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Abstract The motivation for studying test compaction is twofold.
We propose three static compaction techniques for test sequencedrst, by reducing test sequence length, the memory require-
of synchronous sequential circuits. We apply the proposed techments during test application and the test application time are
niques to test sequences generated for benchmark circuits by vareduced. Second, the extent of test compaction possible for
ious test generation procedures. The results show that the testeterministic test sequences indicates that test pattern generators
sequences generated by all the test generation procedures consigPend a significant amount of time generating test vectors that
ered can be significantly compacted. The compacted sequenced'e not necessary. The compacted test sequences provide a target
thus have shorter test application times and smaller memoryfor more efficient deterministic test generators.

requirements. As a by-product, the fault coverage is sometimes In trying to compact a given test sequence, we face the
increased as well. More importantly, the ability to significantly following problem, that does not exist when performing static
reduce the length of the test sequences indicates that it may beest compaction for combinational circuits. Consider a test
possible to reduce test generation time if superfluous input vecsequencd = (tot; - - -t, _;), wheret; is the input vector applied at

tors are not generated. time unity;. If we remove or modify a vectdy, then every fault
) detected byT after timeu; may potentially be left undetected.
1. Introduction This is because fault detection requires a sequence of test vectors

Compaction of test sequences for synchronous sequential circuitthat may be disturbed whet is removed or modified. As a
has been considered in [1-3]. The static compaction proceduregesult, after changing the test sequence, we must perform fault
in [1,2] start from sets of test sequences, produced by generatingimulation to ensure that the change has not reduced the fault
a separate test sequence for each fault or subset of faults. Thegoverage. It is interesting to note that by modifying the
use overlapping and reordering of the individual test sequencesequence, additional faults may be detected that were not
to produce a single test sequence of minimal length. The procedetected by the original sequence. Thus, modification of a test
dure of [3] is a dynamic compaction procedure, i.e., it incorpo- sequence may serve not only to reduce its length, but also to
rates into the test generation procedure heuristics aimed at prohcrease its fault coverage. To capture these effects of reduc-
ducing a short test sequence. In this work, we present thredng/increasing the fault coverage, fault simulation must be car-
static compaction procedures applicable to the case where a sirfied out. Thus, all three compaction procedures proposed here
gle test sequence is given. The test sequence can be generategfjuire large numbers of fault simulations. However, since fault
directly by test generation procedures such as [3-6], or aftersimulation time is small compared to test generation time [5], we
using the procedures of [1,2] to combine individual test believe that the gain in test length reduction and the potential
sequences into a single sequence. Static compaction implies thdicrease in fault coverage justify the investment in additional
compaction is done as a postprocessing step, independent of tHault simulation time. Furthermore, the compaction achieved in
test generation process. Static compaction has two useful feathe work presented here could lead to methods to develop more
tures. (1) Unlike dynamic compaction, static compaction doeseéfficient ATPGs for sequential circuits.

not require any modifications to the test generation procedure. The paper is organized as follows. Section 2 contains
(2) Since dynamic compaction is based on heuristics and doeslefinitions and notation used throughout this work. In Section 3
not achieve the minimum test length, static compaction is usefulwe present a compaction procedure based on an insertion opera-
even after dynamic compaction is used, to further reduce thetion that duplicates subsequences of the test sequence and inserts
length of the test sequence. The effectiveness of the proposethem into the test sequence at specific positions. In Section 4 we
procedures on benchmark circuits is compared to identify thepresent a compaction procedure based on omission of vectors.
most effective static compaction procedure among the three proin Section 5 we present a compaction procedure based on selec-

cedures investigated in this work. tion of a minimal subset of subsequences sufficient to detect all

the faults detected by the original sequence. Section 6 includes
+ Research supported in part by NSF Grant No. MIP-9220549, and in part experimental results and a comparison among the three proce-
by NSF Grant No. MIP-9357581 dures. Section 7 concludes the paper.

