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Abstract

 

This paper discusses the mapping of arrays in a
behavior to memories in an implementation. We introduce
a design representation based on a variety of array group-
ing techniques and the binding of array groups to memory
components with different dimensions, access times, and
number of ports. The results of design actions are com-
puted in terms of the number of memory components and
the length of schedules in the behavior. We demonstrate
the ability of a synthesis tool using this representation to
generate designs that span the entire range of the memory
design space.

 

1.0 Introduction

 

The goal of behavioral synthesis is to automatically
create, from a behavioral specification, a custom hardware
implementation that meets the design goals of the user. For
many applications, the design of the memory architecture
is critical in determining the cost and performance of the
implementation. The most commonly used data structure
in declarative specification languages is the array, which is
assumed here to have a single index. In this paper we dis-
cuss the problem of mapping arrays, which have been
specified in the behavior, to physical memories

 

 

 

in an
implementation, with the objective of satisfying the cost
and performance goals of the user.

Both arrays and memory components are two-dimen-
sional arrangements of bits. One dimension is the number
of bits in a single array element, which is called the word
width and shown horizontally. The other dimension is the
number of elements in the array, which is called the array
depth and shown vertically. Our design representation is
based on the fact that arrays and memories can be tiled
together in various ways to form array and memory
groups. Array groups can be mapped to memory groups,
as shown in Figure 1. A legal mapping is one in which
every live array data bit is mapped to a distinct memory
bit.

Memory cost is reduced by using memory compo-
nents that have a lower cost per bit and by creating array
groups that use most or all of the memory available in the

allocated components. However, less expensive memories
are usually slower, and the creation of array groups can
create resource conflicts. The selection of an array-mem-
ory mapping therefore affects the way a behavior can be
scheduled, and conversely, a schedule determines the
array-memory mappings that are possible. For a design
tool to make accurate cost and performance trade-offs it
must deal with the coupled problems of scheduling and
array-memory mapping simultaneously. In our approach
we simultaneously determine the array-memory mapping
and the array access schedule so that the interdependen-
cies between these tasks are taken into account.

The problem of synthesizing memory from array
specifications has received significant attention recently.
Ramachandran et al. [10] introduced the concept of array
grouping, but their grouping techniques are limited, and
rather than constructing the memory system out of compo-
nents with specified costs, dimensions, access times, and
ports, they determine the required size and number of
ports of each memory needed to meet a specified schedule
length and then use a model to determine area and access
time. Karchmer and Rose [4] map arrays to memory com-
ponents, but the user must specify the required access time
for each array rather than a more abstract specification of
performance such as the schedule lengths of schedule sets
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in the behavior. The DSP synthesis algorithms described
in [15] deal with the mapping of data streams (rather than
arrays) to memories, and utilize the regularity of DSP
access patterns to improve memory utilization. Unfortu-
nately, not all applications can be easily described using
streams, nor do all applications have the regularity of
access of DSP applications. We attempt to deal with these
sorts of applications.

In Section 2.0 we discuss the methods of grouping
arrays. In Section 3.0 we discuss how we model the cost
and performance of implementing an array group using a
specified memory component. In Section 4.0, we demon-
strate how array grouping, memory component binding
and scheduling techniques are integrated into a simulated
annealing based design tool. Finally, we demonstrate the
use of this design tool by synthesizing implementations
that span the entire memory cost and performance design
space for a Viterbi search and a fuzzy control application.

 

2.0 Array grouping

 

We have identified three fundamental ways to group
arrays:

 

•

 

By 

 

horizontal concatenation

 

, which is mapping data 
bits of each array to different data bits of the grouped 
array.

 

•

 

By 

 

vertical concatenation

 

, which is mapping data 
words of each array to different data words of the 
grouped array. 

 

•

 

By 

 

time multiplexing,

 

 which is mapping arrays with 
different lifetimes to the same address and data word 
space.

 

Figure 2. Array grouping operations

 

Horizontal concatenation creates wider grouped
arrays and a shared address space. This shared address
space reduces the number of address wires required to
control the memory for these arrays. Also because of the
shared address space, accesses to horizontally concate-
nated arrays must either be scheduled at different times or
on different address ports (assuming there is more than
one port on the memory component used). An exception to
this rule is when the accesses are to the same index in each
array. In that case both accesses can be performed at the
same time on one address port, which can significantly
improve memory bandwidth without requiring additional
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address busses or ports. This case occurs fairly frequently,
because many behaviors contain parallel arrays. 

