Efficient Orthonormality Testing for Synthesis
with Pass—Transistor Selectors

Michel Berkelaar michel@es.ele.tue.nl
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
Lukas P.P.P. van Ginnekerlukas@synopsys.com
Synopsys Inc., 700 East Middlefield Road, Mountain View, CA 94043

Abstract one. All technology mappers that the authors are aware of require

. . . that all standard cell library elements without memory can be
This paper presents the mapping problem for pass transistor selec escribed by a single (possibly multi-output) Boolean function.

tor mapping, which has not been addressed before. Pass transisto his Boolean function is internally represented by, for example, a
synthesis is potentially important for semi— or full-custom design network of 2—inputiands and inverters (e.o. the MIS mapper

techniques, which are increasingly attracting attention. Pass tran-
sistors have the advantage that fewer transistors are needed, an DET87]), or a BDD (e.g. CERES [MAIQOD‘ or éven a truth table
e.g. the BooleDozer mapper). This function is supposed to hold

that circuits with high fanin and small delay can be constructed. for all possible input values. Selectors also perform a Boolean
Technology mapping approaches in the existing literature CannOtgunction from inpuits to output (a simed-or function), but this

handile these selectors, due to the restriction of 1-hot encoding Of nction is only defined for those cases where the control inputs are
the control signals. We present a new algorithm to address this u y - ; pu
orthonormal. The actual behavior for other control input values of

problem, which is based on the novel idea of a general Boolean e : .
Oracle. Our oracle is based on ATPG techniques, and compared? selector gate is implementation dependent. The pass transistor

to BDDs, the oracle has the advantage that failure to complete onlymplﬁmﬁmﬁ?r} i?]f Ftlgurre g W,Ll(lj h?\lg . hlg?n0lijrg?urtrr:mcﬁ)ie?a\r/]CIe
affects optimization locally, and does not hinder optimization else- 'tﬁ ?\. Ck? hot pu s_ta € 'atfl pro ucara] 502e te | e a:e alue
where in the logic. A limitation of BDDs is that it is difficult to com- with a high short circuit current fliowing when 2 control signais are

plete the algorithm if a BDD grows too large. The experimental 1 with conflicting corresponding data input signals. In practical

results show up to 82% improvement in transistor count for the implementations it might be necessary to add an inverter_or buffer
MCNC combinatorial multi—level examples to the output of a pass transistor circuit to restore the logic values,

but it still remains a very efficientimplementation. An introduction

1 Introduction to pass—transistor logic can be found in [WHI81].
In this paper &elector gatés a gate withn pairs of inputs. Each data
input pair has dataand acontrol input. The output of the selector
gate is defined only for the case that exactly one ofitbentrol controh ¢— 1
inputs is 1. In this paper we call a set of signals in which exactly one d
is 1 for any input vectoorthonormal A formal definition can be atg
. ' . —e out
found in section 2. In case of orthonormal control inputs, the
(single) output of the selector gate will reflect the value of the data controb ¢——T
input associated with the control input that is 1. A related type of data
gate is thenultiplexer gate Multiplexers have data and control | |
inputs too, but they do not have a one—to—one correspondence of
data and control inputs. In most cases multiplexers have fewer con- controg e——1°

trol inputs than data inputs. Some kind of decoding of the values Figure 2: 3 input pass transistor selector

on the control inputs determines which data input controls the mul- o ot this implies that we can only map parts of a circuit to a selec-
tlplexer_output. 5?9 Flgur(_e 1 for an e>_<amp|e of a_4 Input selec_tortor after we have made sure that the control signals will be ortho-
and afl input muitiplexer with 2 (_:ontrol Inputs. In_thls paperwe ‘_N'" normal. This function cannot be performed by a 'normal’ technol-

only discuss the problem of using selectors to implement logic. ogy mapper. Yet, selectors can be very efficient implementations

-— —dy for some pieces of logic, and are, therefore, present in some stan-
o— 88 —d; dard cell libraries.
—c —d Th_is paper will describe an approach to identify those parts of cir-
— — d3 cuits that can be mapped to selectors.
e e This paper is the first one on the topic of mapping to selectors that
7 82 the authors are aware of. A lot of attention has been given to map-
— 02 . L -
— ping circuits to multiplexer based FPGAs (e.g. [ZHU93]
7 83 —c [LAN93]), but the problem of the requirement of orthogonal con-
[3 t . .
rol signals does not occur here. Furthermore, we are not trying to

implement a circuit by means of selectors only. We only want to
replace the parts where this is “natural” and does not require the
introduction of extra logic nor substantial restructuring of the logic.
This paper is organized as follows. Section 2 introduces the con-
The problem of using the selectors which might be available in a cept of a Boolean Oracle. We use this oracle to answer questions
standard cell library during technology mapping is a fundamental about the orthonormality and orthogonality of signals. In section