2. Definitions and notation
To describe the compaction procedures we use the following def-
initions and notation.

A test sequencd is represented a3 = (tot; - -t 1),
wheret; is the input vector applied at time unjt
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The subsequence df between time unitsl; and uy is reduce the effective test length by one and to increase the num-

denoted byT[u;, u]. We haveT[u;, u] = (t; - - - ti). ber of detected faults by ore.
The state of the fault free circuit at timgis denoteds. Table 1: A test sequence o827
The initial stateS, is the all-unspecified (ak) state in our il o 1 2 3 4 5 6 7 8 9
experiments. S _ t;/0011 1101 0011 0011 1110 0011 1011 0001 0011 0110
The output vector of the fault free circuit at time units
denotedz,. i|10 11 12 13 14 15 16 17 18 19

The set of target faults (collapsed single stuck-at faults) is t,/0011 1011 0010 0100101 11100101 1000 0000 0110
denoted byF. The set of faults detected by a given test sequence
T is denoted byF . Table 2: Detection information

For every faultf 0 F we denote by§' andz/ the state i | {f:ugedf)=u}
and output vector of the faulty circuit at tinug respectively. 1 | 2/09/1 14/1 18/1 20/0 21/1 26/0
We also define theombined fault-free/faulty state/S' at time 3 | 3/04/08/09/011/0 12/0 15/1 21/0 25/1 26/1
u. 4 | 8/113/1

The time unit where a fault O Fg is detected for the 5 | 5/025/0
first time is denoted byge( ). 7 | 22/0

The effective test lengthk of T is the minimum length 9 | 14/0 16/0 17/0 24/0
of a subsequence dfthat starts at time 0 and includes the detec- 19 | 6/124/1
tion time of every detected fault, or Table 3: The test sequence after an insertion operation

I-eff = max {udet(f): f DFdet} +1. .
iflo 1 2 3 4 5 6 7 8 9
3. Compaction based on an insertion operation t|0011 1101 0011 0011 1110 0011 1011 0001 0011 0110
In this section we describe a test compaction method based on
the following operation. Consider a fauit 0 Fye, with detec- ij10 11 12 13 14 15 16 17 18 19 20
tion time uge( f). Let u; and u, be two time units such that t,/0011 1011 0010 01001@1 11100101 0110 1000 0000 0110
Uj < Uy < Uge( ), and such thaB/S{ = /S| (ie., S = S and Table 4: Detection information for the modified sequence
ij = Si). SinceSj/Sjf = S«/Si, T[u;, ue4] only serves to take i {f:Ugef) = U}
. . . . - Yde i

the fault-free/faulty circuits back to their states at timeandT 1 | 2/09/1 14/1 18/1 20/0 21/1 26/0
detects f even if we omitT[uj, uk—l] from T, to obtain the 3 3/0 4/0 8/0 9/0 11/0 12/0 15/1 21/0 25/1 26/1
sequenceT Uy, Uj4] o T[uy, u 4] (o stands for concatenation 4 | 8/113/1
of subsequences). Under the proposed operation, we define a 5 | 5/0 25/0
new test sequence where fafilis detected earlier, as follows. 7 | 22/0
The subsequencHu,, Uge( f)] is duplicated and inserted at time 9 | 14/0 16/0 17/0 24/0
u;. As a result, the detection time bfis reduced fronuge( f) to 17 | 6/124/1
Uge ) — (ug —u;).  The remaining part of the sequence, 18 | 19/1

T[uj, u 4], is pushed to the right. The new test sequence is ) . ) . » )
After performing an insertion operation, additional inser-

T' = T[Ug, Uj-1] o T[uy, Uge F)] o T[uj, up4]. . . .
We refer to this operation as thesertion operationThe inser- tion operations using the_new sequence can further reduce the
effective test length and increase the fault coverage. The pro-

tion operation increases the total length of the test sequence . . - : :
however, it allows to reduce its effective length by reducing the posed test compaction procedure applies the insertion operation

