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Abstract
We propose three static compaction techniques for test sequences
of synchronous sequential circuits. We apply the proposed tech-
niques to test sequences generated for benchmark circuits by var-
ious test generation procedures. The results show that the test
sequences generated by all the test generation procedures consid-
ered can be significantly compacted. The compacted sequences
thus have shorter test application times and smaller memory
requirements. As a by-product, the fault coverage is sometimes
increased as well. More importantly, the ability to significantly
reduce the length of the test sequences indicates that it may be
possible to reduce test generation time if superfluous input vec-
tors are not generated.

1. Introduction
Compaction of test sequences for synchronous sequential circuits
has been considered in [1-3]. The static compaction procedures
in [1,2] start from sets of test sequences, produced by generating
a separate test sequence for each fault or subset of faults. They
use overlapping and reordering of the individual test sequences
to produce a single test sequence of minimal length. The proce-
dure of [3] is a dynamic compaction procedure, i.e., it incorpo-
rates into the test generation procedure heuristics aimed at pro-
ducing a short test sequence. In this work, we present three
static compaction procedures applicable to the case where a sin-
gle test sequence is given. The test sequence can be generated
directly by test generation procedures such as [3-6], or after
using the procedures of [1,2] to combine individual test
sequences into a single sequence. Static compaction implies that
compaction is done as a postprocessing step, independent of the
test generation process. Static compaction has two useful fea-
tures. (1) Unlike dynamic compaction, static compaction does
not require any modifications to the test generation procedure.
(2) Since dynamic compaction is based on heuristics and does
not achieve the minimum test length, static compaction is useful
even after dynamic compaction is used, to further reduce the
length of the test sequence. The effectiveness of the proposed
procedures on benchmark circuits is compared to identify the
most effective static compaction procedure among the three pro-
cedures investigated in this work.
_____________
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The motivation for studying test compaction is twofold.
First, by reducing test sequence length, the memory require-
ments during test application and the test application time are
reduced. Second, the extent of test compaction possible for
deterministic test sequences indicates that test pattern generators
spend a significant amount of time generating test vectors that
are not necessary. The compacted test sequences provide a target
for more efficient deterministic test generators.

In trying to compact a given test sequence, we face the
following problem, that does not exist when performing static
test compaction for combinational circuits. Consider a test
sequenceT = (t0t1

. . . t L−1), whereti is the input vector applied at
time unitui . If we remove or modify a vectorti , then every fault
detected byT after timeui may potentially be left undetected.
This is because fault detection requires a sequence of test vectors
that may be disturbed whenti is removed or modified. As a
result, after changing the test sequence, we must perform fault
simulation to ensure that the change has not reduced the fault
coverage. It is interesting to note that by modifying the
sequence, additional faults may be detected that were not
detected by the original sequence. Thus, modification of a test
sequence may serve not only to reduce its length, but also to
increase its fault coverage. To capture these effects of reduc-
ing/increasing the fault coverage, fault simulation must be car-
ried out. Thus, all three compaction procedures proposed here
require large numbers of fault simulations. However, since fault
simulation time is small compared to test generation time [5], we
believe that the gain in test length reduction and the potential
increase in fault coverage justify the investment in additional
fault simulation time. Furthermore, the compaction achieved in
the work presented here could lead to methods to develop more
efficient ATPGs for sequential circuits.

The paper is organized as follows. Section 2 contains
definitions and notation used throughout this work. In Section 3
we present a compaction procedure based on an insertion opera-
tion that duplicates subsequences of the test sequence and inserts
them into the test sequence at specific positions. In Section 4 we
present a compaction procedure based on omission of vectors.
In Section 5 we present a compaction procedure based on selec-
tion of a minimal subset of subsequences sufficient to detect all
the faults detected by the original sequence. Section 6 includes
experimental results and a comparison among the three proce-
dures. Section 7 concludes the paper.

