the
system prototype is ready. The VCPU is an ideal solution
for processor-based systems that include multiple new
ASICs and boards, in which the hardware, diagnostics
and software drivers must be developed concurrently.

1 Introduction

Typical hardware development is based on a Hardware
Description Language (HDL) which is used for modeling
the hardware. The hardware model is simulated on a
Hardware Simulation Engine (HSE), for example,
Verilog XL, VCS or PureSpeed. A hardware modeling
technique provides a very accurate representation of the
hardware, as this is the hardware design entry point from
which the ASICs are synthesized and the board layout is
derived. The system model is usually available months
before the system prototype exists.

The motivation is to provide for the software developers a
fast and convenient interface to the Hardware Simulation
Engine. The software code, written in ‘C’, can be
compiled and run on any local or remote workstation
which acts as a Virtual processor. During execution,
when a reference is made to a memory location modeled
by the HSE, the environment invokes the HSE to execute
the reference. In addition, the code accepts responses for
read transactions as well as interrupts from the HSE.

The interface between the software program and the HSE
is abstracted by a transaction model so it is not limited to
the processor bus. This abstraction enables software
access to any bus within the system. In hardware
development, where some ASICs or subsystems may be
ready sooner than others, this becomes important, since
simulations can be run even before the processor
subsystem is ready for simulation. Another advantage of
such an abstraction is that it makes it possible to co-

simulate software with smaller configurations of the
hardware, thus increasing the simulation speed of the
HSE. The software program should be allowed to run
only as long as the code accesses the address space within
the hardware configuration.

The fact that the software is running on a workstation
allows the programmer to use familiar software
development and debugging tools, and to debug the
hardware model at the same time. In some cases
companies start system development even before the
processor hardware is available, which enables the
concurrent development of the system and the processor
itself.

This paper describes the interface between the
verification environment and “real code” which is
designed to run on the “real machine”. This interface
allows for hardware and software co-verification.

2 The System Verification Environment
Logically, the verification environment is broken into two
portions as described in figure 1:

Figure 1: the programmer interface model

The link between the two portions is implemented by a
special layer called the API. As shown, the API is
distributed between both portions of the verification
environment.

The challenge is to be able to co-simulate diagnostics and
application programs in conjunction with the system
model and verification environment. Although, the
verification environment supports several configurations
of the system model, all configurations share the same
API. The purpose of the API is to provide a transparent

A
P
I

A
P
I

CPU Model (Software)The rest of the system (HSE)

Software Development in a Hardware Simulation Environment

Benny Schnaider Einat Yogev
MayaLee Consulting Cisco Systems
Santa Clara, CA 95050 San Jose, CA 95134
bennys@netcom.com eyogev@cisco.com

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

interface to the underlying environment. In other words,
the user’s program requires almost no modifications
when migrating between environments (in most cases just
re-linking is required, in others re-compilation might be
needed.)

Several simulation configurations are supported and each
environment requires a different implementation of the
API layer. The decision of which specific environment to
use varies according to trade-offs between simulation
throughput, simulation accuracy and convenience. A
system verification environment supports two classes of
configurations: a Cycle-accurate CPU model and a
Virtual CPU model.

2.1 Cycle-accurate CPU model
In this class of configurations, the user programs are
cross-compiled into target machine objects. The objects
are loaded directly into the CPU memory image, as part
of the initialization process of the simulation. Thereafter,
the programs are executed by the CPU just like they
would in the “real machine”. Hence, the simulation is
cycle-accurate and represents an accurate relation
between the progress of the user program and the rest of
the system.

There are several approaches for “Cycle-accurate” CPU
models for example: Instruction Set Simulator and
Hardware Modeler. In our environment, we are using an
hardware modeler as our “Cycle-accurate” environment.
In this solution (see figure 2), a real CPU is plugged into a
Hardware Modeler while the rest of the CPU board is
simulated in a verilog HDL environment. This is an
accurate simulation model since it provides cycle-
accurate simulation and precise synchronization between
the processor and the rest of the model. It requires cross-
compilation of source code for the target CPU. The
biggest disadvantage of this approach is that it is very
slow and complicated, from a software development
perspective.

