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Abstract
Software synthesis is a new approach which focuses

on the support of embedded systems without the use of
operating-systems. Compared to traditional design prac-
tices, a better utilization of the available time and hardware
resources can be achieved, because the static information
provided by the system specification is fully exploited and an
application specific solution is automatically generated.
On-going research on a software synthesis approach for
real-time information processing systems is presented which
starts from a concurrent process system specification and
tries to automate the mapping of this description to a sin-
gle processor. An internal representation model which is
well suited for the support of concurrency and timing con-
straints is proposed, together with flexible execution models
for multi-tasking with real-time constraints. The method is
illustrated on a personal terminal receiver demodulator for
mobile satellite communication.

1 Introduction
The target application domain of our approach is ad-

vanced real-time information processing systems, such as
consumer electronics and personal communication systems.
The distinctive characteristic of these systems is the coexis-
tence of two different types of functionalities, namely dig-
ital signal processing and control functions, which require
different timing constraint support. Specifically, signal pro-
cessing functions operate on sampled data streams, and are
subject to the real-time constraint derived from the required
sample frequency or throughput. Control procedures vary in
nature from having to be executed as soon as possible (like
e.g. a man-machine interface), but an eventual execution de-
lay does not usually compromise the integrity of the entire
system (soft deadline), to having very stringent constraints,
like e.g. a critical feedback control loop (hard deadline).

Traditionally, real-time kernels, i.e. specialized operating
systems, are used for software support in the design of em-
bedded systems [5]. These small kernels, often stripped-
down versions of traditional time-sharing operating-system,
are in the first place designed to be fast (e.g. fast con-
text switch). Above all, real-time kernels provide the run-
time support for real-time multi-tasking to perform soft-
ware scheduling, and primitives for inter-process communi-
cation and synchronization, and for accessing the hardware
resources. Since processes are considered as black boxes,
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most kernels apply a coarse grain model for process schedul-
ing. Most kernels tend to use a fixed priority preemptive
scheduling mechanism, where process priorities have to be
used to mimic the timing constraints. Alternatively, tradi-
tional process scheduling approaches use timing constraints,
specified as process period, release time and deadline [11].
From the designer viewpoint however, these constraints are
more naturally specified with respect to the occurrence of ob-
servable events. Moreover, the scheduler has no knowledge
about the time stamps when the events are generated by the
processes, and consequently can not exploit this. Assign-
ment of the process priorities, as in the case of the fixed pri-
ority scheduling scheme, is a manual task to be performed
without any tool support. Typically, an iterative, error-prone
design cycle, with a lot of code and priority tuning, is re-
quired. Not only is this inflexible and time consuming, but
it also restricts the proof of correctness to the selected stim-
uli. Additionally, the behavior of the scheduler under peak
load conditions is hard to predict, resulting often in under-
utilized systems to stay on the safe side. It is safer to guar-
antee timeliness pre-runtime, as new family of kernels tend
to attain [5]. Moreover, kernels trade optimality for general-
ity, causing them to be associated with run-time and memory
overhead.

Software synthesis [1][2][7] is an alternative approach to
real-time kernels: starting from a system specification, typi-
cally composed of concurrent communicating processes, the
aim of software synthesis is the automatic generation of the
source code which realizes 1) the specified functionalities
while satisfying the timing constraints and 2) the typical run-
time support required for real-time systems, such as multi-
tasking, and the primitives for process communication and
synchronization. A better utilization of the available time
and hardware resources can be achieved with software syn-
thesis, because the static information provided by the system
specification is fully exploited; as a consequence the auto-
matically generated run-time support is customized for and
dedicated to each particular application, and does not need
to be general, as in the case of real-time kernels. Moreover,
an accurate static analysis provides an early feedback to the
designer on the feasibility of the input specifications. In this
way the iterative design cycle typical for real-time kernels
is avoided, and satisfaction of the timing constraints can be
guaranteed automatically. Besides, the transformations and
optimizations envisioned in the software synthesis approach,
try to automate this code tuning. Finally, since the output of
software synthesis is source code, portability can be easily
achieved by means of a retargetable compiler [6].