2. Definitions and notation
To describe the compaction procedures we use the following def-
initions and notation.

A test sequenceT is represented asT = (t0t1
. . . t L−1),

whereti is the input vector applied at time unitui .
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The subsequence ofT between time unitsuj and uk is
denoted byT[uj , uk]. We haveT[uj , uk] = (t j

. . . tk).
The state of the fault free circuit at timeui is denotedSi .

The initial stateS0 is the all-unspecified (all-x) state in our
experiments.

The output vector of the fault free circuit at time unitui is
denotedzi .

The set of target faults (collapsed single stuck-at faults) is
denoted byF. The set of faults detected by a given test sequence
T is denoted byFdet.

For every faultf ∈ F we denote bySf
i and zf

i the state
and output vector of the faulty circuit at timeui , respectively.
We also define thecombined fault-free/faulty state Si /S

f
i at time

ui .
The time unit where a faultf ∈ Fdet is detected for the

first time is denoted byudet( f ).
The effective test length Leff of T is the minimum length

of a subsequence ofT that starts at time 0 and includes the detec-
tion time of every detected fault, or

Leff = max {udet( f ): f ∈ Fdet} + 1.

3. Compaction based on an insertion operation
In this section we describe a test compaction method based on
the following operation. Consider a faultf ∈ Fdet with detec-
tion time udet( f ). Let uj and uk be two time units such that

uj < uk ≤ udet( f ), and such thatSj /S
f
j = Sk/S

f
k (i.e., Sj = Sk and

Sf
j = Sf

k ). SinceSj /S
f
j = Sk/S

f
k , T[uj , uk−1] only serves to take

the fault-free/faulty circuits back to their states at timeuj , andT
detects f even if we omitT[uj , uk−1] from T, to obtain the
sequenceT[u0, uj−1] o T[uk, uL−1] ( o stands for concatenation
of subsequences). Under the proposed operation, we define a
new test sequence where faultf is detected earlier, as follows.
The subsequenceT[uk, udet( f )] is duplicated and inserted at time
uj . As a result, the detection time off is reduced fromudet( f ) to
udet( f ) − (uk − uj ). The remaining part of the sequence,
T[uj , uL−1], is pushed to the right. The new test sequence is

T′ = T[u0, uj−1] o T[uk, udet( f )] o T[uj , uL−1].
We refer to this operation as theinsertion operation. The inser-
tion operation increases the total length of the test sequence,
however, it allows to reduce its effective length by reducing the
highest detection times. The shorter sequenceT[u0, uLeff−1] is
then used instead ofT. The following example demonstrates the
insertion operation.
Example: Consider the test sequence of ISCAS-89 benchmark
circuit s27 shown in Table 1. The detected faults and their
detection times are shown in Table 2. The total number of faults
detected by this sequence is 28. Simulating the fault 6/1, we find
that the combined fault-free/faulty states are identical at times 17
and 19. In addition, we know that the fault is detected at time 19.
The insertion operation insertsT[19] = (0110) at time 17, push-
ing T[17, 19] by one time unit to the right. The resulting
sequence is shown in Table 3. The change affects faults 6/1 and
24/1, with detection times 19 (other detection times are prior to
the change we have made in the sequence and therefore are not
affected by it). The detection times for the modified sequence
are shown in Table 4. Both faults 6/1 and 24/1 that previously
had detection time 19 are now detected at time 17. In addition,
fault 19/1 that was not detected previously is detected at time 18
after the change. The result of the insertion operation is thus to

reduce the effective test length by one and to increase the num-
ber of detected faults by one.

Table 1: A test sequence ofs27

i 0 1 2 3 4 5  6 7 8 9
ti 0011 1101 0011 0011 1110 0011 1011 0001 0011 0110

i 10 11 12 13 14 15 16 17 18 19
ti 0011 1011 0010 0100 0111 11100101 1000 0000 0110

Table 2: Detection information

i { f : udet( f ) = ui }
1 2/0 9/1 14/1 18/1 20/0 21/1 26/0
3 3/0 4/0 8/0 9/0 11/0 12/0 15/1 21/0 25/1 26/1
4 8/1 13/1
5 5/0 25/0
7 22/0
9 14/0 16/0 17/0 24/0
19 6/1 24/1