2.2 Virtual CPU
The approach taken in this environment is that the
software runs on a Virtual CPU, for example a
workstation, which provides an execution environment
for the programs. User programs are written in a high
level language (C) and are loaded on the target Virtual
CPU. The mechanism built to interface between the
Virtual CPU and the design model helps verify the
algorithmic part of the user programs and the software-
hardware interaction.

One of the challenges of this approach is to be able to
synchronize between the CPU and the rest of the design
model. Note that speed (measured in Cycles Per Second)
of the Virtual CPU is much faster than the rest of the
simulation model. Several solutions for the
synchronization issues are discussed below.

As seen in figure 2, the Virtual CPU implementation is
based on a message protocol. The underlying transport
layer is UNIX socket Inter-Process Communication
(IPC). In this model, the CPU simulation model is
separate from the rest of the simulation environment. The
simulation environment is comprised of two distinct

processes. The link between the two is accomplished by
means of socket communication. The peers of the socket
connection are special PLIs on the Verilog simulation
side and the C-API layer on the other side.

On the HSE side, the interface to the design model is done
through a bus model, and for this purpose any bus model
written with a read/write/interrupt task interface can be
used. This provides a way to apply the “real code” to
various configurations of the design model, sometimes
before the entire system design is complete, and not
necessarily on the processor bus itself.

On the programmer’s side of the socket interface, the
code interfaces with an API layer which is used in the
simulation environment. This layer may be replaced by
different sets of service routines when running in the real
system.

Figure 2:

System model interface to tests and programs

3 API
The purpose of the API is to provide a transparent
interface between user programs and the underlying
simulation environment. The API provides the following
benefits:

• Smaller development effort

• Use of a single source code for both production and
verification

• Hiding of the “low-level” interface details from the
programmer

A special API library is implemented for software
running on the design model.

System
Model
(Verilog)

user
code
compiled
on HW
Modeler

processor
bus

System
Model
(Verilog)

UNIX Socket

user
code
(C)

V
erilog B

us-
M

odels

Using the HW modeler, the real processor co-exists with

Virtual CPU runs as a separate process, and interfaces

the HDL simulation model

to the same bus model used by the Verilog tests

The API is comprised of the following interfaces. Some
examples are given in table 1.

3.1 Memory Access
All CPU accesses to any registers or memory locations
within the design model are based on the same interface.
Each access consists of address, data, size and special
options.

3.2 High Level APIs
These APIs provide high level operations on the model.
Although all the high level operations can be
implemented as a combination of register and memory
accesses, it can be useful to have higher level APIs. The
main reason is the fact that these APIs can be
implemented more efficiently, depending on the
environment. For example, during initialization, it might
be useful to copy the memory image of the internal tables
(e.g. buffer memory, routing tables, etc.) instead of using
a sequence of individual accesses.

3.3 Interrupt Interface
The interrupt interface allows the HSE to trigger
interrupts to the Virtual CPU. The API detects interrupts
either synchronously by polling, or asynchronously by
using OOB (Out Of Band) socket signaling.

The VCPUinterrupt call instructs the API to call a
callback function (callback is a pointer to a function). It is
recommended that the callback function point (potentially
indirectly) to the “real” ISR (Interrupt Service Routine).
Note that the interface for the callback function might be
different for the “real-hardware”, as some of the ISR is
written in assembly language and directly interfaces to
the “real CPU” registers.

3.4 Link to Verilog Code
In some cases, the high level program needs to call
Verilog tasks/functions. Typically, these cases involve
triggering and monitoring internal events in the simulated
model. The VCPUcallVerilog API, improves the
controllability and observability of the verified design,
and saves significant amounts of simulation time. This
back-door interface is used primarily for debugging and
should consequently be removed from the code running
on the real machine.

In order to facilitate this requirement, the API provides a
mechanism for the program to call verilog tasks/functions
directly. For simplicity, the linkage to the Verilog task is
done by mapping numbers into tasks/function calls.

TaskNumber is an integer which maps into a Verilog
task/function list. The rest of the parameters are passed
directly to the corresponding task/function. Note that
parameters are passed by reference, which enables

parameters to be used for both input and output. The
semantics of input/output depends on the TaskNumber.
The list of task numbers and their semantics is expected
to grow based on ad-hoc requirements.