4 input selector 4 input multiplexer

Figure 1: difference between selector and multiplexer

10f8

3 of this paper we describe how we identify parts of circuits that can A Boolean Oracle can calculate the valueAdf 1 or All 0. It

be replaced by selectors. In section 4 we show how some of thecould be implemented in several ways:

selectors we have identified in section 3 can be merged into fewer], By exhaustive simulation of the circuit. This might be very
but larger selectors. Section 5 presents results on selectors found time consuming, and is not a realistic option for circuits with
in the set of MCNC combinatorial multi-level examples. Section many primary inputs.

6 contains the conclusions. 2. By using BDDs. BDDs are known to grow exponentially for
2 The Boolean Oracle certain types of circuits, but behave reasonably for many prac-

To be able to use selectors to implement parts of logical circuits, we tical circuits.

need to be able to answer questions about the orthogonality and or3: BY USing a test pattern generator.

honormality of sets of signals. In the paper we assume that we hav&Ve have opted for the last implementation. We use the package
aBoolean Oracldo answer our questions. To define what kind of basically by setting the signalsin a Se€ fto fixed O or 1 values,
questions we expect the Boolean Oracle to answer, we need som@nd then ask the test pattern package to come up with an input pat-
definitions. The wordtircuit will refer to a combinatorial Boolean tern that will generate these internal signal values. This uses only

circuit consisting ofjatesconnected bgignals the justification capability of the test pattern package. There are 3
Definition 1: The set is the set of all signals in a circuit. possible answers: _ _
Definition 2: The setX\ is the set of alhands in a circuit. 1. Ifaninput pattern can be found, we have set the signals to valid

In the following definitions we use the notatidrf to indicate the valugs. . . .
power set off. 2. If noinput pattern can be found because of inconsistencies, we

have set the signals to values which can never occur.
3. The test pattern package cannot answer the question conclu-
sively because it would take too much time.

Definition 3: The functionFanin : X' — ¥ * gives the set of input
signals of anand.

Definition 4: 7" is the set of all possible primary input vectors for .
a circuit. For a circuit withn primary inputs without input Th? test pattern package we use is .TGFS [Kl_JN90] [KUN92],
don't cares)¥| = 2". If there are don't care conditions on which is part of the IBM BooleDozklogic synthesis system. The
the inputs,|9] < 2" speed of this test pattern package allows us to consult the Boolean

Oracle many times.

A very important reason for choosing to implement the Boolean

Oracle by using TGFS is the graceful way in which it fails, as

compared to BDDs. If we had decided to use BDDs, we would not

have been able to reason about circuits for which the BDD repre-

sentation blows up. The process will run out of memory, or hit a

memory limit specified to the BDD package, and we will fail to

produce results for that circuit. A test generator will not run out of
memory, but it might use a lot of time. However, TGFS allows one

VVGT(‘V’SES (s =1l=V,cgy (8 = 0))) to specify the amount of effort that should be spent on a specific

question. This means that the oracle may sometimes respond to a
question with the answer “don’t know”. In the context of this paper,
this means that sometimes we cannot be sure whether a selector can
be used, and have to decide not to do it. But in other places in the
same circuit we may still be able to decide. For the MCNC bench-

We will use statements lik8l . formula or V 4 formula,
even thoughv might not appear ifiormula. But, as we limit our-
selves to combinatorial logic circuits, other signals valtieshe
circuit, which do appear iformula, depend directly om, formally
requiring a notation likes(v). Where this does not lead to ambigu-
ity, we will simply write s.
Definition 5: A set of signalsSin a Boolean network is callenit-
hogonalwhen

or: at most one of the signals is 1 for any input vector applied to the

circuit.

Definition 6: A set of signalsSin a Boolean network is calleuit-
honormalwhen it is orthogonal and

VVEV(EISES s=1) marks used in the results section of this paper, the oracle was
or: exactly one of the signals is 1 for any input vector applied to the @ways able to give a decisive answer. Any BDD packages would
circuit. have had a hard time with the multiplier of circuit C6288, and BDD

packages without dynamic variable ordering would have found

In the rest of the papen will indicate the Booleaand operation.
Papen P other circuits difficult too [RUD93].

Definition 7: The functionAll_1: ¥ *— {0, 1} can be defined for

S C fhy: 3 Identifying selectors
0V (A s— 0) We will look for selectors in the logic in three basic steps:
Ve ses 1. Find parts of the circuits where the baamor function of
All_1(S) = the selector is performed. These parts are calledidates
1 Hvev(s/e\s S= 1) 2. In each of the candidates, try to identify sets of signals which

are orthogonal, and, therefore, might serve as control inputs of
a selector.