Table 3: The test sequence after an insertion operation

i 0 1 2 3 4 5  6 7 8 9
ti 0011 1101 0011 0011 1110 0011 1011 0001 0011 0110

i 10 11 12 13 14 15 16 17 18 19 20
ti 0011 1011 0010 0100 0111 11100101 0110 1000 0000 0110

Table 4: Detection information for the modified sequence

i { f : udet( f ) = ui }
1 2/0 9/1 14/1 18/1 20/0 21/1 26/0
3 3/0 4/0 8/0 9/0 11/0 12/0 15/1 21/0 25/1 26/1
4 8/1 13/1
5 5/0 25/0
7 22/0
9 14/0 16/0 17/0 24/0
17 6/1 24/1
18 19/1

After performing an insertion operation, additional inser-
tion operations using the new sequence can further reduce the
effective test length and increase the fault coverage. The pro-
posed test compaction procedure applies the insertion operation
iteratively, until no additional improvements in effective test
length and fault coverage can be obtained. A guaranteed reduc-
tion in effective test length can only be achieved if the highest
detection times are reduced, by performing the insertion opera-
tion for faults such thatudet( f ) = Leff − 1. Nevertheless, we con-
sider all the faults, since by moving a lower detection time, it
may become possible to reduce the highest detection times fur-
ther than in the original sequence. In addition, a fault with a high
detection time may be detected earlier, or other faults, not
detected by the test sequence, may be detected by applying the
insertion operation to a fault withudet( f ) < Leff − 1. We use the
following considerations in designing the compaction procedure.

The previous example demonstrates how the insertion
operation can reduce the effective test length and increase the
fault coverage of a given test sequence. The insertion operation
ensures that the fault for which it is performed is still detected
after the operation is performed and that its detection time is
reduced. However, another fault detected by the sequence may
not be detected after insertion is performed. For example, con-
sider a faultf1 with equal states at timesuj anduk and a faultf2
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with detection timeudet( f2) ≥ uj . The insertion operation applied
to f1 changes the subsequenceT[uj , uL−1], and the new sequence
may not detectf2. To minimize this effect, we perform the
insertion operation starting with faults that have the highest
detection time, and reduce the detection time considered only if
no additional insertion operations are possible for faults with the
currently considered detection time. We also select the timesuj

anduk where the combined fault-free/faulty states are the same
such thatuk is as high as possible, and if a choice exists,uj is
also as high as possible. To guarantee that the fault coverage is
not reduced, we do not accept an insertion operation that reduces
the fault coverage. If fault simulation after insertion reveals that
the fault coverage is lower than before, we restore the test
sequence before insertion and proceed to consider other faults.

From our experiments we found that an insertion opera-
tion that does not reduce the effective test length or even
increases it may be effective in allowing a later change to reduce
the effective test length below what is otherwise possible. We
thus allow insertion operations that (temporarily) increase the
effective test length. We always store the best result obtained so
far to ensure that at the end of the process we can recover the
earlier test sequence if it is shorter.

Several parameters are used to limit the run time of the
procedure. An upper boundLmax is imposed on the total test
length. Note that each insertion operation increases the length of
the sequence, even if it reduces its effective length. By setting a
bound on the total test length, we limit the number of insertion
operations that can be performed. Another boundNno−improve

ensures that at mostNno−improve consecutive insertion operations
are done that do not improve the fault coverage and/or reduce the
effective test length. AfterNno−improve such operations, the proce-
dure terminates.

Every time an insertion operation is accepted (i.e., it does
not reduce the fault coverage), fault simulation is performed,
detection times for all faults are determined, and the faults are
considered again, starting with the one that has the highest (new)
detection time. An insertion operation that is not accepted is can-
celed and the next fault is considered. If all faults are considered
and no insertion operation is accepted, the procedure is termi-
nated. The procedure is referred to as Procedure 1.

The simulation procedure used in Procedure 1 does not
have to consider faults that were not affected by the insertion
operation. If insertion is performed based onuj , uk andudet( f ),
then a faultg with udet(g) < uj is not affected by the insertion
operation and does not have to be simulated.

