Real-Time Multi-Tasking in Software Synthesis
for Information Processing Systems"

Filip Thoen, Marco Corneroy, Gert Goossens and Hugo De Man

IMEC, Leuven, B-3001, Belgium
+ SGS-Thomson Microelectronics, Crolles, 38921, France

Abstract

Software synthesis is a new approach which focuses
on the support of embedded systems without the use of
operating-systems. Compared to traditional design prac-
tices, a better utilization of the availabletime and hardware
resources can be achieved, because the static information
provided by the system specification isfully exploited and an
application specific solution is automatically generated.
On-going research on a software synthesis approach for
real -time information processing systems is presented which
starts from a concurrent process system specification and
tries to automate the mapping of this description to a sin-
gle processor. An internal representation model which is
well suited for the support of concurrency and timing con-
straintsis proposed, together with flexible execution models
for multi-tasking with real-time constraints. The method is
illustrated on a personal terminal receiver demodulator for
mobile satellite communi cation.

1 Introduction

The target application domain of our approach is ad-
vanced real-time information processing systems, such as
consumer electronics and personal communication systems.
The distinctive characteristic of these systemsis the coexis-
tence of two different types of functionalities, namely dig-
ital signal processing and control functions, which require
different timing constraint support. Specifically, signal pro-
cessing functions operate on sampled data streams, and are
subject to the real-time constraint derived from the required
sampl e frequency or throughput. Control proceduresvary in
nature from having to be executed as soon as possible (like
e.g. aman-machineinterface), but an eventual execution de-
lay does not usually compromise the integrity of the entire
system (soft deadline), to having very stringent constraints,
likeeg. acritical feedback control loop (hard deadline).

Traditiondly, real-time kerndls, i.e. speciaized operating
systems, are used for software support in the design of em-
bedded systems [5]. These small kernds, often stripped-
down versions of traditional time-sharing operating-system,
are in the first place designed to be fast (e.g. fast con-
text switch). Above dl, rea-time kernels provide the run-
time support for real-time multi-tasking to perform soft-
ware scheduling, and primitivesfor inter-process communi-
cation and synchronization, and for accessing the hardware
resources. Since processes are considered as black boxes,

* Thiswork was supported by the European Commission, under contract
Esprit-9138 (Chips)

most kernel sapply acoarsegrain model for process schedul -
ing. Most kernels tend to use a fixed priority preemptive
scheduling mechanism, where process priorities have to be
used to mimic the timing constraints. Alternatively, tradi-
tional process scheduling approaches use timing constraints,
specified as process period, release time and deadline [11].
From the designer viewpoint however, these constraints are
more naturally specified with respect tothe occurrence of ob-
servable events. Moreover, the scheduler has no knowledge
about the time stamps when the events are generated by the
processes, and consequently can not exploit this. Assign-
ment of the process priorities, asin the case of the fixed pri-
ority scheduling scheme, is a manual task to be performed
without any tool support. Typicaly, aniterative, error-prone
design cycle, with alot of code and priority tuning, is re-
quired. Not only is thisinflexible and time consuming, but
it also restricts the proof of correctness to the selected stim-
uli. Additionally, the behavior of the scheduler under peak
load conditionsis hard to predict, resulting often in under-
utilized systems to stay on the safe side. It is safer to guar-
antee timeliness pre-runtime, as new family of kernels tend
toattain [5]. Moreover, kernelstrade optimality for general-
ity, causing themto be associated with run-timeand memory
overhead.

Software synthesis [1][2][7] is an dternative approach to
real-time kernels: starting from a system specification, typi-
cally composed of concurrent communicating processes, the
aim of software synthesis is the automatic generation of the
source code which realizes 1) the specified functionalities
whilesatisfying thetiming constraintsand 2) thetypical run-
time support required for rea-time systems, such as multi-
tasking, and the primitives for process communication and
synchronization. A better utilization of the available time
and hardware resources can be achieved with software syn-
thesis, because the stati ¢ information provided by the system
specification is fully exploited; as a consegquence the auto-
matically generated run-time support is customized for and
dedicated to each particular application, and does not need
to be general, as in the case of real-time kernels. Moreover,
an accurate static analysis provides an early feedback to the
designer on thefeasihility of the input specifications. In this
way the iterative design cycle typical for rea-time kernels
is avoided, and satisfaction of the timing constraints can be
guaranteed automatically. Besides, the transformations and
optimi zationsenvisionedin the software synthesisapproach,
try to automate this code tuning. Finally, since the output of
software synthesis is source code, portability can be easily
achieved by means of aretargetable compiler [6].