If a single array within a horizontally concatenated
array group is individually written, we have to assure that
the data in other arrays in the group are not corrupted. In
the worst case, this requires a read of the array group so
that the original data can be written back into the other
arrays. This lengthens effective write access time and
requires significant control and data alignment logic, and
is therefore rarely worthwhile.

Vertical concatenation creates deeper grouped arrays
and a shared data word space, and is the only grouping
operation discussed in [4] and [10]. The performance
impacts of vertical concatenations are clear: the number of
accesses to vertically concatenated arrays that may be
scheduled simultaneously is limited to the number of ports
on the memory component used to implement the array
group.

Multiple options are available for generating non-
intersecting address spaces for vertically concatenated
arrays. These options include the use of address offsets
and a variety of bit shuffling and inversion techniques that
can be computed much faster and with substantial less
hardware [11]. The address generation time required at
each vertical concatenation is computed and used in the
optimization of the memory system.

Time multiplexing is used to map arrays that have
non-intersecting lifetimes into the same address and data
word space. The width and depth of a time-multiplexed
array group is the maximum of the width and depth of the
grouped arrays. Lifetime information for arrays is deter-
mined from the lexical scope of the array declaration in
the behavioral specification, although it would be more
useful to use data flow analysis techniques [7][9]. 

Larger array groups can be created by recursive appli-
cation of array grouping operations. For example in
Figure 3, the horizontal concatenation of arrays 

 

a

 

 and 

 

b

 

 is
vertically concatenated with array 

 

c

 

. We represent such
array groups with a binary tree: the leaves of the tree are
the arrays in the behavior, and the other tree nodes are
array grouping operations. This representation is similar to
slicing structures using in floorplanning applications[16].

 

3.0 Memory component binding

 

As shown in Figure 1, array groups must be mapped
to a set of one or more memory components that are
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Figure 3. Combining array groupings



 

arranged so that every data bit in the array group has a dis-
tinct bit in the memory. We have made the simplifying
assumption that each array group may be mapped to a set
of only one type of component. For example, we cannot
tile 1Mb and 4Mb DRAMs together to implement one
array group, although we can use them in the same design
for different array groups. Using this assumption, we can
assign one type of component from our library to an array
group, then determine the number of instances of that
component necessary to cover the array group as well as
the effective access time of the memory. This section
describes the models we use to estimate the memory cost
and access time given an array group and a component
assignment.

 

3.1 Cost modeling

 

The simplest way to estimate the number of memory
components necessary to implement an array group is to
draw a bounding box around the array group and deter-
mine the number of components required to implement a
memory space equal to that bounding box. This approach
penalizes array groups that are not rectangular, as the
example in Figure 4 shows.

 

Figure 4. Counting memory components

 

To more accurately evaluate the cost of such an array
grouping, we determine which memory components in the
bounding box are actually used. The execution time of this
procedure grows linearly with the number of memory
components required for the bounding box, and is there-
fore undesirable when the size of a memory component is
very small compared to the size of the bounding box. We
have provided a user switch to determine whether bound-
ing box or component counting technique during design
optimization.

 

3.2 Performance modeling

 

The specified access time of a memory component is
only part of the effective access time of a memory built out
of that component. Other components of the access time
include address computation, data and address bus propa-
gation time and chip select decoding. Address bus and
data bus propagation time usually grows linearly with the
number of components on each bus. Decoding address bits
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into chip selects for a set of components usually increases
with the log of the number of chip selects generated. We
have implemented simple models based on these growth
rates and basic glue logic speed so that the effective access
time can be estimated for scheduling.

 

4.0 Automated synthesis

 

We have claimed that our representation allows for
the exploration of a large cost-performance trade-offs. To
show this, we have developed a general specification of
system cost and used a general optimization procedure,
simulated annealing [6], to explore this design space. It
may be possible to reduce the generality of the system cost
specification and use heuristics to find suitable solutions,
but we find the two hour typical run time for the annealing
algorithm is well worth the flexibility it affords.

Our specification of system cost specification uses
three types of design metrics:

 

•

 

the number of memory components of each type speci-
fied in the library (e.g. three 32K RAMs, and one 8K 
SRAM), 

 

•

 

the number of address, data and control wires neces-
sary to connect with the memory components of each 
type, and

 

•

 

the schedule length of each of the scheduling sets in the 
behavior. 
The number of memory components can be used to

construct an expression of total memory cost for the sys-
tem. Similarly, the schedule lengths can be used to con-
struct an expression of system performance. Reducing the
number of address, data, and control wires saves physical
pins on multiple chip designs and may improve the
routability of on-chip memory designs. 