We show in Section 6 that compaction based on the inser-
tion operation is effective in reducing the effective test length
and increasing the fault coverage of test sequences generated by
various test generation procedures. The main disadvantage of
compaction based on the insertion operation is that the number
of fault simulations it requires to achieve the minimum test
length cannot be bounded. We found that in many cases, a
sequence of insertion operations is required that do not improve
the fault coverage and possibly increase the effective test length,
before an additional insertion operation can reduce the effective
test length below its original level and/or increase the fault cov-
erage. Due to the intricate relationships between insertion opera-
tions, heuristics for reducing the number of insertion operations
and hence the number of fault simulations are difficult to derive.
We therefore prefer the structure of Procedure 1 where the num-
ber of fault simulations is arbitrarily limited by setting an upper

bound on the number of insertion operations that do not yield an
improvement.

4. Compaction based on vector omission
The compaction method described in this section is based on
omission of test vectors from the given sequence. Omission of
redundant vectors was considered before for combinational cir-
cuits under stuck-at faults and under path delay faults. Here, it is
considered in the context of synchronous sequential circuits.

The omission of a vectorti affects the detection of the
faults { f } for which udet( f ) ≥ ui . In addition, it may cause a
fault which is undetected whenti is included in the test sequence
to be detected afterti is omitted. These effects are taken into
account by fault simulating the sequence.

We consider the test vectors for omission in the order in
which they appear in the test sequence. Fori = 0, 1,. . . , L − 1,
we omit ti and recompute the fault coverage by simulating only
the faults withudet( f ) ≥ ui and the undetected faults. If the fault
coverage after omission is not lower than the fault coverage
before omission, we accept the change. Otherwise, we restoreti .

The omission of a test vectorti requires thatt j+1 would be
copied intot j for j = i , i + 1,. . . , L − 2. Instead of copying parts
of the test sequence every time a vector is omitted, we use the
simulation process described by Procedure 2. We use a variable
called omitted[i ]. omitted[i ] = 1 if vector ti is omitted, other-
wise, omitted[i ] = 0. If omitted[i ] = 0, conventional simulation
is carried out. If omitted[i ] = 1, simulation underti is not
required and the present state at timei + 1 is equal to the present
state at timei . Procedure 2 is described for a single faultf .
Procedure 2:Fault simulation with omitted vectors
(1) SetP andPf to be the all-unspecified initial states.
(2) Seti = 0.
(3) If omitted[i ] = 0:

(a) Apply to the combinational logic of the fault-
free/faulty circuits the input valueti /ti and the
combined present-stateP/Pf .

(b) Obtain the combined outputzi /z
f
i and next state

N/N f .

(c) If zi ≠ zf
i , setudet( f ) = ui and stop.

(d) SetP/Pf = N/N f .
(4) Seti = i + 1. If i < L, go to Step 3.

The test compaction procedure is summarized next. Note
that if a vectorti cannot be omitted, then after omitting a vector
t j where j > i , it may become possible to omitti . To take advan-
tage of this observation, the test sequence after vector omission
is considered again, until no additional vectors can be omitted.
Procedure 3:Static compaction based on vector omissions
(1) Setomitted[i ] = 0 for every 0≤ i ≤ L − 1. Fault simulate

the test sequence and store the fault coverage inFC.
(2) Seti = 0.
(3) Set omitted[i ] = 1 and fault simulate the test sequence

(only undetected faults and faults withudet( f ) ≥ ui need
to be simulated).

(4) If the fault coverage is smaller thanFC, setomitted[i ] = 0
and restore the detection times prior to the omission of
vectori . Otherwise, store the new fault coverage inFC.

(5) Seti = i + 1. If i < L, go to Step 3.
(6) If omitted[i ] = 1 for any vectori , rearrange the sequence

by omitting the vectors withomitted[i ] = 1 and go to Step
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1.
In Step 3 of Procedure 3, we simulate only faults detected

at or after the omitted vector, and undetected faults. Faults
detected before the omitted test vector do not have to be resimu-
lated. To allow this saving in fault simulation, we must have the
values of {udet( f )} updated for the current test sequence. For this
reason, in Step 4 of Procedure 3, ifti cannot be omitted, then the
detection times are restored. This ensures that the values of
{ udet( f )} are updated. For simplicity, this feature is omitted from
the variation of Procedure 3 described below, and all the faults
are resimulated there.