. : ; : iteratively, until no additional improvements in effective test
hr:ghest Ze'tectlor(; g_fmes;l. -I]:hltla shorter Seqrezm’uLeff‘l] 'S h length and fault coverage can be obtained. A guaranteed reduc-
then used instead dt. The following example demonstrates the yjo"jn effective test length can only be achieved if the highest

insertion operation. detection times are reduced, by performing the insertion opera-
Example Consider the test sequence of ISCAS-89 benchmarkiqn for faults such thate(f) = Loy — 1. Nevertheless, we con-

oo b, e ey f g ll h fauls, Snce by moing  lowe detecton e, i
detected by this sequence is 28 Sim-ulating the fault 6/1, we ﬁn;{nay become possible to reduce the highest detection times fur-
that the combined fault-free/faulty states are identical at times 1 her than in the original sequence. In addition, a fault with a high

" - ; detection time may be detected earlier, or other faults, not
and 19. In addition, we know that the fault is detected at time 19. y :
The insertion operation inseff§19] = (0110) at time 17, push- detected by the test sequence, may be detected by applying the

ing T[17,19] by one time unit to the right. The resulting Insertion operation 10 a fault witlle(f) < Loy ~1. We use the

sequence is shown in Table 3. The change affects faults 6/1 ar]Bollowmg considerations in designing the compaction procedure.

24/1, with detection times 19 (other detection times are prior to The previous example demonstrates how the insertion
the change we have made in the sequence and therefore are nperation can reduce the effective test length and increase the
affected by it). The detection times for the modified sequencef@ult coverage of a given test sequence. The insertion operation
are shown in Table 4. Both faults 6/1 and 24/1 that previously ENSUres that the fault for which it is performed is still detected
had detection time 19 are now detected at time 17. In addition 2ft€r the operation is performed and that its detection time is
fault 19/1 that was not detected previously is detected at time 1g€duced. However, another fault detected by the sequence may

after the change. The result of the insertion operation is thus td'0t P& detected after insertion is performed. For example, con-
sider a faultf, with equal states at timeg andu, and a faultf,



with detection timeug( f,) = u;. The insertion operation applied bound on the number of insertion operations that do not yield an
to f, changes the subsequende;, u, ], and the new sequence improvement.
may not detectf,. To minimize this effect, we perform the . L
insertion operation starting with faults that have the highest4. Compaction based on vector omission
detection time, and reduce the detection time considered only ifThe compaction method described in this section is based on
no additional insertion operations are possible for faults with the omission of test vectors from the given sequence. Omission of
currently considered detection time. We also select the times redundant vectors was considered before for combinational cir-
andu, where the combined fault-free/faulty states are the samecuits under stuck-at faults and under path delay faults. Here, it is
such thaty, is as high as possible, and if a choice existss considered in the context of synchronous sequential circuits.
also as high as possible. To guarantee that the fault coverage is The omission of a vectd; affects the detection of the
not reduced, we do not accept an insertion operation that reducetgults {f} for which ug(f) = u;. In addition, it may cause a
the fault coverage. If fault simulation after insertion reveals that fault which is undetected whenis included in the test sequence
the fault coverage is lower than before, we restore the testo be detected aftety is omitted. These effects are taken into
sequence before insertion and proceed to consider other faults. account by fault simulating the sequence.
From our experiments we found that an insertion opera- We consider the test vectors for omission in the order in
tion that does not reduce the effective test length or evenwhich they appear in the test sequence.iFo0,1, .-, L -1,
increases it may be effective in allowing a later change to reduceve omitt; and recompute the fault coverage by simulating only
the effective test length below what is otherwise possible. Wethe faults withuge(f) = u; and the undetected faults. If the fault
thus allow insertion operations that (temporarily) increase thecoverage after omission is not lower than the fault coverage
effective test length. We always store the best result obtained sdefore omission, we accept the change. Otherwise, we réstore
far to ensure that at the end of the process we can recover the The omission of a test vecthrequires that;,, would be
earlier test sequence if it is shorter. copied intot; for j =i,i +1,---,L - 2. Instead of copying parts
Several parameters are used to limit the run time of theof the test sequence every time a vector is omitted, we use the
procedure. An upper bount,,, is imposed on the total test simulation process described by Procedure 2. We use a variable
length. Note that each insertion operation increases the length ofalled omittedi]. omittedi] = 1 if vector t; is omitted, other-
the sequence, even if it reduces its effective length. By setting awise, omittedi] = 0. If omittedi] =0, conventional simulation
bound on the total test length, we limit the number of insertion is carried out. If omittedi] =1, simulation undert; is not
operations that can be performed. Another boMM@improve required and the present state at timel is equal to the present
ensures that at mo#t,,, imyrove CONSECUtive insertion operations  state at timé. Procedure 2 is described for a single fdult
are done that do not improve the fault coverage and/or reduce th@rocedure 2:Fault simulation with omitted vectors