The software synthesis approach in the VULCAN frame-
work [7] alows to specify latency and rate timing con-
straints. Program threads are extracted from the system
specification, in order to isolate operationswith an unknown
timing delay. A ssimple non-preemptive, control-FIFO based
run-time scheduler aternates their execution, but provides
only a restricted support for satisfying these constraints,
since threads are executed as they are put a run-timein the
FIFO and are not reordered. Moverover, interrupts are not
supported, due to the choice of the non-preemptive sched-
uler.

The approach taken in the CHINOOK [2] system suffers
from a similar restriction: athough preemption is allowed
based on the watchdog paradigm, resuming at the preemp-
tion point isdifficult, and hence interruptsare not supported.
The system, targetted towardsreactive control systems, only
supports timing constraints on state transitions and on la
tency between operations. No rate constraintsare supported,
asistypica for DSP applications.

The rest of this paper is structured as follows. Section 2 in-
troducesthe system representation and the concepts used. In
section 3, two different execution models and the steps of a
possible software synthesis script are discussed. A red-life
illustration of the approach is the subject of section 4. Fi-
nally, section 5 draws some conclusions.

2 System Representation - Model

We assume that the target application can bemodeled ina
concurrent process descri ption, which captures operation be-
havior, data dependencies between operations, concurrency
and communication [8][9]. The precise semantics of such a
specification are beyond the scope of this paper. From this
specification, aconstraint graph can bederived that contains
sufficient information for the software synthesis problem, as
will be introduced bel ow.

We define a program thread as a linearized set of opera-
tions which may or may not start with a non-deterministic
(ND) time delay operation [7]. Examples of ND-operations
are synchronization with internal and external events, wait
for communication and unbounded loops. The purpose of
extracting program threads from the concurrent process in-
put specification is to isolate all the uncertainties related to
the execution delay of a given program at the beginning of
the program threads. Program threads, which can be exe-
cuted using asinglethread of control (as present in most con-
temporary processors), have the property that their execu-
tion latency can be computed statically. Besides being de-
fined by the ND-operations, program threads can aso cap-
ture concurrency and multi-ratetransitions. A new represen-
tation model, based on constraint graphs[10], isthen built
up from the extracted threads. This model alows a static
analysis, both of the imposed timing constraints and of the
thread scheduling. The vertexes represent program threads
and the edges capture the data dependency, control prece-
dence and the timing constraints between threads. Specifi-
cally, let 6(v;) the execution delay of the thread represented
by vertex v;; aforward edge e; ; with weight w; ; = é(v;),
represents a minimum timing constraint between v; and v;,

eveml'A/ E"emz//

Timing Constraints ' @
——= minimum

-——— maximum Frame
(a) clustering

frame,

Artificial events :
art. event, = end(v2) && end(v3)
art. event, = end(v5) && end(v6) (b)

Figure 1: Example of a Constraint Graph

i.e. the requirement that the start time of v; must occur at
least w; ; units of time later than v;. Similarly, a maximum
timing constraint between two threads v; and v; isindicated
as a backward edge with negative weight w; ;, represent-
ing the requirement that the end time of »; must occur no
later than | w; ; | units of time later than the end time of
v;. Finally, ND-operationsare represented by separate event
nodes. An exampleisgiveninfigure 1 (a).

Our mode differsfrom[10] in the abstraction level of aCG
node: in our approach a CG node isolates a group of opera-
tionswhich correspondsto static program parts, whilein[10]
individual operationsarethe CG entities. Moreover, in[10] a
CGisrestricted to being asingleconnected graph, not ableto
capture process concurrency. Thisrestrictionisliftedin our
approach and internal events are introduced to synchronize
between concurrent graphs capturing process concurrency.
Also, wesupport multi-rateby placing relative executionrate
numbers on control edges.

