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Abstract
This paper presents the mapping problem for pass transistor selec-
tor mapping, which has not been addressed before. Pass transistor
synthesis is potentially important for semi– or full–custom design
techniques, which are increasingly attracting attention.  Pass tran-
sistors have the advantage that fewer transistors are needed, and
that circuits with high fanin and small delay can be constructed.
Technology mapping approaches in the existing literature cannot
handle these selectors, due to the restriction of 1–hot encoding of
the control signals. We present a new algorithm to address this
problem, which is based on the novel idea of a general Boolean
Oracle. Our oracle is based on ATPG techniques, and compared
to BDDs, the oracle has the advantage that failure to complete only
affects optimization locally, and does not hinder optimization else-
where in the logic. A limitation of BDDs is that it is difficult to com-
plete the algorithm if a BDD grows too large.  The experimental
results show up to 82% improvement in transistor count for the
MCNC combinatorial multi–level examples.

1 Introduction
In this paper a selector gate is a gate with n pairs of inputs. Each
input pair has a data and a control input. The output of the selector
gate is defined only for the case that exactly one of the n control
inputs is 1. In this paper we call a set of signals in which exactly one
is 1 for any input vector orthonormal. A formal definition can be
found in section 2. In case of orthonormal control inputs, the
(single) output of the selector gate will reflect the value of the data
input associated with the control input that is 1. A related type of
gate is the multiplexer gate. Multiplexers have data and control
inputs too, but they do not have a one–to–one correspondence of
data and control inputs. In most cases multiplexers have fewer con-
trol inputs than data inputs. Some kind of decoding of the values
on the control inputs determines which data input controls the mul-
tiplexer output. See Figure 1 for an example of a 4 input selector
and a 4 input multiplexer with 2 control inputs. In this paper we will
only discuss the problem of using selectors to implement logic.

Figure 1: difference between selector and multiplexer
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The problem of using the selectors which might be available in a
standard cell library during technology mapping is a fundamental

one. All technology mappers that the authors are aware of require
that all standard cell library elements without memory can be
described by a single (possibly multi–output) Boolean function.
This Boolean function is internally represented by, for example, a
network of 2–input nands and inverters (e.g. the MIS mapper
[DET87]), or a BDD (e.g. CERES [MAI90]), or even a truth table
(e.g. the BooleDozer mapper). This function is supposed to hold
for all possible input values. Selectors also perform a Boolean
function from inputs to output (a simple and–or function), but this
function is only defined for those cases where the control inputs are
orthonormal. The actual behavior for other control input values of
a selector gate is implementation dependent. The pass transistor
implementation of Figure 2 will have a high output impedance
when all control inputs are 0, and produce some intermediate value
with a high short circuit current flowing when 2 control signals are
1 with conflicting corresponding data input signals. In practical
implementations it might be necessary to add an inverter or buffer
to the output of a pass transistor circuit to restore the logic values,
but it still remains a very efficient implementation. An introduction
to pass–transistor logic can be found in [WHI81].

Figure 2: 3 input pass transistor selector
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All of this implies that we can only map parts of a circuit to a selec-
tor after we have made sure that the control signals will be ortho-
normal. This function cannot be performed by a ’normal’ technol-
ogy mapper. Yet, selectors can be very efficient implementations
for some pieces of logic, and are, therefore, present in some stan-
dard cell libraries.
This paper will describe an approach to identify those parts of cir-
cuits that can be mapped to selectors.
This paper is the first one on the topic of mapping to selectors that
the authors are aware of. A lot of attention has been given to map-
ping circuits to multiplexer based FPGAs (e.g. [ZHU93]
[LAN93]), but the problem of the requirement of orthogonal con-
trol signals does not occur here. Furthermore, we are not trying to
implement a circuit by means of selectors only. We only want to
replace the parts where this is ‘‘natural” and does not require the
introduction of extra logic nor substantial restructuring of the logic.
This paper is organized as follows. Section 2 introduces the con-
cept of a Boolean Oracle. We use this oracle to answer questions
about the orthonormality and orthogonality of signals. In section
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3 of this paper we describe how we identify parts of circuits that can
be replaced by selectors. In section 4 we show how some of the
selectors we have identified in section 3 can be merged into fewer
but larger selectors. Section 5 presents results on selectors found
in the set of MCNC combinatorial multi–level examples. Section
6 contains the conclusions.

2 The Boolean Oracle
To be able to use selectors to implement parts of logical circuits, we
need to be able to answer questions about the orthogonality and ort-
honormality of sets of signals. In the paper we assume that we have
a Boolean Oracle to answer our questions. To define what kind of
questions we expect the Boolean Oracle to answer, we need some
definitions. The word circuit will refer to a combinatorial Boolean
circuit consisting of gates connected by signals.
Definition 1: The set � is the set of all signals in a circuit.
Definition 2: The set � is the set of all nands in a circuit.
In the following definitions we use the notation � * to indicate the
power set of �.
Definition 3: The function Fanin : �� � * gives the set of input

signals of a nand.
Definition 4: � is the set of all possible primary input vectors for

a circuit. For a circuit with n primary inputs without input
don’t cares, |�| � 2n. If there are don’t care conditions on
the inputs, |�| � 2n.