effective test length. AfteN,; jmprove SUCh Operations, the proce- (1)  SetP andP' to be the all-unspecified initial states.

dure terminates. (2) Seti=0.
Every time an insertion operation is accepted (i.e., it does(3) | omittedi] = 0:
not reduce the fault coverage), fault simulation is performed, (@ Apply to the combinational logic of the fault-

detection times for all faults are determined, and the faults are
considered again, starting with the one that has the highest (new)
detection time. An insertion operation that is not accepted is can-

free/faulty circuits the input valug/t; and the
combined present-sta@/P".

celed and the next fault is considered. If all faults are considered (b)  Obtain the combined outpat/z’ and next state
and no insertion operation is accepted, the procedure is termi- N/N'.
nated. The procedure is referred to as Procedure 1. (©)  Ifz #7,setug(f) =u; and stop.

The simulation procedure used in Procedure 1 does not (d) SetP/P' = N/N'.

have to consider faults that were not affected by the insertion(4)
operation. If insertion is performed basedwnuy, anduge( f),

then a faultg with Uged9) <u; is not_aﬁected by the insertion that if a vectort; cannot be omitted, then after omitting a vector
operation and does not have to be simulated. __t;wherej > i, it may become possible to ontjt To take advan-

_ We show in Section 6 that compaction based on the insera4e of this observation, the test sequence after vector omission
tion operation is effective in reducing the effective test length is considered again, until no additional vectors can be omitted.
and increasing the fault coverage of test sequences generated Bacedure 3: Static compaction based on vector omissions
various test generation procedures. The main disadvantage Ofl) Setomittedi] = O for every O<i < L —1. Fault simulate
compaction based on the insertion operation is that the numbe the test sequence and store the fault cbvera@@jn

of fault simulations it requires to achieve the minimum test ) Sefi=0

length cannot be bounded. We found that in many cases, é R )

sequence of insertion operations is required that do not improve3) ~ Setomittedi] =1 and fault simulate the test sequence

Seti =i +1.Ifi <L, goto Step 3.
The test compaction procedure is summarized next. Note

the fault coverage and possibly increase the effective test length, (only undetected faults and faults witle(f) 2 u; need
before an additional insertion operation can reduce the effective to be simulated). o

test length below its original level and/or increase the fault cov-(4)  If the fault coverage is smaller th&e, setomittedi] =0
erage. Due to the intricate relationships between insertion opera- and restore the detection times prior to the omission of
tions, heuristics for reducing the number of insertion operations vectori. Otherwise, store the new fault coveragé&®

and hence the number of fault simulations are difficult to derive.(5)  Seti =i +1.Ifi <L, go to Step 3.
We therefore prefer the structure of Procedure 1 where the num{6) If omittedi] = 1 for any vectoi, rearrange the sequence
ber of fault simulations is arbitrarily limited by setting an upper by omitting the vectors witbmittedi] = 1 and go to Step