3.5 Synchronization
The user program running in the Virtual CPU
environment runs much faster than the Verilog process.
Synchronization is required to keep the VCPU and the
HSE in sync and always occurs on machine cycle
boundaries. The API supports several synchronization
modes:

Free running: In this mode, the Virtual CPU and the
HSE are free running processes and interact in their
interface points (e.g., read, write and interrupt
transactions) only. The C-API blocks on every access
until the operation is completed on the HSE side. For
example, in case of write access, the Virtual CPU clocks
at the beginning of the write operation and resumes only
after the write cycle is completed. This is the default
synchronization mode.

Lock Step: The Virtual CPU specifies the number of
cycles that need to be run until the next synchronization
point. The amount of synchronization time required is
passed implicitly with every read/write operation or
explicitly when the program asks for the delay.

None: No synchronization. The Virtual CPU gets control
back as soon as the call is sent to the “other” simulation
environment.

3.6 Processor specific interfaces
This set of interfaces is used for referencing CPU
resources such as registers and caches. Typically, these
commands are emulation of target processor assembly
instructions and require change in the user code.

Table 1: API examples

API Type Examples

Memory
Access
commands

VCPUread(addr, data, size, option)

VCPUwrite(addr, data, size, option)

Interrupt
interface

VCPUinterrupt (callback, intrNum, param)

Link to
verilog
code

VCPUcallVerilog(TaskNumber, param1,...)

Synchroni-
zation

VCPUsetSimMode (simMode)

Processor
commands

MIPScp0Write(adrs, data)

MIPScp0Read(adrs, data)

4 HSE Interface Implementation
The implementation of the Virtual CPU interface in the
HSE is divided into three layers: the PLI (Programmer
Language Interface) layer, the bus-independent layer and
the bus-dependent layer as illustrated in figure 3.

 Figure3: HSE Interface

PLI layer :

The PLI layer provides the socket interface to the Virtual
CPU on one side and the interface to the HSE on the other
side. It is written in “C” and implemented as a PLI code
which is linked into the verilog image.

Bus-independent layer:

This layer is activated whenever the VCPU needs to
interact with the HSE. It is implemented as a Verilog stub
which is instantiated as part of the top level of the design.
This is a generic layer which relies on a bus model (the
bus-dependent layer) to execute the VCPU requests. The
separation of bus-dependent and bus-independent layers
adds the flexibility of connecting the VCPU interface to
several places in the design as illustrated in figures 4 and
5. The decision of where to connect the interface depends
on the availability of the hardware models and the
specific requirements from the environment.

Bus-dependent layer:

This layer is basically a bus model that implements the
read/write accesses to the hardware. In most cases, this
bus model is required for other purposes (e.g., Hardware
design verification). The interface between the bus-
dependent and bus-independent layer is based on a
predefined task interface. The bus dependent layer
enables easy migration between different buses without
modifying the bus-dependent layer

Figure 4: Block diagram of a typical system

Bus
Independent

Layer

P
L
I

API
User
Code

Bus
Dependent

Layer
System

CPU Memory
Control

Subsystem

Application
Hardware

I/O
Subsystem

Figure 5: Subsystems with related bus models

5 Performance
For the most part, the simulated program is executed on
the Virtual Processor. However, some instructions are
emulated and are executed remotely on the HSE. The
Virtual Processor speed is around 100 million instructions
per second where the HSE is running in the range of 1-100
instructions per second. Hence, the more instructions that
are executed on the Virtual processor, the faster the overall
performance will be.

This implies that the actual performance gain depends on
the ratio of the total number of instructions versus the
number of instructions that need to be emulated on the
HSE. Moreover, when data cache is modeled on the
Virtual Processor, the ratio of local versus emulated
instructions increases even more due to cache hits.

To evaluate this, we ran some performance analysis on
some of our test cases. Table 2 summarizes the results as
measured by the profiling tool.

Notes:

• The acceleration ratio varies substantially and greatly
depends on the underlying test.

• I/O is comprised of operations like printf and file read/
write.

• In the case of T3 we discounted the time used for User
Interface interactions.

Application
Hardware

I/O
Subsystem

Memory
Control

Subsystem

App
Bus

Model

IO
Bus

Model

Proc
Bus

Model

6 Pros and Cons
In this section we compare the Virtual CPU approach to
the cycle-accurate approaches (e.g., HW modeler).

Speed - As discussed above, the overall speed of the
VCPU solution is 20 to 35,000 faster then HW modeler
depending on the test case. This is definitely an advantage
for the Virtual CPU since the relatively high speed
enables some applications that would otherwise be
impossible implement (e.g., User Interface driven
diagnostics).