The software synthesis approach in the VULCAN frame-
work [7] allows to specify latency and rate timing con-
straints. Program threads are extracted from the system
specification, in order to isolate operations with an unknown
timing delay. A simple non-preemptive, control-FIFO based
run-time scheduler alternates their execution, but provides
only a restricted support for satisfying these constraints,
since threads are executed as they are put at run-time in the
FIFO and are not reordered. Moverover, interrupts are not
supported, due to the choice of the non-preemptive sched-
uler.
The approach taken in the CHINOOK [2] system suffers
from a similar restriction: although preemption is allowed
based on the watchdog paradigm, resuming at the preemp-
tion point is difficult, and hence interrupts are not supported.
The system, targetted towards reactive control systems, only
supports timing constraints on state transitions and on la-
tency between operations. No rate constraints are supported,
as is typical for DSP applications.

The rest of this paper is structured as follows. Section 2 in-
troduces the system representation and the concepts used. In
section 3, two different execution models and the steps of a
possible software synthesis script are discussed. A real-life
illustration of the approach is the subject of section 4. Fi-
nally, section 5 draws some conclusions.

2 System Representation - Model
We assume that the target application can be modeled in a

concurrent process description, which captures operation be-
havior, data dependencies between operations, concurrency
and communication [8][9]. The precise semantics of such a
specification are beyond the scope of this paper. From this
specification, a constraint graph can be derived that contains
sufficient information for the software synthesis problem, as
will be introduced below.

We define a program thread as a linearized set of opera-
tions which may or may not start with a non-deterministic
(ND) time delay operation [7]. Examples of ND-operations
are synchronization with internal and external events, wait
for communication and unbounded loops. The purpose of
extracting program threads from the concurrent process in-
put specification is to isolate all the uncertainties related to
the execution delay of a given program at the beginning of
the program threads. Program threads, which can be exe-
cuted using a single thread of control (as present in most con-
temporary processors), have the property that their execu-
tion latency can be computed statically. Besides being de-
fined by the ND-operations, program threads can also cap-
ture concurrency and multi-rate transitions. A new represen-
tation model, based on constraint graphs [10], is then built
up from the extracted threads. This model allows a static
analysis, both of the imposed timing constraints and of the
thread scheduling. The vertexes represent program threads
and the edges capture the data dependency, control prece-
dence and the timing constraints between threads. Specifi-
cally, let �(vi) the execution delay of the thread represented
by vertex vi; a forward edge ei;j with weight wi;j = �(vi),
represents a minimum timing constraint between vi and vj ,
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Figure 1: Example of a Constraint Graph

i.e. the requirement that the start time of vj must occur at
least wi;j units of time later than vi. Similarly, a maximum
timing constraint between two threads vi and vj is indicated
as a backward edge with negative weight wi;j, represent-
ing the requirement that the end time of vi must occur no
later than j wi;j j units of time later than the end time of
vj. Finally, ND-operations are represented by separate event
nodes. An example is given in figure 1 (a).
Our model differs from [10] in the abstraction level of a CG
node: in our approach a CG node isolates a group of opera-
tions which corresponds to static program parts, while in [10]
individualoperations are the CG entities. Moreover, in [10] a
CG is restricted to being a single connected graph, not able to
capture process concurrency. This restriction is lifted in our
approach and internal events are introduced to synchronize
between concurrent graphs capturing process concurrency.
Also, we support multi-rate by placing relative execution rate
numbers on control edges.

By definition, all the uncertainties related to the timing be-
havior of a system specification are captured by event nodes.
Since the arrival time of an event is unknown at compile
time, event nodes limit the extent of analysis and synthesis
which can be performed statically.
In a second step, threads are clustered into so-called thread
frames (figure 1 (b)). The purpose of identifying thread
frames is to partition the initial constraint graphs into disjoint
clusters of threads triggered by a single event, so that static
analysis and synthesis (e.g. scheduling) can be performed for
each cluster relatively to the associated event. Remark that
sequence edge(s) can exist between frames according to the
original system specification.
The event set E(vi) of a node vi is defined as the set of event
nodes which are predecessors of vi. Artificial events are in-
troduced for threads with an event set which contains at least
two elements between which there does not exist a path in
the graph. These events are in fact internal events, which



must be observed and taken care of by the execution model
in a similar way as the external events which are triggered
directly by the environment.
The execution model will take care of the activation at run-
time of the different thread frames according to the origi-
nal specification while taking into account the sequence of
occurred events and the imposed timing constraints. In this
way the unknown delay in executing a program thread ap-
pears as a delay in scheduling the program thread, and is not
considered as part of the thread latency.