1. time 10, fault 4/0 is detected at time 4, fault 6/1 is detected at

In Step 3 of Procedure 3, we simulate only faults detectedtime 9, fault 7/0 is detected at time 9, and so on. The corre-
at or after the omitted vector, and undetected faults. Faultssponding subsequences are (1,9), (1,10), (1,4), (1,9) and (1,9).
detected before the omitted test vector do not have to be resimuFor the fault 4/0 we now have two subsequences defined by (0,4)
lated. To allow this saving in fault simulation, we must have the and (1,4). Since the second subsequence contains the first one,
values of {14 f)} updated for the current test sequence. For this we omit the first and keep only (1,4). Similarly, for the fault 7/0
reason, in Step 4 of Procedure 3; ifannot be omitted, then the ~ we only keep the range (1,9).
detection times are restored. This ensures that the values offter considering every time unit as a starting point and finding
{uge )} are updated. For simplicity, this feature is omitted from detection times for all the faults, we obtain the subsequences
the variation of Procedure 3 described below, and all the faultsshown in Table 6. We now select a subset of subsequences to
are resimulated there. detect all faults. The subsequence (7,9) is necessary to detect

We observed that when the sequence to be compacted i§ults 7/0 and 15/0. The subsequence (3,5) is necessary to detect
long, there is a large number of input vectors at the beginning offault 16/0. Once these subsequences are selected, additional
the sequence that can be omitted without reducing the fault covfaults are covered, including 2/0, 6/1, 8/0, 9/1, and so on. The
erage. In addition, there are long subsequences of consecutivéubsequences for the remaining faults are shown in Table 7.
vectors starting at arbitrary time units in the test sequence thafVext, we consider each one of the subsequences of Table 7, and
can be omitted. To take advantage of the existence of such subséepeatedly select the best one. The best subsequence is the one
quences and reduce the number of simulations performed b);hat, together with the su_bs_equences already s_elected, covers the
Procedure 3, it is possible to use binary search. Binary search i§rgest number of remaining faults and requires the minimal
initiated starting from a vectdy that can be omitted. Initially, ~ additional input vectors. For example, selecting subsequence
the lower and upper bounds of the range to be omitted are set tf.4) detects six additional faults (3/0, 4/0, 9/0, 11/0, 12/0 and
LB=i and UB=L-1, respectively. We set 15/1) and requires three addltloinal vectagst( andt,. tz andt,
MID = (LB +UB)/2, omit the test vectors from to ty,p, and were already selected). Selecting subsequence (9,12) detects all
fault simulate the test sequence. If the fault coverage is reduced€ight faults. For example, fault 3/0 is detected since (7,9) has
we setUB= MID -1; otherwise we setB= MID +1. The already been selected. By adding (9,12), we obtain the subse-
binary search terminates with the last vectprsuch that ~ quence (7,12), containing the subsequence (7,10) that detects
t;, i1, - -+, t; can be omitted. The advantage of binary search is 3/0. In this case, we select the subsequence (9,12).
that instead of performingj—-i+1 simulatons to omit |0 Summary, we selected the subsequences (3.5), (7.9) and
ti,tisg, -+, 1; in Procedure 3, the binary search procedure per- (9,12), to result in the new sequerdess, us] o T[uy, Uya]. O

o . . Table 5: Test sequence 2 a7
forms only Oog »(j —i +1) Osimulations. The procedure for g
omitting vectors that uses binary search is referred to as Procei | 0 1 2 3 4 5 6 7 8 9

dure 4. t;[1101 1011 0100 11 0001 0100 11001111 0101 0011
Procedure 3 (and its extension Procedure 4) can be

viewed as a reverse order fault simulation procedure that i | 10 11 12 13 14

attempts to omit vectors that were included to detect certain t | 0011 0101 1101 1110 0100

faults, but are no longer necessary in order to detect those faults )
once the test sequence is extended to detect additional faults. A 1able 6: Test subsequences out of sequence 227

different view of reverse order fault simulation, that performs fault | subsequences fat\;lt subsequences

simulation starting from the end of the sequence and keeps vec

tors that are required to detect yet-undetected faults, is given atgjg 28'?1; &;,%)(10,12) 1155// ((07 f))a 10)

the end of Section 5. 210 (114) (7110) 16/ (3:5) '