. Finally, check if the sets of control signals identified in the pre-
vious step are orthonormal. If the answer is yes, we have found

All_1(S) indicates whether or not the signals& Scan all
be 1 for some input vector.

Definition 8: The functionAll 0 : ¥ *— {0, 1}can be defined for

SC Sy acompleteselector. If the answer is no, the control signals are
0 Vveqr(N 5= 0) only orthogonal and the selectoinsomplete but this can be
sES fixed by adding another input to it.
All_0(S) =
1 Elveqr(s/e\s 5= 1)

All_0(S) indicates whether or not the signal& Scan all

) 1. BooleDozer is a trademark of IBM Corp.
be 0 for some input vector.

20f8

Finding candidates every candidate. Matches are formally introduced by the following

We start by looking for parts of the circuit that performaac—or definition:

function. We do this by transforming the circuitnands only, Definition 9: A matchm of a pair(nand,, nand) of inputnands
where nand-inverter-nand constructions without intermediate of a single candidate is a pair of non—empty sets of signals:
fanout are merged into a largeand. Every two-level tree of m = {S,-, S-}, S, C Fanin(nand), S; C Fanin(nand)
nands now performs amnd-or function, and is @andidatefor /
(partial) replacement with a selector. The ideal form of this trans- Si# 0, 5=0, ALLSUS) =0
formation, where the entire candidate can be replaced, is picturedrpaqrem 1 For a matchm = {Si! S-}, letc, = /\ s the log-
in Figure 3. We will call thenands in the leftmost, input part of a g ses;

input nands ical and of the signalss € S, andc, = sé\s/. s, the logical

@ andofthe signals € S;, thenc, andc, are orthogonal sig-
nals.
outputnand

Proof: We first prove the (normal) case whe$} & S; and

C: e
di S, € S, Because of symmetry we only need to prove that

¢, =1=¢,=0. From ¢ =1 it follows that

3VEV<SQS,S = 1). Because there is a matg$), Sj}, it follows
1

nand-nand circuit

thatV,co{ A s= A sar /A s=0]. This can only be
SESIUSJ- seSi sESj

Figure 3: Frommand tree to selector circuit
two—level nand tree theinput nands. The nand generating the
output is called theutputnand. For every inpuband, we have to true if Veolc,=1= A s=0) from which
find a partition of its input signals into a control and a data subset. €5

The logicaland of the control subset will form one control input ¢, = 1 = ¢, = 0 follows directly.

of the selector, and the logiaad of the data subset the data input. Inthe less likely case th& C S, or S; C S,, we get the follow-

. . . . - - I

Another version of this transformation is when we only replace a ing. Again, because of symmetjry we/only treat one c8s®, S;.
part of theninputnands by a selector. In that case we have to keep

a smaller outputand around, and invert the output of the selector [3/: S]_] is a match, so Vvev(N s= 0). Also,

(or use an inverting selector). This is pictured in Figure 4. SESYS;
S$2S=51S5=0. We can now write
and 5) J
% Veel N s= Asa A s=Asa1=0|.
do SESUS; SES; s€s;\s; SES;

Therefore¥ <4 ¢; = 0. A pair of signals, of which one is always
0, is orthogonal.
]

If we think of the inputs of an inpuand as being ordered, we can
represent a match between an inpatd with n inputs and an
input nand with m inputs as a pair of two bit vectors of length

and m respectively, where a 1 in the bit vector corresponds to an
input signal being part of the match, and a 0 to a choice as data sig-
nal. An example of a match matrix is given in Figure 5. All matches
between inpuband 1 and inpuhand 2 are listed in match matrix

Figure 4: partial replacement o&nd tree by selector circuit entry (2, 1). Of course, the entry in (1, 2) would be identical, we
o . . . don’t need to store it. The diagonal does not carry any values either.

Finding sets of control signals in candidates But we do have to store/2 x (n — 1) entries if the outputand

The task we face is to find parts of two—lemahd-nand candi- has a fanin of.

dates which can be implemented correctly by a selector. For eac
such selector we have to figure out which of the input signals to the
input nands of a candidate form the control part of this select bit, m = {S’- S’ } Fanin(nand) 2 S'; 2 S,
and which signals the data part. We answer this question first with non ! e
respect tgairs of input nands of candidates. For each such pair
we are going to findll correct sets of signals which could be used
as the control signal if these twands were absorbed into a selec-
tor. The data signals are of course implicitly the remaining input Proof: For m holds: All_1(S;U S) = 0. This implies
nand inputs. If no data input remains, the constant value 1 is used. (

heorem 2 If m = {S,-, Sj} is a match, then

Fanin(nand) 2 S'; 2 S; is a match too. If
§;D85VvS;DS, we call these matchetmplied
matches