3 Execution Models and Implementation
In this section the execution models and the implementa-

tion, i.e. the mapping of the representation model to the sin-
gle thread of control of the target processor, are described.
Although the CG model is target independent, in this paper
we focuss on a single processor target.

3.1 Execution Models
Blocking Model - Cyclic Executive Combined with Inter-
rupt Routines A simple, but cost effective solution for
the run-time thread frame activation consists of using a sim-
ple event loop in background combined with tying differ-
ent thread frames to processor interrupts. The assignment of
frames to the event loop and the (internal) scheduling of the
frames is done at compile-time. The event loop in the back-
ground polls in a round-robin fashion the occurrence of the
events triggering the different thread frames and accordingly
starts executing the appropriate frames sequentially. Proces-
sor interrupts present a cheap way, supported by hardware,
to asynchronously start up thread frames which suspend the
currently executing frame. The processor interrupt masking
and priority levels can be used to selectively allow interrup-
tion of time critical thread frame sections and to favor high
priority frames.
Only frames which are triggered by an event correspond-
ing to interrupts (either the external hardware or the inter-
nal peripheral interrupts) can be started up asynchronously,
while the other frames are to be placed in the background
event loop. Moreover, a background frame started up by the
event loop will block the processor till the end of its execu-
tion preventing other frames in the event loop to be started
up. Hence, the name ”blocking execution model”. The exe-
cution length of the frames limits the response time of events
in the event loop, and therefore limits the scope of this model.

Non-blocking Model using a Run-time Scheduler Fig-
ure 2 (a) outlines the execution model which takes a two-
level scheduling approach. Static scheduling (i.e. at
compile-time) is performed after thread clustering to deter-
mine a relative ordering of threads within each thread frame,
and by assumption this ordering is not changed anymore in
the dynamic scheduling phase. At run-time, a small pre-
emptive and time-driven scheduler takes care of the compo-
sition and interleaving of the different thread frames accord-
ing to the system evolution and the timing constraints. Ad-
ditionally, it tries to avoid active waiting by scheduling other
frames when the next frame is not ready to be executed, in
this way maximizing processor utilization.
This run-time behavior is illustrated in the lower part of fig-
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Figure 2: The run-time execution model (a) and the frame
slack scheduling metric (b)

ure 2 (a): starting from an idle state, suppose that event1
occurs; this event activates the run-time scheduler, and since
no other frames are currently active, the threads of the first
frame are executed with the order determined previously
with static scheduling (order 1-3-2). Occurrence ofevent2,
while executing thread3 of the first frame, causes the follow-
ing actions: 1) thread3 is interrupted; 2) the run-time sched-
uler is invoked for determining the subsequent execution or-
der, in the example: A, rest of thread3, B, 2; and 3) execution
proceeds with the newly determined thread ordering. As in-
dicated the relative ordering between the threads of the same
frame is not changed allowing an efficient implementation of
the run-time scheduler, which must be necessarily very fast.

The scheduling metric used by the run-time scheduler is
the frame slack time. This information is derived statically
based on the imposed timing constraints and on the relative
thread ordering within each frame. The frame slack indicates
the amount of time the end of an individual thread in a thread
frame can be postponed, relatively to its static schedule, be-
fore violating a timing constraint. As illustrated in figure 2
(b), the frame slack is defined as the minimum of all thread
slacks, i.e. the remaining time between the end of the thread
and its timing constraint, of all the succeeding threads in the
static schedule. The frame slack derived at compile time, is
used and updated at run-time. For a more formally descrip-
tion of this model, we refer to [3].
3.2 Script