5. Compaction based on vector selection on g’g; (7.9) o ((033?)) ((79'91)1211 12)

The procedure described in this section proceeds as follows. Forg/o | (3,4) (8,10) (9.11) 2000 (0,3) (5.6) (7.9) (11,12)

every fault, it first collects all the subsequences of the given 8/1 | (3,6) (9,12) 21/0 (3,4) (9,10)

sequence that detect the fault if the circuit starts from the all- 9/0 | (1,4) (7,10) 21/1 (0,0) (6,6) (7,7) (12,12) (13,13)
unspecified state at the beginning of the subsequence. A subse9/1 | (0,3) (7,9) (11,12) 24/0 (3,5) (9.11)

quence is represented by a pairgj, such that the subsequence igg 2(1):33 gigg %g; Egig gv%)

T[us, U] detects the fault if the circuit is started from the com- ' ' ' '

bined all-unspecified fault-free/faulty initial state at timg ﬁ;(l) ggg Egﬁ; gg; Eg% Eg'%)a’?) (12,12) (13.13)
After collecting all the subsequences that detect every fault, wej (0’3) (5'6) (7.9) (11,12) ' ’

use a covering procedure to select a minimal subset of subse-
guences to detect all faults. Consider the following example. Table 7: Test subsequences for remaining faults
Example We considers27 under the test sequence shown in

Table 5. Fault simulating the sequence starting from time 0, we fault | subsequences fault  subsequences
find that fault 2/0 is detected at time 3, fault 3/0 is detected at
time 4, fault 4/0 is detected at time 4, fault 6/1 is detected at time 3/0 1 (0.4) (7,10) 11/0 (1,4) (7.10)
i ; ; 4/0 | (1,4) (7,10) 12/0| (0,4) (7,10)
3, fault 7/0 is detected at time 9, and so on. The corresponding
8/1 | (3,6)(9,12) 13/1] (3,6) (9,12)
subsequences are (0,3), (0,4), (0,4), (0,3) and (0,9). 9/0 | (L.4)(7.10) 15/1)  (0.4) (7.10)

Next, we start simulation from time 1, setting the combined
fault-free/faulty state at time 1 to the all-unspecified state. We
find that fault 2/0 is detected at time 9, fault 3/0 is detected at



In the example above, we selected the subsequences inde- Table 8: Selection of latest subsequences
pendently, without considering the faults detected when two

selected subsequencss, €,) and §,, e,) are placed next to each subsequence _faults detected

other. This saves the simulation effort required to identify such (13,13) 21/1 26/0

faults, however, it may result in sequences that are longer than (11,12) 9/114/1 18/1 20/0
necessary. In our implementation of the selection procedure, (10,12) 2/0

after selecting a subsequence, we create a new test sequence (9,12) 8/113/1

made up of the selected subsequences in the order by which they (9.11) 8/0 14/0 17/0 24/0
appear in the original sequence. We then simulate the new (9,10) 21/0 25/1 26/1

sequence to identify the faults that still need to be detected. For (7,10) 3/0 4/0 9/0 11/0 12/0 15/1
example, suppose that the subsequences (9,11), (1,4), (7,9) (4,5) ggg %1/07/0 15/0 24/1

are selected in this order. After selecting (9,11) and (1,4), we
simulate the sequenc@&' = (t;t tststgtiot11). After selecting 6. Experimental results

(7,9), we simulate the sequente = (titotstststelotiolsy). After We applied Procedure 1 (based on insertion), Procedure 4 (based
selecting (4,5), we simulate the Sequence gn omission) and Procedure 5 (based on selection) to several sets