If there are 

 

j

 

 types of components in the library and 

 

k

 

schedule sets in the behavior, there will be 

 

2j+k=m

 

 total
metrics in the design. These 

 

m 

 

metrics, , are
present in the system cost function, which is defined by the
following equation.

(EQ 1)

The  u se r  mus t  spec i fy  t he  s e t  o f  we igh t s
, to indicate the relative cost of the metrics.

The user may also specify any number of constraints, 
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 >> 
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i

 

) to express a limit
on the value of a metric.

Our memory design optimizer uses a reconfigurable
simulated annealing library [8], which implements a vari-
ety of cooling schedules and move selection procedures.
We next describe the move set for this optimizer. The
move set consists of basic moves, which are implied by

x1 x2 … xm, , ,( )
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the design representation itself, and compound moves,
which are sets of related basic moves that improve the
annealing.

 

4.1 Basic moves

 

The first of the basic moves are horizontal concatena-
tion, vertical concatenation, or time multiplexing of two
arrays or array groups. Ungrouping of two arrays groups is
also a basic move.

The next basic moves is the binding of a type of mem-
ory component to an array group. When an array group is
bound to a memory component, the techniques described
in Section 3.0 are used to determine the required number
of components and effective access time of the arrays
group.

The last basic move is the scheduling operation,
which schedules an access in a specified step. Not all steps
are legal for a particular access. Specifically, the address or
the data for that access may not be computed yet, a situa-
tion we call 

 

schedule overlap

 

, or the memory unit may be
fully utilized by other accesses in that step, a situation we
call 

 

port overlap

 

. The annealer can schedule accesses ille-
gally, but the total system cost is highly penalized for each
step of schedule overlap or port overlap in the design.

Our annealer only schedules array accesses. Other
operations are conjecturally scheduled using ASAP heu-
ristics and functional unit constraints. After the array-
memory mapping and array access schedule is determined,
the results are given to SAM[2] to perform scheduling and
hardware allocation for the behavior’s other operations, as
well as port assignment for the array operations.

There are interactions between the memory design
and the scheduling and allocation of other operations,
which are ignored by our segmented design flow. For
instance, if the results of two different operations are
stored into two different arrays and those operations share
the same functional unit, then grouping the arrays in the
same memory would allow both operations to share the
connection between the functional unit and the memory.

 

4.2 Compound moves

 

The basic moves are sufficient to reach every design
possible with our representation, but are not a good move
set for an annealing algorithm. Using the basic moves, the
path between two legal designs (designs that don’t violate
any constraints or penalties) may include many illegal
designs. Illegal designs are rarely acceptable in the later
stages of annealing and therefore a full exploration of the
design space is difficult. Our move set has been improved
with the addition of the following compound moves.

 

Subtree grouping and ungrouping: 

 

The basic array
grouping operations only modify the top of the array
group tree so in order to modify any subtree it is necessary
to disassemble much of the tree using the ungrouping
move and then reconstruct the tree in the desired way. An
example of this procedure is shown in Figure 5, where we
want to horizontally concatenate the 

 

a

 

 and 

 

b

 

 arrays
together, while retaining the vertical concatenation to
array 

 

c

 

. We have extended the grouping and ungrouping
operations to apply to subtrees so that modifications like
that shown below can be accomplished in one move.

 

Grouping operation modification:

 

 With the basic
move set, changing the type of array grouping operation at
a particular node requires disassembling the tree and
reconstructing it with the desired grouping operation. To
avoid this we allow direct modification of the grouping
operation at any node in the tree.

 

Tree rotation

 

: To modify the internal tree structure
without disassembly, we use AVL binary tree rotations. In
Figure 6 we show a tree and the four possible AVL rota-
tions.