We observed that when the sequence to be compacted is
long, there is a large number of input vectors at the beginning of
the sequence that can be omitted without reducing the fault cov-
erage. In addition, there are long subsequences of consecutive
vectors starting at arbitrary time units in the test sequence that
can be omitted. To take advantage of the existence of such subse-
quences and reduce the number of simulations performed by
Procedure 3, it is possible to use binary search. Binary search is
initiated starting from a vectorti that can be omitted. Initially,
the lower and upper bounds of the range to be omitted are set to
LB = i and UB = L − 1, respectively. We set
MID = (LB + UB)/2, omit the test vectors fromti to tMID , and
fault simulate the test sequence. If the fault coverage is reduced,
we setUB = MID − 1; otherwise we setLB = MID + 1. The
binary search terminates with the last vectort j such that
ti , ti+1, . . . , t j can be omitted. The advantage of binary search is
that instead of performing j − i + 1 simulations to omit
ti , ti+1, . . . , t j in Procedure 3, the binary search procedure per-
forms only  log 2( j − i + 1)  simulations. The procedure for
omitting vectors that uses binary search is referred to as Proce-
dure 4.

Procedure 3 (and its extension Procedure 4) can be
viewed as a reverse order fault simulation procedure that
attempts to omit vectors that were included to detect certain
faults, but are no longer necessary in order to detect those faults
once the test sequence is extended to detect additional faults. A
different view of reverse order fault simulation, that performs
simulation starting from the end of the sequence and keeps vec-
tors that are required to detect yet-undetected faults, is given at
the end of Section 5.

5. Compaction based on vector selection
The procedure described in this section proceeds as follows. For
every fault, it first collects all the subsequences of the given
sequence that detect the fault if the circuit starts from the all-
unspecified state at the beginning of the subsequence. A subse-
quence is represented by a pair (s, e), such that the subsequence
T[us, ue] detects the fault if the circuit is started from the com-
bined all-unspecified fault-free/faulty initial state at timeus.
After collecting all the subsequences that detect every fault, we
use a covering procedure to select a minimal subset of subse-
quences to detect all faults. Consider the following example.
Example: We considers27 under the test sequence shown in
Table 5. Fault simulating the sequence starting from time 0, we
find that fault 2/0 is detected at time 3, fault 3/0 is detected at
time 4, fault 4/0 is detected at time 4, fault 6/1 is detected at time
3, fault 7/0 is detected at time 9, and so on. The corresponding
subsequences are (0,3), (0,4), (0,4), (0,3) and (0,9).
Next, we start simulation from time 1, setting the combined
fault-free/faulty state at time 1 to the all-unspecified state. We
find that fault 2/0 is detected at time 9, fault 3/0 is detected at

time 10, fault 4/0 is detected at time 4, fault 6/1 is detected at
time 9, fault 7/0 is detected at time 9, and so on. The corre-
sponding subsequences are (1,9), (1,10), (1,4), (1,9) and (1,9).
For the fault 4/0 we now have two subsequences defined by (0,4)
and (1,4). Since the second subsequence contains the first one,
we omit the first and keep only (1,4). Similarly, for the fault 7/0
we only keep the range (1,9).
After considering every time unit as a starting point and finding
detection times for all the faults, we obtain the subsequences
shown in Table 6. We now select a subset of subsequences to
detect all faults. The subsequence (7,9) is necessary to detect
faults 7/0 and 15/0. The subsequence (3,5) is necessary to detect
fault 16/0. Once these subsequences are selected, additional
faults are covered, including 2/0, 6/1, 8/0, 9/1, and so on. The
subsequences for the remaining faults are shown in Table 7.
Next, we consider each one of the subsequences of Table 7, and
repeatedly select the best one. The best subsequence is the one
that, together with the subsequences already selected, covers the
largest number of remaining faults and requires the minimal
additional input vectors. For example, selecting subsequence
(0,4) detects six additional faults (3/0, 4/0, 9/0, 11/0, 12/0 and
15/1) and requires three additional vectors (t0, t1 andt2. t3 andt4
were already selected). Selecting subsequence (9,12) detects all
eight faults. For example, fault 3/0 is detected since (7,9) has
already been selected. By adding (9,12), we obtain the subse-
quence (7,12), containing the subsequence (7,10) that detects
3/0. In this case, we select the subsequence (9,12).
In summary, we selected the subsequences (3,5), (7,9) and
(9,12), to result in the new sequenceT[u3, u5] o T[u7, u12].