T = (titatstalstotglotiotyy). In every case, we drop the faults  of est sequences produced by different test generation proce-
detected and select the next subsequence based on the remainig@res. In Procedure 1 we USBd, morove = 100 and @ maximum

faults. Note that the faults detected Dy are not necessarily a ¢ length of 15,000. Three of the test generation procedures

superset of the faults detected By since the addition df and o6 test sequences we consider [4-6] do not use any special
tg may prevent certain faults, that were accidentally detected bytest compaction techniques. The procedure of [2] uses static

placing the subsequence (1,4) and (9,11) consecutively, fromcompaction, and the procedure of [3] uses aggressive dynamic

being detected. However, by selecting additional SUbsequenceﬁompaction that results in very short test sequences. Test

as long as undetected faults remain, we ensure that all faults ar equences of other procedures, such as [7-10], are not available

detected by the final sequence obtained. The procedure i%o us at this time.
referred to as Procedure 5. The results of test compaction by Procedures 1, 4 and 5

_Procedure 5 can be modified into a reverse order faulty e renorted in Tables 9 and 10. In each table, the effective test
simulation procedure that omits test vectors similar to Procedurqength and the number of detected faults by the original test

3. The advantage of the modified procedure compared to Proce; ; : . i
dure 5 is a reduced number of fault simulations. The modifiedSequence is followed by the same information for the modified

d d foll Starting f : . sequences after test compaction. We applied all three static com-
pr%ce (ljJre_procee sf_az ?] O;NS' tsrtlng rom t'rrpe“éw Uiy paction procedures only to some of the test sequences and some
and reducingls, we find the last subsequence that detects every ¢ e circuits. Table 9(a) contains the results of applying static
fault. During this simulation process, if a fadltis detected for compaction to test sequences produced ®CSTEP[6]. LOC-
the first time (corresp_ondlng to the highest valuaspby a sub- STEPIs a test generation procedure that is based on logic simu-
sequenceg( €), thenf is not considered under smaller values of 5400 “and generates very long test sequences. Table 9(b) con-
L;S' At thle en% of the S|mulat|ohn PfOC?‘SSH wle have for e_ve?[/ fault iains the results of applying static compaction to test sequences

r?sr:nfg e su ?Iegu?jnca e),de ereus t')S the asfét'&nNe unitafter  ,4qyced byHITEC [5]. All three compaction techniques yield
which T can stll be etl;ectg |de su s?quenc A cLeatI;e @ Jarge reductions in test length. In most cases, Procedure 4 is the
new test sequence by including only vectdrssuch that ., effective of the three procedures proposed. We therefore
Us < u; < U, for some faultf, and omitting the other test vectors.

. - apply only Procedure 4 to additional test sequences and circuits.
For example, in the case 17 and the sequence shown in Table 516 10(a) contains the results of applying Procedure 4 to addi-

5, we find from Table 6 that the last subsequences to detect thﬁonal test sequences produced bPCSTEP[6]. Table 10(b)

detected faults are as shown in Table 8. We keep the SUbseéontains the results of applying Procedure 4 to additional test

guences of Table 8 and omit the test vectors not included iNgg ;

; ) . quences produced WYITEC [5]. Table 10(c) contains the
them. The resulting test sequence tg14(5t7-~-t_13). This test results of applying Procedure 4 to test sequences produced by
sequence can be further compac_ted by repeating _the same prOCﬁ'ASTES‘II4]. Table 10(d) contains the results of applying Pro-
dure. Similar to Procedure 3, this procedure omits test Vectors.aqure 4 to test sequences producedSEQCOM[3]. Table
appearing earlier in the sequence if there exist vectors later in th‘iO(e) contains the results of applying Proceduré 4 to test
sequence that allow the same faults to be detected. The dlf'fer-Sequences produced by the procedure of [2]. In all cases, signifi-

snce gOT F:rofcedurt?] 3 LS in the ordfertk(])f ftaultt simulation. :Droce-cam reductions in test length are obtained, even in the case of [3]
ure 5 starts rom the beginning of the test sequence. In CoNy, 4 ;seg memory-intensive dynamic compaction to produce test

trast, the modification of Procedure 5 starts from the end of thesequences that are already very short. In many cases, an increase

test sequence. The advantage of Procedure 3 over the modifieg| fault coverage is also obtained. In most cases, Procedure 4