 

Heuristic scheduling:

 

 Modifying the schedule is dif-
ficult using the basic move set, because the path between
two legal schedules may include many illegal schedules.
To overcome this problem, we have implemented a set of
scheduling heuristics that can be employed by the annealer
to schedule all accesses in a schedule set. The particular
heuristic used for each schedule set can be modified by the
annealer. This approach is supported by [3], which showed
that annealing with a basic move set always generates
optimal or near-optimal schedules, but the result from a
large number of scheduling heuristics will usually find the
optimal quicker.
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5.0 Examples

 

To demonstrate the effectiveness of our array map-
ping approach, we have synthesized two memory inten-
sive applications: a speech phoneme recognizer based on
Viterbi search [14] and a fuzzy controller [12]. In both
examples, the memory component library contains a small
on-chip memory (64 words by 8 bits) and three large
memory components: 8K by 8, 32K by 8 and a 128K by 8.
The number of the small memories is limited by the
amount of on-chip area that can be budgeted for memory
for a particular application. The number of larger memory
components is unlimited, but we have assumed that the
cost of a 128K x 8 SRAM is two times that of a 32K x 8
SRAM, which is two times the cost of a 8K x 8 SRAM.

The Viterbi search application consists of only one
basic block that accesses arrays, so memory performance
is solely determined by the schedule length of that basic
block. This behavior contains seventeen small arrays and
eleven 16K x 8 bit arrays, which are all read once with the
same index in each iteration of the basic block. The small
arrays are consistently mapped to the small on-chip
RAMs. We will discuss the mapping of the eleven large
arrays.

The design space exploration of this application was
conducted by varying the relative weight of memory and
performance in the system cost equation and by using
some performance constraints. Memory wires were
weighted very lightly in the cost equation so that they are
reduced as long as there is no impact on memory cost or
performance. The results of this exploration are illustrated
in Figure 7 and their cost is plotted versus schedule length
in Figure 8. 

In design A, the eleven arrays are all in one array
group, which has been mapped to six 32K x 8 RAMs.
Design A has a two cycle schedule, which is the fastest
possible for this application using the given data path tech-
nology. Two particular arrays have accesses that are on the
critical path in the behavior and must both be accessed in
the first cycle. To allow this, the design optimizer has
placed both these arrays in the same rank so they may both
be read together in the first cycle. This illustrates the cou-
pling between the data dependencies in the behavior and
the desired memory design of the implementation.

In the remaining designs, memory cost is reduced by
using more of the 128K RAMs, which have a lower cost
per bit. Designs B, D, and F are in some sense inferior
because they sacrifice performance without reducing
memory cost. However, these designs have fewer memory
wires than the design with equivalent memory cost and
higher performance. This wire reduction was obtained
either by favoring a more vertical arrangement of arrays to
reduce data bus size, as in design B and F, or by using hor-

izontal concatenation to reduce address bus size, as in
design D. Design E and F have the minimum memory
cost. Therefore our tool is capable of generating imple-
mentations for this application that span the entire mem-
ory design space.

We have conducted a similar design exploration of a
fuzzy controller application. This application has three
basic blocks that access memory, one of which initializes a
long computational loop and is rarely executed. Of the two
remaining basic blocks, one is executed approximately
twice as often as the other, so we have created a expression
of performance based on the weighted schedule length of
these blocks. There are twenty arrays with various dimen-
sions, which are all too large to fit onto on-chip memory.
The results of this exploration are illustrated in Figure 9
and their cost is plotted versus the weighted schedule
length in Figure 10.

As performance is reduced, memory cost is again
reduced by using larger RAM components, which have a
lower cost per bit. The number of memory wires is
reduced by having fewer address busses and narrower data

Figure 7. Array Mappings: Viterbi search
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busses. When horizontal concatenation is used, similarly
accessed arrays are lined up so they can be simultaneously
accessed. Design A has the highest performance possible
with the given data path technology and memory compo-
nent library. This was verified by mapping every array to a
separate 8K RAM in order to obtain the fastest access time
and eliminate all resource conflicts. The best possible
schedule lengths for that binding equaled those of design
A. Design D has the lowest memory cost possible for this
application.

 

6.0 Summary

 

We have described our approach to the problem of
mapping the arrays in a behavior to memories in an imple-
mentation of that behavior. Our design representation is
based on grouping arrays together and binding the array
groups to memory components. Because the problem of
determining an appropriate array-memory mapping is cou-
pled with the problem of scheduling the array access, our
design tool integrates access scheduling with our array
grouping and memory binding techniques. We have used
this design tool to synthesize two memory-intensive appli-
cations, and have demonstrated its ability to create designs
that span the entire memory design space: from the highest
performance design possible with the given data path tech-
nology to the lowest memory cost design possible with the
given memory component library.

Figure 9. Array mappings: fuzzy controller
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