Figure 3 gives an overview of the proposed approach.
From the concurrent process specification, the different pro-
gram threads are extracted and the non-deterministic timing
delay is isolated in event nodes. During this step, a code
generator can provide a static estimate of the thread execu-
tion times. These execution times are placed together with
the timing constraints in a constraint graph, the abstraction
model used in the sequel of the approach. The assignment of
external processor interrupts to event nodes in the constraint
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graph, which is determined by the context of the system, is
to be provided by the user.
After selection of one of the two execution models explained
above, five tasks, which are phase coupled, have to be per-
formed. Thread frame clustering tries to cluster the con-
straint graph into disjoint groups of threads which are trig-
gered by the same event set. These thread frames are to be
activated at run-time by the selected execution model. Since
events introduce an overhead during frame scheduling, we
also want to minimize the number of clusters, without vio-
lating timing constraints. Static frame scheduling will deter-
mine at compile-time the relative order of the threads inside
each of the identified thread frames. Occasionally, the tim-
ing constraints can not be met by the identified frames. In
this case, a transformation step on the threads or the frames
can resolve the problem or can provide a more optimal solu-
tion. An example of these transformations will be given in
the illustration in section 4. Buffer allocation will insert the
required buffers in between communicating frames, by de-
riving the buffer sizes from the execution rates of the frames.
Timing analysis is used in different phases : once upon entry
of the tool, to check for consistency of the user specified tim-
ing constraints, and subsequently during the execution of the
tool, to verify whether a result of a synthesis task still satis-
fies all constraints.
The outcome of software synthesis are scheduled thread
frames and possibly (depending on the execution model cho-
sen) a small run-time executive, which activates the appro-
priate frames at run-time; both have to be compiled with the
code generator and linked together afterwards.

4 Illustration of the Approach
System Description - Concurrent Communicating Pro-
cess Specification Figure 4 outlines the process specifica-
tion of a mobile terminal receiver demodulator to be used in
the MSBN satellite communication network [4]. This net-
work allows a bi-directional data and voice communication
in a star network consisting of a fixed earth station and multi-
ple mobile stations. Two different data channels, called pilot
and traffic channel, are sent over on the same transmission
carrier using the CDMA technique, i.e. correlating the chan-

nels with orthogonal pseudo-noise codes enabling them to
use the same frequency spectrum without interference. The
former channel carries network system information (e.g. av-
erage channel bit error rate), the latter carries the actual user
data. Acquisition and tracking of the transmission carrier is
performed on the pilot channel in cooperation with an intel-
ligent antenna.
Triggered by an external interrupt, the read decorr pro-
cess reads periodically (at a rate of 3.4 kHz) the mem-
ory mapped decorrelator FPGA. This process sends data to
thetrack pilot&demod and thetraffic demodpro-
cesses, which perform the tracking of the transmission car-
rier and the demodulation (i.e. gain, carrier phase and bit
phase correction). After a 1:3 rate conversion the demodu-
lated traffic data is formatted by the traffic manage-
data process and via the send vocoder process trans-

mitted to a second, memory mapped processor. In contrast,
the demodulated pilot data will be further processed on the
same processor.
The track pilot&demod process not only delivers its
demodulated data to the pilot manage data process, it
steers the frequency of the NCO (numerical controlled os-
cillator) in the preceeding analog demodulation part through
use of the on-chip serial peripheral. Moreover, together
with traffic demod process it sends information con-
cerning carrier synchronization to the display LEDs pro-
cess and write antenna process. The channel decoding
of demodulated pilot data is carried out by thepilot DSP-
functions process, which operates on a 1024 element

frame basis, so a multi-rate transition is present between the
pilot manage data and this latter process. The output
data of the pilot channel decoding is sent to a PC computer
using the on-chip DMA engine. The setup DMA process
is triggered when output data is available from the pilot-
DSP functions process and sets up and starts the DMA

process.
Asynchronously with this chain of periodic processes, the
read sys cmd and read antenna process control the
internal parameters of the demodulation processes. They re-
spectively perform the man-machine interface connected to
the system using a memory mapped flag, allowing the user to
alter the system operating parameters, and the interface with
the antenna controller which is connected via an external in-
terrupt. The former is a sporadic process, since a user will
adapt the parameters only once in a while, and is allowed to
have a large response time. The latter is a time-critical pro-
cess: when the antenna controller looses the beam, it will
signal this immediately to the demodulator, which must take
special re-tracking actions.

Constraint Graph Representation Figure 5 outlines the
constraint graph (after thread frame clustering) for the de-
modulator capturing the threads, their dependency and their
timing constraints. For reasons of clarity, the thread execu-
tion times are not indicated.
Three event nodes are introduced to capture the timing
uncertainty of the periodic interrupt from the decorrelator
(evdecorr), the interrupt from the antenna controller (evant)
and the setting of the polling flag of the man-machine in-
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terface (evsys). The extra event evcut was not present in
the original CG, but was introduced during frame cluster-
ing (see below). Remark that the event nodes make abstrac-
tion from whether they are implemented as an interrupt or
as a polling loop. Program threads capture also concurrency
and the rate conversion. Some processes in the original user
specification have been combined into one program thread
(e.g. manage data+send vocoder).
Timing constraints are added as backward edges, e.g. the
edge from the manage data+send vocoder to the (pe-
riodic) event node expresses that the end of that thread must
be executed before the start of the occurrence of the next
event, and thus the next period.
Thread Frame Clustering and Transformations In first
instance, the cyclic executive based execution model was
tried, which proved satisfactory for this application. Thread
frame clustering and transformation were already added in
the CG of figure 5. Four different thread frames are identi-
fied, three according to the original events and one by an ar-
tificial event introduced by the frame cutting transformation.
Although the event set of the pilot DSP functions-
+setup DMA thread is the same as e.g. track pilot-