The sets of input signals which can be used as control signals foV ¢

an inputnand pair are calledhatchesand form anatch matrixor SESPS;

N s= 0). We need to proof that
=

30f8

VVEV(SEQUS'.S = 0)

J

We know thatS";U S'; 2 S;U S; We will define the difference set

Sy = S';US’; 1 (S;US). Now it is easy to see that

s= N\ sa

Yver esu/s\us "~ sesus
SESPSYS it SESPS;

All matches with a gray background in Figure 5 are implied

A s=0n

sE Sdiff

A

Sesdiff

)

Theorem 3 |If {S,-, Sj] is not a match, then

[S’,-, S',-}, pCS,CS, 0CS,C S;isanotamatch
either.

Proof: If {S,-, Sj} is not a match, it follows that

sE SIUS-

Elve(r(A s= 1) = Elveqf(vsesus_ s= 1). Therefore,
J t

for al [s, S} 0cCs,CS, 0Cs;Cs holds

A s= it .
EIVEV(SES,IUS,]'S 1), and itis not a match
]

From Theorem 3 it immediately follows that:

Corollary 4: For any two inpubands nand, nand, of a single
candidate, ii{ Fanin(nand,), Fanin(nand,-)] is not a match,

then there are no matches for this inpabd pair.
Thus, the first test we do for any input nand pair is to ask the oracle
the value ofAll_1(Fanin(nand) U Fanin(nand)). If the answer is
1, there are no matches for this pair. This single question to the
Boolean Oracle can avoid many other questions to identify the
matches.

1 2 3 The second thing we do is identifying counter examples for
100 100 010 010 matches by performing random simulations. In each candidates
110 100 nomatch matrixve storenomatches
1 }(ﬁ igg Definition 10: A nomatchnom of a pair(nand,, nand) of input
100 110 nands of a single candidate is a pair of non—empty sets of
100 101 signals:
100 111 .
110 110 nom = [S,-, Sl-], S; € Fanin(nand)
110 111 100 100]
101 110 S; C Fanin(nand), S; = 0, S; = 0AI_1(S;uS) =1
2 101 111 During random simulation of the circuit after identifying the candi-
111110 dates, we observe the input pins of inpatds of candidates and
110 101 . :
101 101 store the nomatches. With this set of nomatches and Theorem 3 we
%ﬁ %(1)8 can identify many pair{ss,., Sj} as definitely not being matches,
111 111 and we do not have to bother the oracle for the decision.
3 We can now write down the algorithm to find the matches:
Algorithm 1: find matches
1 for each candidate {
2 for each pair (nandl, nand2) {
Figure 5: Match matrix 3 if (A”_—l(nandl, nand_Z))
4 continue; /* to next pair */
5 for each match value m {
/* lowest numbers of 1s first */
matches. We only included them for entry (2, 1), for the other 6 if (m in nomatch matrix)
entries they can be constructed in a similar way. This observation 7 continue;
leads to the following two rules: /* to next match value */
1. When looking for matches, start looking for matches with as 8 if (mis implied match)
few signals as possible. This way we will find all matches that 9 continue ;
could not possibly be implied by another match first, and can /* to next match value */
easily skip testing of implied matches. 10 if (Oracle says All_1(m) = 0)

2. Store only the matches with minimal number of signals. All 11 add match to match matrix;
matches that are implied from this one can easily be derived12 }

and need not be stored.

13}

There are two other ways we speed up the process of findingl4 }
matches. The first property we exploit is given by the following The run time of algorithm 1 is quadratic in the number of input
theorem, which is in a sense the dual of Theorem 2;

nands of a candidate. If the test on line 3 fails, for a pair with a

4 of 8

and a m input nand, we actually must check all the inputnands of a candidate as possible. In many respects this
(2" - 1) x (2™ - 1) different possible match values. This is a is not a simple task. It would be best if we could replace the entire
very bad worst case time complexity, but in practical situations this candidate by a single selector. But in many cases this is not pos-
algorithm turns out be fast enough even for large circuits. In our sible. In general we can replace a candidate by a number of selec-
implementation the designer can limit the fanin of outparnds tors and some of the original inpu&nds, much like in Figure 4.