Table 5: Test sequence 2 ofs27

i 0 1  2 3 4 5 6 7 8  9
ti 1101 1011 0100 0111 0001 0100 1100 1111 0101 0011

i 10 11 12 13 14
ti 0011 0101 1101 1110 0100

Table 6: Test subsequences out of sequence 2 ofs27

fault subsequences fault subsequences

2/0 (0,3) (7,9) (10,12) 15/0 (7,9)
3/0 (0,4) (7,10) 15/1 (0,4) (7,10)
4/0 (1,4) (7,10) 16/0 (3,5)
6/1 (0,3) (7,9) 17/0 (3,5) (9,11)
7/0 (7,9) 18/1 (0,3) (7,9) (11,12)
8/0 (3,4) (8,10) (9,11) 20/0 (0,3) (5,6) (7,9) (11,12)
8/1 (3,6) (9,12) 21/0 (3,4) (9,10)
9/0 (1,4) (7,10) 21/1 (0,0) (6,6) (7,7) (12,12) (13,13)
9/1 (0,3) (7,9) (11,12) 24/0 (3,5) (9,11)

11/0 (1,4) (7,10) 24/1 (0,3) (7,9)
12/0 (0,4) (7,10) 25/1 (3,4) (9,10)
13/1 (3,6) (9,12) 26/0 (0,0) (6,6) (7,7) (12,12) (13,13)
14/0 (3,5) (9,11) 26/1 (3,4) (9,10)
14/1 (0,3) (5,6) (7,9) (11,12)

Table 7: Test subsequences for remaining faults

fault subsequences fault subsequences

3/0 (0,4) (7,10) 11/0 (1,4) (7,10)
4/0 (1,4) (7,10) 12/0 (0,4) (7,10)
8/1 (3,6) (9,12) 13/1 (3,6) (9,12)
9/0 (1,4) (7,10) 15/1 (0,4) (7,10)
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In the example above, we selected the subsequences inde-
pendently, without considering the faults detected when two
selected subsequences (s1, e1) and (s2, e2) are placed next to each
other. This saves the simulation effort required to identify such
faults, however, it may result in sequences that are longer than
necessary. In our implementation of the selection procedure,
after selecting a subsequence, we create a new test sequence
made up of the selected subsequences in the order by which they
appear in the original sequence. We then simulate the new
sequence to identify the faults that still need to be detected. For
example, suppose that the subsequences (9,11), (1,4), (7,9) (4,5)
are selected in this order. After selecting (9,11) and (1,4), we
simulate the sequenceT′ = (t1t2t3t4t9t10t11). After selecting
(7,9), we simulate the sequenceT′′ = (t1t2t3t4t7t8t9t10t11). After
selecting (4,5), we simulate the sequence
T′′′ = (t1t2t3t4t5t7t8t9t10t11). In every case, we drop the faults
detected and select the next subsequence based on the remaining
faults. Note that the faults detected byT′′ are not necessarily a
superset of the faults detected byT′, since the addition oft7 and
t9 may prevent certain faults, that were accidentally detected by
placing the subsequence (1,4) and (9,11) consecutively, from
being detected. However, by selecting additional subsequences
as long as undetected faults remain, we ensure that all faults are
detected by the final sequence obtained. The procedure is
referred to as Procedure 5.