By definition, al the uncertainties related to the timing be-
havior of asystem specification are captured by event nodes.
Since the arrival time of an event is unknown at compile
time, event nodes limit the extent of analysis and synthesis
which can be performed staticaly.

In a second step, threads are clustered into so-called thread
frames (figure 1 (b)). The purpose of identifying thread
framesisto partitiontheinitial constraint graphsintodisjoint
clusters of threads triggered by a single event, so that static
analysisand synthesis(e.g. scheduling) can beperformed for
each cluster relatively to the associated event. Remark that
sequence edge(s) can exist between frames according to the
original system specification.

Theevent set F(v;) of anodew; isdefined asthe set of event
nodes which are predecessors of v;. Artificial eventsarein-
troduced for threads with an event set which contains at | east
two elements between which there does not exist a path in
the graph. These events are in fact internal events, which

must be observed and taken care of by the execution model
in asimilar way as the externa events which are triggered
directly by the environment.

The execution model will take care of the activation at run-
time of the different thread frames according to the origi-
nal specification while taking into account the sequence of
occurred events and the imposed timing constraints. In this
way the unknown delay in executing a program thread ap-
pears as adelay in scheduling the program thread, and is not
considered as part of the thread latency.

3 Execution Models and | mplementation

In this section the execution models and the implementa-
tion, i.e. the mapping of the representation model to the sin-
gle thread of control of the target processor, are described.
Although the CG modd istarget independent, in this paper
we focuss on a single processor target.

3.1 Execution Models

Blocking M odel - Cyclic Executive Combined with Inter-
rupt Routines A simple, but cost effective solution for
the run-time thread frame activation consists of usingasim-
ple event loop in background combined with tying differ-
ent thread frames to processor interrupts. The assignment of
frames to the event loop and the (internal) scheduling of the
frames is done at compile-time. The event loop in the back-
ground pollsin a round-robin fashion the occurrence of the
eventstriggering the different thread frames and accordingly
starts executing the appropriate frames sequentiadly. Proces-
sor interrupts present a cheap way, supported by hardware,
to asynchronoudly start up thread frames which suspend the
currently executing frame. The processor interrupt masking
and priority levels can be used to selectively alow interrup-
tion of time critica thread frame sections and to favor high
priority frames.

Only frames which are triggered by an event correspond-
ing to interrupts (either the externa hardware or the inter-
nal periphera interrupts) can be started up asynchronously,
while the other frames are to be placed in the background
event loop. Moreover, abackground frame started up by the
event loop will block the processor till the end of its execu-
tion preventing other frames in the event loop to be started
up. Hence, the name " blocking execution model”. The exe-
cution length of theframes limitstheresponse timeof events
intheevent loop, and thereforelimitsthe scope of thismodel.

Non-blocking Modd using a Run-time Scheduler Fig-
ure 2 () outlines the execution model which takes a two-
level scheduling approach. Satic scheduling (i.e. at
compile-time) is performed after thread clustering to deter-
mine arelative ordering of threadswithin each thread frame,
and by assumption this ordering is not changed anymorein
the dynamic scheduling phase. At run-time, a small pre-
emptive and time-driven schedul er takes care of the compo-
sition and interleaving of the different thread frames accord-
ing to the system evolution and the timing constraints. Ad-
ditionaly, it triesto avoid active waiting by scheduling other
frames when the next frame is not ready to be executed, in
thisway maximizing processor utilization.

Thisrun-timebehavior isillustrated in the lower part of fig-

(1) at compile-time :

= frame
- frame, '1/ @ 2
;@ event,
event; % L ®
O -

- +[al 8]
(2) at run-time :
1] 3[[afs[B [2]
time
eventl event2 (a)
)\AC:A N dg frameslack A = min{ Tslack(A), Tslack(B) }
B

={da-)‘AvdB' Ag }
frame slack B = min{ Tslack(B) }
time ={dg- Mg}
(b)

Figure 2: The run-time execution model (a) and the frame
slack scheduling metric (b)

ure 2 (a): starting from an idle state, suppose that event
occurs; thisevent activates therun-time schedul er, and since
no other frames are currently active, the threads of the first
frame are executed with the order determined previousy
with static scheduling (order 1-3-2). Occurrence of event 5,
while executing threads of thefirst frame, causes thefollow-
ing actions: 1) threads isinterrupted; 2) the run-time sched-
uler isinvoked for determining the subsequent execution or-
der, intheexample: A, rest of threads, B, 2; and 3) execution
proceeds with the newly determined thread ordering. Asin-
dicated therel ative ordering between the threads of the same
frameisnot changed allowing an efficient implementation of
the run-time schedul er, which must be necessarily very fast.