and inputands of candidates to be considered to limitthe runtime In many cases, several different configurations will be possible,
if needed. By default, we do not consider candidates with more some of which could be superior in some respect to others. We cur-
than 50 inputands, nor inputnands with more than 20 inputs. rently use a heuristic algorithm to find a set of ‘good’ selectors for
Table 1 shows how efficiently the heuristics in algorithm 1 limit the every candidate. It is based on the concepfrofving a selector
number of times we have to ask the Boolean Oracle if a match isconsisting of 2 or more inputands by adding one more input
valid. We have chosen the largest 10 circuits (in terms of numbernandto it. A selector is represented for these purposes by a set of
of connections in the circuit) from the MCNC combinatorial multi— inputnands, each with a known partition of inputs into control and
level benchmark circuits in which we find selectors (see the Resultsdata inputs. Atrivial starting point is of course taking a pair of input
section and Table 2) to show this. The size of a circuit is not directly nands for which a match, specifying the partitions can be found
related to run time for our algorithms, but this subset contains thein the match matrix. We can try to grow this configuration by

2 examples consuming the most CPU time. Column ‘total tests per-adding one more inputand'to it. This is only possible if the new
formed’ list the number of calls to the Boolean Oracle. Column inputnandhas a non—empty set of matches withrifieds already

‘total tests skipped' lists the number of times we decided we knew chosen. In that case we have to figure out how the control subsets
the answer before asking the oracle. Column ‘initial pair test skip’ for construction of the larger selector should be.

shows the number of calls to the oracle we did not make becausé\s an example. let’s consider the circuit of Figure 5. Remember
the test on line 3 of Algorithm 1 succeeded. Column ‘nomatch skip’ that the match matrix does not actually have the gray entries. If we
shows the number of times the test on line 6 succeeded. Columrstart with pairnandy andnandy, we get the following selector:
‘implied match skip’ shows the number of times the test on line 8 [pand; nands
succeeded, indicating a match was implied by a previously found| 1gg 100
match. This number is also equal to the number of matches tha
need not be stored. The actual number of matches we did have t
store is listed in column ‘matches stored’. The number of

f we try to add the thirdhand, the match matrix tells us that we
Rave the following choices for the control inputs:

nomatches we found and stored during random simulation of the| @701 nandz | nands
circuit with 1024 input vectors is listed in column ‘nomatches 100 100

stored’. The last column lists the CPU time in seconds needed on 100 100
an IBM RS6000/370 (approximately 60 MIPS) to run the match 010 010

finding algorithm. Table 1 shows that we succeeded in finding all The second line is in accordance with our original choice of control
matches, while making actual calls to the Boolean Oracle only in bits fornandy andnandy, but the third line seems to be a contradic-

a small fraction of the cases. The number of matches stored for eaction. However, we have to remember that all implied matches are
example indicates the theoretical lower limit for the number of real matches too. From Theorem 2 it follows that we can add inputs
calls to the Boolean Oracle that need to be made. A real match cafo a match and obtain an implied match. This means that we can just
only be found by an All_1 test, as all shortcuts we use lead to a negdo a bitwiseor on the bitvectors. This leads to the following 3 bit
ative conclusion. All three tests in algorithm 1 contribute signifi- selector:

pant_ly to this result. The_fact that we have chosen not to store, nandj nands nands
implied matches also limited our storage needs for matchestoa ;44 100 110
very acceptable number.

Or, graphically, to the selector configuration in Figure 6

Table 1: Efficiency of match finding a0—
be— P
name |total | total initial | no— implied | match | nomat | cpu ce— dO
tests | tests pair match | match es ches | (s)
done | skip test skip skip stored | stored Heo—
skip oe— : 81
rdq —e
C5310 | 1473| 11184 84 8242 2858 692 1776 | 14 ee—
C7552 | 2418 | 3145923004 5893 2562 554 | 1541| 44 a._}
'~ | C:
dalu 873 | 18794 363 9914 8472 383 | 1319| 16 be— fo— d%
des 6154 | 800117 | 9524 | 523347 | 267246 3006 | 15749 124
frg2 6679 | 115089 | 6580 | 84948 | 23561 195| 1699 | 40 . i i .
i10 1527 | 2.3E6| 2.3E6 | 10491 4711 446 | 1751| 28 Flgure 6: resultlng selector circuit
i8 2034 | 83168| 2180 | 61029| 19959| 1084| 5699| 38 From this we learn that we can add an inpand to a selector if
pair 1275 5264] 3588 | 1560 3161 2791 1996 21 the new inpuinand does have at least one match withrahds
" 22503 2659 2689 | 3786 13Es| 235 60707 aa7 already in the selector. We say that the m@mmd is compatible
with a selector if it has at least one match witmalhds already
x3 1274 | 28092 | 13332 | 11356 3404 245 | 1472| 15

in the selector.