Procedure 5 can be modified into a reverse order fault
simulation procedure that omits test vectors similar to Procedure
3. The advantage of the modified procedure compared to Proce-
dure 5 is a reduced number of fault simulations. The modified
procedure proceeds as follows. Starting from time unitus = uL−1
and reducingus, we find the last subsequence that detects every
fault. During this simulation process, if a faultf is detected for
the first time (corresponding to the highest value ofus) by a sub-
sequence (s, e), then f is not considered under smaller values of
us. At the end of the simulation process, we have for every fault
f a single subsequence (s, e), whereus is the last time unit after
which f can still be detected by a subsequence ofT. We create a
new test sequence by including only vectorsti such that
us ≤ ui ≤ ue for some faultf , and omitting the other test vectors.
For example, in the case ofs27 and the sequence shown in Table
5, we find from Table 6 that the last subsequences to detect the
detected faults are as shown in Table 8. We keep the subse-
quences of Table 8 and omit the test vectors not included in
them. The resulting test sequence is (t3t4t5t7

. . . t13). This test
sequence can be further compacted by repeating the same proce-
dure. Similar to Procedure 3, this procedure omits test vectors
appearing earlier in the sequence if there exist vectors later in the
sequence that allow the same faults to be detected. The differ-
ence from Procedure 3 is in the order of fault simulation. Proce-
dure 3 starts from the beginning of the test sequence. In con-
trast, the modification of Procedure 5 starts from the end of the
test sequence. The advantage of Procedure 3 over the modified
Procedure 5 is that a decision to omit a vector can be made
immediately when it is considered. In the modified Procedure 5,
vectors can be omitted only after the last detecting subsequences
are found for all faults. Thus, it is impossible to take into account
in the modified Procedure 5 faults which are detected because
two subsequence that were previously separated become adja-
cent after the modification.

Table 8: Selection of latest subsequences

subsequence faults detected
(13,13) 21/1 26/0
(11,12) 9/1 14/1 18/1 20/0
(10,12) 2/0
(9,12) 8/1 13/1
(9,11) 8/0 14/0 17/0 24/0
(9,10) 21/0 25/1 26/1
(7,10) 3/0 4/0 9/0 11/0 12/0 15/1
(7,9) 6/1 7/0 15/0 24/1
(3,5) 16/0

6. Experimental results
We applied Procedure 1 (based on insertion), Procedure 4 (based
on omission) and Procedure 5 (based on selection) to several sets
of test sequences produced by different test generation proce-
dures. In Procedure 1 we usedNno−improve = 100 and a maximum
test length of 15,000. Three of the test generation procedures
whose test sequences we consider [4-6] do not use any special
test compaction techniques. The procedure of [2] uses static
compaction, and the procedure of [3] uses aggressive dynamic
compaction that results in very short test sequences. Test
sequences of other procedures, such as [7-10], are not available
to us at this time.

The results of test compaction by Procedures 1, 4 and 5
are reported in Tables 9 and 10. In each table, the effective test
length and the number of detected faults by the original test
sequence is followed by the same information for the modified
sequences after test compaction. We applied all three static com-
paction procedures only to some of the test sequences and some
of the circuits. Table 9(a) contains the results of applying static
compaction to test sequences produced byLOCSTEP[6]. LOC-
STEPis a test generation procedure that is based on logic simu-
lation, and generates very long test sequences. Table 9(b) con-
tains the results of applying static compaction to test sequences
produced byHITEC [5]. All three compaction techniques yield
large reductions in test length. In most cases, Procedure 4 is the
most effective of the three procedures proposed. We therefore
apply only Procedure 4 to additional test sequences and circuits.
Table 10(a) contains the results of applying Procedure 4 to addi-
tional test sequences produced byLOCSTEP[6]. Table 10(b)
contains the results of applying Procedure 4 to additional test
sequences produced byHITEC [5]. Table 10(c) contains the
results of applying Procedure 4 to test sequences produced by
FASTEST[4]. Table 10(d) contains the results of applying Pro-
cedure 4 to test sequences produced bySEQCOM [3]. Table
10(e) contains the results of applying Procedure 4 to test
sequences produced by the procedure of [2]. In all cases, signifi-
cant reductions in test length are obtained, even in the case of [3]
that uses memory-intensive dynamic compaction to produce test
sequences that are already very short. In many cases, an increase
in fault coverage is also obtained. In most cases, Procedure 4
went through only one or two iterations before no additional vec-
tors could be removed.