Programming environment - The Virtual CPU
development environment is very similar to the
traditional software development environment. With the
hardware modeler, the programmer can not use tools like
debuggers and requires substantial knowledge of the HSE
environment.

Code modifications - Currently, the Virtual CPU
requires modification of the code for each reference to the
HSE. This requirement creates a problem for existing
code and is not convenient for programmers. In our future
work we intend to eliminate this limitation.

Accuracy - There are two elements associated with
accuracy: inter- and intra-cycle timing. The intra-cycle
timing accuracy is dictated by the quality of bus model
and is typically very accurate. On the other hand, the
inter-cycle timing accuracy is limited since the program is
running on a Virtual processor which is far faster (100
Million to 1) than the HSE. Our experience has been that
this is not an issue as we are using other design
verification methodologies for testing intra-cycle timing.
The most noticeable methodology is transaction
interaction tests.

Table 2: Instruction ratio

Na
me Type

Total
Instruc-

tions

IO-
Non

Cache

Cac
he
hit

Ratio

L1 A loop
involving
1 pointer
and two
counters.

20 1 0 20

T1 Short diag.
w/o I/O

4112 77 73 53

T2 Short diag.
with I/O

2693326 77 73 34978

T3 Medium
diag. w/o
I/O

1159890 815 0 1423

Assembly code - The Virtual CPU does not support
simulation of the code written in machine language of the
target processor. Although the VCPU API provides
interface for specific assembly instructions, users still
need to rewrite their code containing assembly
instructions.

Processor resources - Modern processors are comprised
of several resources (e.g., caches, TLBS). The current
implementation of Virtual CPU support for these
resources is limited, but it is our intention to add more
support for these (see future work).

Virtual machine differences - Some of the processor
operations may differ between the Virtual and the target
processor. For examples: arithmetic operations, byte
order and pointer sizes. In our environment, these
differences have not been an issue.

Because of some of the cons described above, we are still
using the Hardware modeler for “final” testing and for the
tasks that are hard to model on the Virtual CPU.

7 Further Work
In a co-simulation environment of hardware and software,
as described above, the overall performance is always
limited by the HSE speed. The code running on a
workstation slows down to the HSE speed any time there
is an interaction with the hardware simulator. Simulation
performance that may be acceptable for diagnostics
development may not be sufficient for developing the
entire application code. It is likely that in the near future a
VCPU interface to hardware accelerator or emulator will
be implemented, increasing the HSE speed by several
orders of magnitude.

For systems that consist of multiple processors, the dual
process environment for HSE and VCPU can be scaled
further to allow multiple VCPU processes running
concurrently with one hardware simulation model.

We are currently working on interfacing the API to the
target processor instruction set simulator (ISS). With such
a configuration, the code will be cross compiled to run on
the ISS, and the ISS will directly run the machine code
with a similar API interfacing the HSE. This will provide
a more accurate representation of the system and will also
enable us to run assembly code and provide a solution for
microcode development.

In addition, we are improving our modeling of internal
CPU resources such as TLBS.

8 Conclusions
The Virtual CPU approach provides a framework for
concurrent engineering. Software can be developed and
tested early on in the design process. Typically, this
environment is used for the platform-dependent, low-
level software development. The software developed in
this environment is also used to validate the hardware
design. The simulation performance (measured by
simulation cycles per second) can be increased by a factor
of 4-10, since the simulated design on the HSE is smaller.
For software development, this environment is
convenient, since traditional tools (for example,

compilers and debuggers) can be used for development.
The Virtual CPU environment is also faster by a factor of
20 to 50,000 relative to the current co-simulation
methodologies (e.g. HW modeler).

References
[1] Stevens UNIX Network ProgrammingPTR Prentice
HAll Englewood Cliffs, New Jersey 07632, 1990

[2] Berkeley 1986b, UNIX Programmer’s Reference
Manual (PRM) 4.3 Berkeley Software Distribution,
Computer System Research Group, Computer Science
Division, Univ. of California, Berkeley, Calif., Apr. 1986.

[3] Verilog Hardware Description Language Reference
Manual (LRM). Draft, IEEE 1364 November, 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