The scheduling metric used by the run-time scheduler is
the frame slack time. Thisinformationis derived statically
based on the imposed timing constraints and on the relative
thread orderingwithineach frame. Theframe s ack indicates
theamount of timethe end of an individual thread in athread
frame can be postponed, relatively to its static schedule, be-
fore violating a timing constraint. Asillustrated in figure 2
(b), the frame slack is defined as the minimum of al thread
dlacks, i.e. the remaining time between the end of the thread
and itstiming constraint, of al the succeeding threadsin the
static schedule. The frame slack derived at compiletime, is
used and updated at run-time. For amore formally descrip-
tion of thismodel, werefer to [3].

3.2 Script

Figure 3 gives an overview of the proposed approach.
From the concurrent process specification, the different pro-
gram threads are extracted and the non-deterministic timing
delay is isolated in event nodes. During this step, a code
generator can provide a static estimate of the thread execu-
tion times. These execution times are placed together with
the timing constraints in a constraint graph, the abstraction
model used in the sequel of the approach. The assignment of
external processor interruptsto event nodes in the constraint

interrupt assignmen
external events
SOFTWARE SYNTHESIS
EXECUTION MODEL
SELECTION
THREAD
TRANSFORMATIONS

THREAD FRAME
CLUSTERING

Congtraint o STATIC FRAME
Graph SCHEDULING
BUFFER ALLOCATION

TIMING ANALYSIS

Run-Time Executive
Code Generation

CODE GENERATION

LINKING

Figure 3; Possible software synthesis script

LATENCY
ESTIMATION

LATENCY
‘ ESTIMATION H THREAD EXTRACTION ‘

Concurrent Process
Specification

scheduled thread FRAMES

graph, which is determined by the context of the system, is
to be provided by the user.

After selection of one of thetwo execution model sexplained
above, five tasks, which are phase coupled, have to be per-
formed. Thread frame clustering tries to cluster the con-
straint graph into disjoint groups of threads which are trig-
gered by the same event set. These thread frames are to be
activated at run-time by the sel ected execution model. Since
events introduce an overhead during frame scheduling, we
also want to minimize the number of clusters, without vio-
lating timing constraints. Satic frame scheduling will deter-
mine at compile-time the relative order of the threads inside
each of the identified thread frames. Occasionally, the tim-
ing constraints can not be met by the identified frames. In
this case, a transformation step on the threads or the frames
can resolve the problem or can provide amore optimal solu-
tion. An example of these transformations will be givenin
theillustrationin section 4. Buffer allocation will insert the
required buffers in between communicating frames, by de-
rivingthe buffer sizesfrom the execution rates of theframes.
Timing analysisisused in different phases : once upon entry
of thetool, to check for consistency of the user specified tim-
ing constraints, and subsequently during the execution of the
tool, to verify whether a result of a synthesistask still satis-
fiesdl constraints.

The outcome of software synthesis are scheduled thread
frames and possi bly (depending on the execution model cho-
sen) a small run-time executive, which activates the appro-
priate frames at run-time; both have to be compiled with the
code generator and linked together afterwards.

4 |llustration of the Approach

System Description - Concurrent Communicating Pro-
cess Specification Figure 4 outlinesthe process specifica
tion of amobileterminal receiver demodulator to beused in
the MSBN satellite communication network [4]. This net-
work alows a bi-directional data and voice communication
inastar network consisting of afixed earth station and multi-
ple mobilestations. Two different datachannels, called pilot
and traffic channel, are sent over on the same transmission
carrier using the CDMA technique, i.e. corrdating the chan-

nels with orthogonal pseudo-noise codes enabling them to
use the same frequency spectrum without interference. The
former channel carries network system information (e.g. av-
erage channel bit error rate), thelatter carries the actual user
data. Acquisition and tracking of the transmission carrier is
performed on the pilot channel in cooperation with an intel-
ligent antenna.