Run times of the procedures reported in Tables 9 and 10
are not included, since the fault simulation procedure we used is
not efficient, and its run time is significantly higher than state-of-
the-art fault simulation procedures.
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Table 9: Results of the three compaction procedures
(a) Test sequences ofLOCSTEP[6]

original omission insertion selection
circuit eff.len detect eff.len detect eff.len detect eff.len detect
s208 614 132 122 136 150 135 76 132
s298 1007 265 90 265 93 265 116 265
s344 3411 329 59 329 156 329 73 329
s382 5354 357 548 357 557 357 751 357
s386 6742 274 108 311 2853 300 104 276
s400 5354 372 492 372 557 372 3026 372
s420 406 174 121 177 101 177 97 174
s444 2922 416 1706 416 2922 416 2922 416
s641 623 403 93 404 163 403 174 403

(b) Test sequences ofHITEC [5]

original omission insertion selection
circuit eff.len detect eff.len detect eff.len detect eff.len detect
s298 259 265 87 265 114 265 153 265
s344 108 329 53 329 106 329 55 329
s400 2069 350 381 372 815 380 860 350
s420 166 179 124 179 147 179 137 179
s641 211 404 96 404 183 404 133 404
s820 968 813 424 814 907 814 772 813

7. Concluding remarks
We proposed three static compaction techniques for test
sequences of synchronous sequential circuits. The first tech-
nique duplicated subsequences of the test sequence and inserted
them at prior time units in an attempt to achieve earlier detection
of faults. The second technique omitted superfluous input vec-
tors. Binary search was used to identify subsequences that can
be omitted. The third technique analyzed the coverage of subse-
quences of the test sequence and used a covering procedure to
select a minimal subset. Comparison of the three techniques on
test sequences generated for benchmark circuits by various test
generation procedures showed that omission is most effective as
a static compaction technique. The results also show that test
sequences generated by various test generation procedures can
be significantly compacted. The compacted sequences thus have
shorter test application times and smaller memory requirements.
More importantly, the ability to significantly reduce the length of
the test sequences indicates that it may be possible to reduce test
generation time if superfluous input vectors are not generated.
We are currently investigating this possibility.
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Table 10: Results of Procedure 4
(a) Test sequences ofLOCSTEP[6]

original omission
circuit eff.len detect eff.len detect
s526 7743 441 919 444
s820 5788 698 206 758
s1238 9409 1268 241 1269
s1423 9616 1274 365 1336
s1488 2427 1400 434 1439

(b) Test sequences ofHITEC [5]

original omission
circuit eff.len detect eff.len detect
s1238 478 1283 247 1283
s1488 1192 1444 607 1444

(c) Test sequences ofFASTEST[4]

original omission
circuit eff.len detect eff.len detect
s298 132 259 81 261
s344 88 329 52 329
s382 50 196 38 227
s386 121 287 77 299
s444 59 265 48 265
s641 130 402 65 402
s820 142 486 81 534
s1488 132 1093 76 1172
s1423 489 1293 258 1314

(d) Test sequences ofSEQCO M′ [3]

original omission
circuit eff.len detect eff.len detect
s208 114 137 105 137
s298 160 265 110 265
s386 135 314 121 314
s420 149 179 108 179
s641 80 404 63 404
s1196 238 1232 185 1232
s1488 358 1444 317 1444

(e) Test sequences of [2]

original omission
circuit eff.len detect eff.len detect
s298 165 264 104 264
s344 83 329 37 329
s386 251 314 138 314
s400 618 365 388 373
s641 178 404 97 404
s1196 486 1239 244 1239
s1488 965 1444 605 1444
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