_Proced_ure Sis that_a deC|_s|on to omit a vector can be mad‘?/vent through only one or two iterations before no additional vec-
immediately when it is considered. In the modified Procedure Sitors could be removed

vectors can be omitted only after the last detecting subsequences Run times of the procedures reported in Tables 9 and 10

are found for all faults. Thus, it is impossible to take into accountgre not included, since the fault simulation procedure we used is
in the modified Procedure 5 faults which are detected becaus ot efficient, and its run time is significantly higher than state-of-

two subsequence that were previously separated become adj he-art fault simulation procedures
cent after the modification. P ’



Table 9: Results of the three compaction procedures [7]
(a) Test sequences AfOCSTEF6]

original J omission 4 insertion t selection (8]
circuit| eff.len deteqt eff.len detect eff.len detect eff.len detect
s208 614 13 122 136 150 35 76 132
s298 1007 26 90 265 93 65 116 265
s344 3411 32 59 329 156 29 73 329
s382 | 5354 357 548 357 557 357 751 357 19
s386 6742 27 108 311 2853 00 104 276
s400 5354 37 492 372 557 72 3026 372
s420 406 17 121 177 101 177 97 174 [10]
s444 2922 41 1706 416 2922 16 2922 416
s641 623 40 93 404 163 03 174 403

(b) Test sequences dflITEC [5]

original J omissionEJ insertion J selection
circuit| eff.len deteqt eff.len detect eff.len detect eff.len detect
s298 259 26 87 265 114 265 153 265
s344 108 32 53 329 106 329 55 329
s400 2069 35 381 372 815 80 860 350
s420 166 17 124 179 147 79 137 179
s641 211 40 96 404 183 404 133 404
s820 968 81 424 814 907 14 772 813

7. Concluding remarks

We proposed three static compaction techniques for test
sequences of synchronous sequential circuits. The first tech-
nique duplicated subsequences of the test sequence and inserted
them at prior time units in an attempt to achieve earlier detection
of faults. The second technique omitted superfluous input vec-
tors. Binary search was used to identify subsequences that can
be omitted. The third technique analyzed the coverage of subse-
guences of the test sequence and used a covering procedure to
select a minimal subset. Comparison of the three techniques on
test sequences generated for benchmark circuits by various test
generation procedures showed that omission is most effective as
a static compaction technique. The results also show that test
sequences generated by various test generation procedures can
be significantly compacted. The compacted sequences thus have
shorter test application times and smaller memory requirements.
More importantly, the ability to significantly reduce the length of
the test sequences indicates that it may be possible to reduce test
generation time if superfluous input vectors are not generated.
We are currently investigating this possibility.
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Table 10: Results of Procedure 4
(a) Test sequences dAfOCSTEF6]

original omission
circuit efflen  detect| efflen detect
s526 7743 441 919 444
s820 5788 698 206 758
s1238 9409 126 241 1269
s1423 9616 127 365 1336
s1488 2427 140 434 1439

(b) Test sequences dflITEC [5]

original ‘ omission
circuit efflen  detect| efflen detect
s1238 478 1283 247 1283
51488 1192 144 607 1444

(c) Test sequences dFASTEST4]

original omission
circuit efflen  detect| efflen detect
s298 132 259 81 261
s344 88 329 52 329
s382 50 196 38 227
s386 121 287 77 299
sd444 59 265 48 265
s641 130 402 65 402
s820 142 486 81 534
s1488 132 1093 76 1172
51423 489 1293 258 1314

(d) Test sequences GBEQCOM [3]

original omission
circuit efflen  detect| efflen detect
s208 114 137 105 137
$298 160 265 110 265
s386 135 314 121 314
s420 149 179 108 179
s641 80 404 63 404
s1196 238 1232 185 1232
s1488 358 1444 317 1444

(e) Test sequences of [2]

original omission
circuit efflen detect| efflen detect
s298 165 264 104 264
s344 83 329 37 329
s386 251 314 138 314
s400 618 365 388 373
s641 178 404 97 404
s1196 486 1239 244 1239
s1488 965 1444 605 1444
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