Triggered by an externa interrupt, ther ead_decor r pro-
cess reads periodically (at a rate of 3.4 kHz) the mem-
ory mapped decorrelator FPGA. This process sends data to
thet rack_pi | ot &denod andthet r af f i c_denod pro-
cesses, which perform the tracking of the transmission car-
rier and the demodulation (i.e. gain, carrier phase and bit
phase correction). After a 1:3 rate conversion the demodu-
lated traffic data is formatted by the t r af f i c_manage-
_dat a process and viathe send_vocoder process trans-
mitted to a second, memory mapped processor. In contrast,
the demodulated pilot data will be further processed on the
same processor.

The t rack_pi | ot &lenpd process not only delivers its
demodulated datato the pi | ot _manage_dat a process, it
steers the frequency of the NCO (numerical controlled os-
cillator) in the preceeding anal og demodul ation part through
use of the on-chip serial peripheral. Moreover, together
with traf fi c_denopd process it sends information con-
cerning carrier synchronizationtothedi spl ay_LEDs pro-
cessand wr i t e_ant enna process. The channel decoding
of demodul ated pilot dataiscarried out by thepi | ot _DSP-
functions process, which operates on a 1024 €lement
frame basis, so a multi-ratetransitionis present between the
pi | ot _manage_dat a and this latter process. The output
data of the pilot channel decoding is sent to a PC computer
using the on-chip DMA engine. The set up_DVA process
istriggered when output datais available from the pi | ot -
_DSP_f unct i ons process and sets up and startsthe DMA
process.

Asynchronously with this chain of periodic processes, the
read_sys_cnd and r ead_ant enna process control the
internal parameters of the demodulation processes. They re-
spectively perform the man-machine interface connected to
the system using amemory mapped flag, allowing theuser to
alter the system operating parameters, and theinterface with
the antenna controller which is connected viaan externd in-
terrupt. The former is a sporadic process, since a user will
adapt the parameters only oncein awhile, and isalowed to
have alarge response time. The latter is atime-critical pro-
cess. when the antenna controller looses the beam, it will
signal thisimmediately to the demodul ator, which must take
special re-tracking actions.

Constraint Graph Representation Figure 5 outlines the
constraint graph (after thread frame clustering) for the de-
modul ator capturing the threads, their dependency and their
timing constraints. For reasons of clarity, the thread execu-
tion times are not indi cated.

Three event nodes are introduced to capture the timing
uncertainty of the periodic interrupt from the decorrelator
(evgeeorr), theinterrupt from the antenna controller (evyy,;)
and the setting of the polling flag of the man-machine in-

from decorrelator

== = - @l brieD

corr_synbol s
synbol _cl ock
: 8
L2
readfdecorr ---------
v 4

set para
“neters()

'
gto LEDs

X] to antenna

rmd\ ly paraneters 1 (
| |

read_ant enna

vy pi | ot
v o pllot 1024 DSP function ; ? AN

- T TR traan _____,rmn'age 230 B R e) A

. trafti ic_status ™ J:Iem)d track_pil ot (formet) _ & % [owA process \ |
g v : 7 (Hw o J1os

. o : e !] wasia2inFPGA)

3v
DVA

read_sys_cnd

serial _periph
=

Q,ﬁ./

/ serial \ to NCO
| peripheral . _._

DVA_interrupt _ DMVA periph

- ~—

=

|
.
®

control flow = 110 port —
----- data flow

peripheral process
O wait for data

<m rate conversion

Figure 4: Concurrent Process Specification of the MSBN demodulator

FRAME_demodulate

FRAME_pilot_DSP_functions

| Q read_antenna

® wait for event

timing constraint

..........

FRAME _read_sys cmd

Figure 5: The constraint graph of the MSBN demodul ator
(after frame clustering)

terface (ev,,;). The extra event ev.,; Was not present in
the original CG, but was introduced during frame cluster-
ing (see below). Remark that the event nodes make abstrac-
tion from whether they are implemented as an interrupt or
asapollingloop. Program threads capture also concurrency
and the rate conversion. Some processes in the original user
specification have been combined into one program thread
(e.g. manage_dat a+send_vocoder).