To find all possible selectors for a candidate witimput nands,
From matches to selectors we would have to try to grow selectors towards all pos&ibiib-

We now know if and how pairs of inpnands could be part of a sets of inpubands of the candidate. This becomes too large a num-
selector. But, of course, we want the selectors to absorb as many dber very quickly, although it might be feasible for candidates of

50f8

smaller size. We have chosen to use the following heuristic: we another selector. We call this, for obvious reasbayway merg-
assume the inputands are ordered. We then try to grow selectors ing. It is entirely equivalent to input merging with an inverter
starting from each inputand, adding inputnands later in the between the selectors.

ordering if they are compatible. If they are not compatible, we try Co

the next one. In this way, for each candidate, we obtain a subset of

all possible selectors. C1

Checking completeness of selectors dy

In the previous discussions we have only made sure that the control c

signals for the selector are orthogonal. But we have not worried 1

about the possibility of them not being orthonormal. Yet, this might do

lead to undesirable high impedance output values in some selector ds
implementations. Therefore, we check this condition. For every

selector of every candidate we temporarily creatattbgates to _

get the control input values for this selector. The output nets of C2

theseands are not connected. L& be the set of control signals

thus created. We then ask the Boolean Oracle what the value of c1—

All_0(C) is. Ifitis 1, the control inputs of this selector can be 0 at } o
the same time, and the selector is incomplete. If we decide to imple- co

ment this selector, we will have to make it complete. If dl_DC)_ do
All_0(C) = 0, the selector is complete, and no further action is c1 o
necessatry. cp—) | S
We can make an incomplete selector complete by adding an extra dz—DO— di
bit to it. The data input of this bit is connected to the constant value -

0, and the control bit is the logior of the other control bits, which G2
effectively selects this bit when none of the other bits are selected. dz— do

As an example, the selector in Figure 6 is complete, because
ab+ab+a=1

4 Merging selectors
In many cases it is possible to merge selectors found in different5 ReSUItS))

candidates into one larger selector. In fact, the ability to do this has! & main results of this paper can be found in Table 2. It shows the
proved important to construct large selectors. In many cases logicSélectors found in the entire set of MCNC multi—level combinato-
synthesis, or other restructuring, will change a circuit such, that thefial benchmark circuits (76 circuits). On the initial circuits we per-

algorithms described in this paper only find small selectors ini- formed only some basic redundancy removal and a straight—for-
tially. ward conversion tmands. When we searched for selectors, we

One type of merging we can perform is when a selector output is!'m'ted ourselves_ to cand|date_s with at most 5.0 “?'W'ds- Each
nput nand was limited to 20 inputs. Both limitations assured us

connected (perhaps inverted) to the data input of another selectot.h t Id h bl i The 6 circuit ked
We call thisinput merging This situation is pictured for a simple at we would have reasonable run umes. 1he b circuits marke

- with 2) hit these limits, and were not fully explored, but some selec-
example in Figure 7. tors were found nonetheless. The 4 circuits marked¥vifd run
into the limits, and produced no selectors initially. On these exam-
ples we performed kernel factoring, after which they did not run
into the limits any more and produced some selectors. In the bench-
mark circuits not listed in the table (C1355, C17, C432, C6288,
cm138a, cm42a, decod, i3, i4, i5, majority, vda) we did not find any
selectors.
Figure 9 summarizes the estimated saving in terms of the number
of transistors for all benchmark circuits. It is obvious that quite a
few circuits show considerable savings, up to 82%.

Figure 8: merging selectors: halfway merge

Table 2 lists all the selectors found in the circuits. Please note that
c2 . there are no columns for 9 and 11 input selectors, because these
_ di T do were not found in this test.

C1 _} c1 The table column labeled ‘total sel bits’ gives the sum of all selector
C — "o — bits in the previous columns, to give an indication of the total selec-
d2 | dy tor contribution. In a pass transistor implementation this would be

Co Co the total number of transistors used in all selectors. The column

ds— dy ‘trans_,. bgfore 100%’ gives an indication of how many transistors:
the circuit used before the selectors were found. Because the cir-

cuits are transformed twands only, this number is twice the total
number of inputs t@ands. This assumes a one—to—one mapping
The second type of merging is pictured in Figure 8. In this case anof nand expressions toands from the library, which is of course
input nand, which is part of a selector, is also an outpad of not entirely accurate, but it is a good indication. The ‘100%’ indi-

Figure 7: merging selectors: input merge

60f 8

30 have shown that there is a large potential to area savings when pass

? Hﬂﬂﬂmm _

0 - 10- 20- 30- 40- 50- 60- 70- 80- 90
transistor count saving (%)