&demod+format data thread, it had to be placed in a
separate frame because of timing constraints: the execu-
tion time of the frame triggered by the decorrelator event
in its 1024th execution (according to the relative rate of
1:1024 of the last thread) would become longer than the pe-
riod of the periodic event and thus conflicts with the tim-
ing constraints. Cutting the pilot DSP functions-
+setup DMA frame off and introducing an artificial event
evcut which checks for the 1024th execution of preceeding
frame, will allow the execution model to overlap the 1024
executions of the FRAME demodulate with the FRAME-
pilot DSP functions.

Another transformation, called rate matching is applied on
the manage data send vocoder thread: by inserting a
rate counter which checks for the relative event occurrence,
and based on this causes a conditional execution, the rate of
this thread is matched to its frame rate.

Implementation The final implementation af-
ter static frame scheduling and introduction of the commu-
nication buffers and with inclusion of the execution model
is shown in figure 6. Both the FRAME read sys cmd and
FRAME pilot DSP functions frame are placed in the
background event loop of cyclic executive based execution
model, and thus in a round-robin schedule. For the man-
machine frame, this is possible because of its non-stringent
timing constraint. Its response time to a user setting new
system commands will be limited by the execution time of
FRAME pilot DSP functions. The two other frames
are triggered and activated by the environment using the cor-
responding hardware interrupt. Remark that in the frame
FRAME demodulate the interrupts are unmasked again
(the target processor by default did not allow interrupt nest-
ing) to allow interrupt by FRAME read antenna, in order
to reduce the response time to the antenna loosing the carrier.
At the bottom of figure 6 the behavior of both the CPU
and the processor peripherals are outlined on a time-axis.
It can be seen clearly that while the FRAME pilot DSP-
functions frame is processing the previous data frame

in background, the FRAME demodulate frame (activated
by a hardware interrupt) is processing consecutively the 1024
data samples of the next frame. This can be considered as
a kind of process time-folding. It can also be seen that in-
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Figure 6: The Final Implementation of the MSBN demodulator

terrupt nesting of both the FRAME read antenna frame
and the DMA interrupt routine (which disables the DMA en-
gine after transfer completion), can occur in the FRAME-
demodulate frame.

Results The overhead implied by the use of the blocking
execution model is minimal: it only requires an infinite loop
and two conditional tests for the background event loop, and
a (register) context save/restore (supported by the processor
hardware) for each interrupt routine.
This overhead has to be compared the situation when a real-
time kernel is used to implement the run-time behavior of
figure 4. The original specification consists of twelve con-
current user processes, and when this hierarchy is straight-
forwardly implemented, using the kernel’s semaphore prim-
itives to signal between two tasks when data is available, this
will result in a considerable (run-time) overhead compared
with the solution proposed above. Additionally, it requires
extra program memory to hold the kernel’s program code.
However, with careful manual tuning of the orginal specifi-
cation and by collapsing a number of user processes, the ker-
nel solution could approach ours. This tuning is however a
manual task in contrast the automated tuningand transforma-
tion process in our approach, which works across the division
of the specification into processes by the user.

5 Conclusions
The approach in this paper tackles the software support

problem at the source level in contrast to contemporary
coarse-grain, black-box approaches.
The proposed approach tries to exploit the knowledge of the
application at hand, applies transformations and optimiza-
tions to the specification and generates an application spe-
cific solution, with the automatic support for timeliness. The

method, based on a representation model composed of pro-
gram threads and constraint graphs, features a selectable ex-
ecution model which combines a detailed static analysis of
the input specifications, resulting in a static partitioning of
the input specifications and a static schedule for each parti-
tion, and a run-time activation for the dynamic composition
of the specification partitions.
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