Timing constraints are added as backward edges, e.g. the
edge fromthenanage_dat a+send_vocoder tothe(pe-
riodic) event node expresses that the end of that thread must
be executed before the start of the occurrence of the next
event, and thus the next period.

Thread Frame Clustering and Transformations Infirst
instance, the cyclic executive based execution model was
tried, which proved satisfactory for thisapplication. Thread
frame clustering and transformation were aready added in
the CG of figure 5. Four different thread frames are identi-
fied, three according to the original events and one by an ar-
tificial event introduced by the frame cutting transformation.
Although the event set of the pi | ot _DSP_f unct i ons-

+set up_DVA thread isthe same as e.g. track_pi |l ot -

&denod+f or mat _dat a thread, it had to be placed in a
separate frame because of timing constraints. the execu-
tion time of the frame triggered by the decorrelator event
in its 1024th execution (according to the relative rate of
1:1024 of the last thread) would become longer than the pe-
riod of the periodic event and thus conflicts with the tim-
ing congtraints. Cutting the pi | ot _DSP_f unct i ons-
+set up_DIVA frame off and introducing an artificial event
eveyy Which checks for the 1024th execution of preceeding
frame, will allow the execution model to overlap the 1024
executions of the FRAME denpdul at e with the FRAME-
_pi | ot _DSP_functi ons.

Another transformation, called rate matching is applied on
themanage_dat a_send_vocoder thread: by inserting a
rate counter which checks for the relative event occurrence,
and based on this causes a conditional execution, the rate of
thisthread is matched to itsframe rate.

Implementation The final implementation af-
ter static frame scheduling and introduction of the commu-
nication buffers and with inclusion of the execution model
isshown in figure 6. Both the FRAMVE_r ead_sys_cnd and
FRAME pi | ot _DSP_f unct i ons frame are placed in the
background event loop of cyclic executive based execution
model, and thus in a round-robin schedule. For the man-
machine frame, thisis possible because of its non-stringent
timing constraint. Its response time to a user setting new
system commands will be limited by the execution time of
FRAME pi | ot _DSP_f uncti ons. The two other frames
aretriggered and activated by the environment using the cor-
responding hardware interrupt. Remark that in the frame
FRAME_denopdul at e the interrupts are unmasked again
(the target processor by default did not alow interrupt nest-
ing) to alow interrupt by FRAMVE_r ead_ant enna, inorder
toreducetheresponsetimeto the antennaloosingthecarrier.
At the bottom of figure 6 the behavior of both the CPU
and the processor peripherals are outlined on a time-axis.
It can be seen clearly that while the FRAMVE_pi | ot _DSP-

functions frameis processing the previous data frame
in background, the FRAME_denodul at e frame (activated
by ahardwareinterrupt) isprocessing consecutively the 1024
data samples of the next frame. This can be considered as
akind of process time-folding. It can also be seen that in-

FRAME_denpdul at e

\._‘ synbol _cl ock

? toLEDs
display_LEDs Je- - -, \ " X}
| to antenna
-—————— Laoa)-
.
:
B T -
—
from decorrelator read_decorr) [—
FPGA T
H 1
.
.
.

corr
_synbol s

=

7 , | lonco
serial

/ peripheral L .»X]

-\ J

. H
UNMASK i nt

'
'
'
'
'
oo

' '

track_pil ot RS P

+ denod :
'
'
'
. '
'
'

v \

pi l ot '
manage_data |- =4----- T R I

(format) "

i

traffic
e

FRAME pi | ot

_DSP Functions O=

round-robin -
\'_\~ event loop interrupt3
~.

ant _r eady \
a
\

fromantenna
set _
par an()

FRAME_r ead_ant enna

Q\(ACQU)
reset
denodul at or ()

\ (mem mapped)

\
!
i ©
|
o)
< |
< !
p toPC
\,/ \\?MA I' oy | T data flow
————— ----7 DMA process - - - ><| —-—-— sequence edge
i (Hw / /I (scheduling)
~—— / interrupt assignment
7
/./ S added source code