Figure 9: transistor count savings over all MCNC benchmark [DET87]
examples

cates that this number is used as a reference for other values. Col-
umn ‘tr. after %’ gives the percentage of transistomands left
after putting in the selectors and their surrounding logyici$ to
and the data and control biteprs to generate the control signal
for the extra selector bits added to make incomplete selectors com-
plete). Clearly, in many cases a substantial amount of the original

logic is replaced by selectors. Column ‘tr. sel %’ gives the number [KUN92]:

of transistors used in the selectors and the and-logic for the contro
and data bits. We assume this and-logic is also performed by serial
pass transistors to the selectors. The quantity is expressed as a per-
centage of the original number of transistors. Colummdrs %’
gives the amount of transistors needed foritrs. Again we take
twice the number of inputs to theors here. This amount too is
expressed as a percentage of the original transistor count. It is an
indication of how much extra logic was necessary to make incom-
plete selectors complete. As you can see, in most cases this number
is very small. Column ‘total %', adds the previous three columns,
to show the total % of transistors left after replaciagmds by
selectors.

Figure 10 summarizes the number of selectors of different sizes

[MAI90]

2 3456 7 8 9101112 13141516
selector size

Figure 10: number of selectors of a specific size found in all
MCNC benchmark examples

found in all benchmark examples combined. It clearly shows that
many selectors were found, most of which were 8 bits wide or less.
The final column of table 2 shows how much CPU time (in seconds
on an IBM RS6000/370, a 60 MIPS machine) was spent to find and
construct the selectors.

6 Conclusions
The theory and algorithms presented in this paper allow automatic
mapping to selectors based on Boolean properties of signals in the

circuit. Although the algorithms have an exponential worst case
run time complexity, for practical circuits they are fast enough. We

7 0of 8

[KUN9O] :

[LAN93]:

2 800.04[| [RUD93]:
5 _

o

@

T 80.0

5 [WHI83] :
o

T 8.04

(@]

= - DDD [ZHU93]:

The authors want to thank Dan Brand, Robert Damiano and Louise
Trevillyan for many discussions and helpful hints during the imple-
mentation of the algorithms described in the paper in the IBM
BooleDozer logic synthesis system.

2 — transistor selectors would be used in the MCNC benchmark cir-
3 251 cuits.

3

8 204

o 15 Acknowledgements

I3

c.

7

References

DeTJENS, E, G. GANNOT, R RUDELL, A. SANGIO-
VANNI-VINCENTELLI and A WANG, “Technology
Mapping in MIS”,Proceedings of the International
Conference on Computer—Aided Design 1987
pp. 116-119.

KunbA, RP, P NaraiN, JA. ABraHAM and BD.
RaTHI, “Speed up of Test Generation using High
Level Primitives”,Proceedings of the 27th Design
Automation Conferen¢cdune 1990, pp. 594-599.
Kunbpuy, S, L.H. Huisman, I. NAIR, V.S, IYENGAR and
L.N. Reppy, “A small Test Generator for Large
Designs”, Proceedings of the International Test
ConferenceSept. 1992, pp. 30—40.

LAaN, SH., R GopriseTTy and KR. DHARMARAJAN,
“CMAP — Technology Mapping for Multiplexor
Based FPGA Architectures Using Certificate of
Generic Boolean Function”Proceedings of the
IEEE 1993 Custom Integrated Circuits Conference
pp 3.4.1-3.4.4.

MaiLHoT, F and Gpe MicHELI, “Technology Map-
ping using Boolean Matching and Don'’t Care Sets”,
Proceedings of the European Design Automation
Conference 199(p. 212-216.

RupeLL, R, “Dynamic Variable Ordering for
Ordered Binary Decision Diagramst\orkshop
Notes of the International Workshop on Logic Syn-
thesis 1993May 1993, pp 3a-1 — 3a-12

WHITAKER, S., “Pass—transistor networks optimize
n—-MOS logic”, Electronics September 22, 1983,
pp. 144-148.

ZHu, K. and DF. Wong, “Fast Boolean Matching for
Field—-Programmable Gate Array$roceedings of
the 1993 European Design Automation Conference
(EuroDAC) pp 352-357.