_demod
ﬁ%sg cPU startof pilot DSP functions 1024 activations of demodulate() , DMA disebleinterrupt start of pilot DS ncions - rexanvema
TTr—
.
o | / | | | ol
e | lror.repn ® || wEninAfe] | ® [len.in
¥ D‘;z:rdoc. - intl 3 intl DMA 3 int1 ’
______ = ; e
; DMA [iepiodaa] !
MASK i nt :
é Serial port YW\ t

Figure 6: The Fina Implementation of the MSBN demodul ator

terrupt nesting of both the FRAME_r ead_ant enna frame
and the DMA interrupt routine (which disablesthe DMA en-
gine after transfer completion), can occur in the FRANVE-
_denodul at e frame.

Results The overhead implied by the use of the blocking
execution model isminimal: it only requires an infiniteloop
and two conditional testsfor the background event loop, and
a(register) context save/restore (supported by the processor
hardware) for each interrupt routine.

This overhead has to be compared the situation when areal-
time kerndl is used to implement the run-time behavior of
figure 4. The origina specification consists of twelve con-
current user processes, and when this hierarchy is straight-
forwardly implemented, using the kernel’s semaphore prim-
itivesto signal between two taskswhen dataisavailable, this
will result in a considerable (run-time) overhead compared
with the solution proposed above. Additionaly, it requires
extra program memory to hold the kerndl’s program code.
However, with careful manual tuning of the orginal specifi-
cation and by collapsing anumber of user processes, theker-
nel solution could approach ours. Thistuning is however a
manual task incontrast the automated tuning and transforma-
tion processinour approach, whichworksacrossthedivision
of the specification into processes by the user.

5 Conclusions

The approach in this paper tackles the software support
problem at the source level in contrast to contemporary
coarse-grain, black-box approaches.
The proposed approach triesto exploit the knowledge of the
application at hand, applies transformations and optimiza-
tions to the specification and generates an application spe-
cific solution, with theautomatic support for timeliness. The

method, based on a representation model composed of pro-
gram threads and constraint graphs, features a sel ectable ex-
ecution model which combines a detailed static analysis of
the input specifications, resulting in a static partitioning of
the input specifications and a static schedule for each parti-
tion, and arun-time activation for the dynamic composition
of the specification partitions.

References

[1] M. Chiodo, et a., “Hardware-Software Co-design of Embedded Sys-
tems,” IEEE Micro, Vol. 14, No. 4, Aug., 1994.

[2] P Chou, G. Borriello, “ Software Scheduling in the Co-Synthesisof Re-
active Real-Time Systems,” Proc. DAC-94, Jun., 1994.

[3] M.Cornero, et al., “ Software Synthesisfor Real-Time Information Pro-
cessing Systems,” Code Generation for Embedded Processors, Kluwer,
1995.

[4] European Space Agency (ESA), “Mobile Satellite Business Network
(MSBN) - System Requirement Specification,” Issue 3.1, ESA-Estec,
Nov. 17, 1992.

[5] K. Ghosh, et a.,“A Survey of Real-Time Operating Systems,” report
GIT-CC-93/18, College of Computing, Georgia Institute of Technol-
ogy, Atlanta, Georgia, Feb. 15, 1994,

[6] D. Lanneer, et a., “CHESS: Retargetable Code Generation for Em-
bedded DSP Processors,” Code Generation for Embedded Processors,
Kluwer, 1995.

[7] R.K.Gupta, “Co-Synthesis of Hardware and Software for Digital Em-
bedded Systems,” PhD. Dissertation, Stanford University, Dec., 1993.

[8] N. Gehani, W. D. Roome, “The Concurrent C Programming Lan-
guage,” Prentice Hall, 1989.

[9] IEEE Inc., “IEEE Standard VHDL Language Reference Manual,”
|EEE Standard 1076-1987, Mar., 1982.

[10] D. Ku, G. De Micheli, “Relative Scheduling Under Timing Con-
straints,” Proc. DAC-90, Orlando, FL, Jun., 1990.

[21] J. Xu, D. L. Parnas, “ Scheduling Processeswith Release Times, Dead-
lines, Precedence and Exclusion Relations,” IEEE Trans. on Softw.
Eng., Vol. 16, No. 3, Mar., 1990.

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