Table 2: Results on all MCNC multi—-level benchmark circuits.

name number of selectors of size total [trans. F =I5 § @}
sel |beforep |2 |2 |E | 2
. = (@]
bits |[100% Slag |8 |a
2 3 il 5 o S | e
=) (=)
9symml 14 2 31 750 | 77| 6 1] 84 26
C1908 38 1 84| 1802 | 68| 7 1] 76| 6.2
C26709) 29| 2| 25 164| 2440 | 56| 8| 02| 76| 14
C3540 17| 17| 13 1 6 4] 4 297| 3948 | 63| 11 1| 75| 27
C499 48 96| 1856 | 69| 5 0| 74| 44
C5315 77| 15| 78] 3 526| 6482 | 45| 10| 05| 56| 23
C7552 158 2| 23] 8 454| 8266 | 66| 7| 09| 74| 45
€880 11| 8 46| 1336 | 88| 13| 3| 94| 4.6
alu2?) 2 3 3 1 1 2 79| 1360 | 61| 12| 8| 81| 17
alu4?) 2| 4 1 3 5 3 140| 2726 | 61| 12| 8| 81| 50
apex6 15| 67 5 11 322| 2674 | 39| 14| 5| 58| 8.9
apex? 7| 10 1 51 902 | 71| 9 5| 85| 3.1
bl 2 4 46 | 57| 9 0| 66| 0.6
b9 4 38 500 | 91| 2 0] 93| 16
c8 15| 7 1 55 710 | 43| 17| 3| 63| 3.7
cc 1 3 312 | 97| 1 1] 99| 11
cht 3/ 1 73 678 | 16| 20| 0| 36| 2.8
cm150a 16 198 7] 26| 0| 33| 1.3
cmi5la 1 8 100 | 32| 20| O] 52| 0.9
cmi52a 1 8 86 7] 28] O] 35 1.2
cmi62a 4 8 174 | 82| 5 0] 87| 1.0
cmi63a 4 8 172 | 81| 5 0] 86| 09
cm82a 2 4 100 | 76| 4 0] 80| 0.6
cm85a 4 3 198 | 80| 4 0] 84 1.0
cmb 3 6 168 | 79| 6 0] 85| 009
comp 1 4 368 | 95| 2 1] 98] 14
cordic 8 16 358 | /5] 4 0] 79[1.7
count 16 48 544 47 15 0 62 2.2
cu 1 1 6 224 | 84| 4 0] 88| 1.0
dalu 69| 47 279 4278 | 61| 9 3| 73] 17
des?) 143] 67| 36| 4] 11| 55| 10 1182| 15144 | 35| 12| 3| 50| 124
example2 21 7 8 1 100 1098 52| 11 5| 68 4.7
51m 2 1 4 23 788 | 77| 7 0] 84| 13
frgl D) 1 2 556 | 98] 04| 0] 98] 1.9
frg2 50| 79 1 341 4622 | 60| 13 1] 74 40
i10 152 27 9] 10 1 1 484 8218 | 66| 8 2| 76| 28
i1 2 6 168 | 85| 5 5] 95] 0.9
i22) 1 2 876 | 99| 03] 0] 99| 34
i6 1 66 266| 1752 | 22| 20| 03| 43| 7.7
i7 2 64 260 2188 | 19| 15| 0] 34 11
i8 23] 64 1] 32 522| 5538 | 45| 11| 05| 57| 39
i9 8] 56 248| 1954 | 33| 13| 0.7] 47| 9.1
k29 1] 16| 2 1 62| 3104 | 89| 3 3] 95] 85
lal 1 1 5 612 | 95| 1 1] 97| 18
mux 16 198 7] 26] 0] 33| 15
my_adder 16 64 930 48| 12 0| 60 3.8
pair 5| 44| 2 330] 5812 | 70| 7] 06| 78] 22
parity 1 2 240 | 95| 1 0] 96| 08
pcle 1 7 31 238 | 30| 19 19 68| 1.3
pcler8 1 7 31 302 | 56| 15| 15| 86| 1.4
pml 1 3 246 | 92| 3 2| 97| 1.0
rot 18| 14| 2 2 96| 3372 | 80| 6 1| 87| 84
sct 3 6 502 | 90| 3 0] 93| 16
tcon 8 16 98 2| 16| 0| 18| 0.9
terml 5| 10| 3 52| 1422 | 83| 7 3] 93| 55
t4817) 1 1 1 1 14 294 | 76| 7 6| 89| 2.6
too_largel) 3 8 30| 2402 | 94| 2 1| 97| 64
ttt2 17| 5 49| 1130 | 71| 10| 2| 83| 47
unreg 32 64 456 | 44| 21| o0 65| 2.1
x12) 8 2 22| 4326 | 95| 2| 02| 97| 447
X2 1 1 5 166 | 70| 11| 0| 81| 0.9
x3 46| 32| 16 252| 4386 | 73| 8 2| 83| 15
x4 9| 13] 20 137| 2020 | 58| 10| 2| 70| 8.1
z4ml 2 1 10 628 | 87| 4 0| 91| 13
total 11901] 568 528 42| 67| 65| 20 7572 75

1) ' No selectors initially, only after kernel factoring

2) Not fully explored , fanin limit exceeded

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