We will use statements like �v�� formula or �v�� formula,
even though v might not appear in formula. But, as we limit our-
selves to combinatorial logic circuits,  other signals values s in the
circuit, which do appear in formula, depend directly on v, formally
requiring a notation like s(v). Where this does not lead to ambigu-
ity, we will simply write s.
Definition 5: A set of signals S in a Boolean network is called ort-

hogonal when

�v��
�s�S

s � 1 � �s��S \ {s} (s� � 0)��

or: at most one of the signals is 1 for any input vector applied to the
circuit.
Definition 6: A set of signals S in a Boolean network is called ort-

honormal when it is orthogonal and

�v��
�s�S s � 1�
or: exactly one of the signals is 1 for any input vector applied to the
circuit.
In the rest of the paper, 	 will indicate the Boolean and operation.
Definition 7: The function All_1 : � *� {0, 1}  can be defined for

S � � by:

All_1(S) ��
��


�

0 �v��
	
s�S

s � 0�
1 �v��
	

s�S
s � 1�

All_1(S) indicates whether or not the signals s � S can all
be 1 for some input vector.

Definition 8: The function All_0 : � *� {0, 1} can be defined for
S � � by:

All_0(S) ��
��


�

0 �v��
	
s�S

s � 0�
1 �v��
	

s�S
s � 1�

All_0(S) indicates whether or not the signals s � S can all
be 0 for some input vector.

A Boolean Oracle can calculate the value of All_1 or All_0. It
could be implemented in several ways:
1. By exhaustive simulation of the circuit. This might be very

time consuming, and is not a realistic option for circuits with
many primary inputs.

2. By using BDDs. BDDs are known to grow exponentially for
certain types of circuits, but behave reasonably for many prac-
tical circuits.

3. By using a test pattern generator.
We have opted for the last implementation. We use the package
basically by setting the signals in a set S � � to fixed 0 or 1 values,
and then ask the test pattern package to come up with an input pat-
tern that will generate these internal signal values. This uses only
the justification capability of the test pattern package. There are 3
possible answers:
1. If an input pattern can be found, we have set the signals to valid

values.
2. If no input pattern can be found because of inconsistencies, we

have set the signals to values which can never occur.
3. The test pattern package cannot answer the question conclu-

sively because it would take too much time.
The test pattern package we use is TGFS [KUN90] [KUN92],
which is part of the IBM BooleDozer1 logic synthesis system. The
speed of this test pattern package allows us to consult the Boolean
Oracle many times.
A very important reason for choosing to implement the Boolean
Oracle by using TGFS is the graceful way in which it fails, as
compared to BDDs. If we had decided to use BDDs, we would not
have been able to reason about circuits for which the BDD repre-
sentation blows up. The process will run out of memory, or hit a
memory limit specified to the BDD package, and we will fail to
produce results for that circuit. A test generator will not run out of
memory, but it might use a lot of time. However, TGFS allows one
to specify the amount of effort that should be spent on a specific
question. This means that the oracle may sometimes respond to a
question with the answer “don’t know”. In the context of this paper,
this means that sometimes we cannot be sure whether a selector can
be used, and have to decide not to do it. But in other places in the
same circuit we may still be able to decide. For the MCNC bench-
marks used in the results section of this paper, the oracle was
always able to give a decisive answer. Any BDD packages would
have had a hard time with the multiplier of circuit C6288, and BDD
packages without dynamic variable ordering would have found
other circuits difficult too [RUD93].

3 Identifying selectors
We will look for selectors in the logic in three basic steps:
1. Find parts of the circuits where the basic and–or function of

the selector is performed. These parts are called candidates.
2. In each of the candidates, try to identify sets of signals which

are orthogonal, and, therefore, might serve as control inputs of
a selector.

3. Finally, check if the sets of control signals identified in the pre-
vious step are orthonormal. If the answer is yes, we have found
a complete selector. If the answer is no, the control signals are
only orthogonal and the selector is incomplete, but this can be
fixed by adding another input to it.

1. BooleDozer is a trademark of IBM Corp.



3 of 8

Finding candidates
We start by looking for parts of the circuit that perform an and–or
function. We do this by transforming the circuit to nands only,
where nand–inverter–nand constructions without intermediate
fanout are merged into a larger nand. Every two–level tree of
nands now performs an and–or function, and is a candidate for
(partial) replacement with a selector. The ideal form of this trans-
formation, where the entire candidate can be replaced, is pictured
in Figure 3. We will call the nands in the leftmost, input part of a
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Figure 3: From nand tree to selector circuit
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two–level nand tree the input nands. The nand generating the
output is called the output nand. For every input nand, we have to
find a partition of its input signals into a control and a data subset.
The logical and of the control subset will form one control input
of the selector, and the logical and of the data subset the data input.
Another version of this transformation is when we only replace a
part of the n input nands by a selector. In that case we have to keep
a smaller output nand around, and invert the output of the selector
(or use an inverting selector). This is pictured in Figure 4.
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Figure 4: partial replacement of nand tree by selector circuit
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Finding sets of control signals in candidates
The task we face is to find parts of two–level nand–nand candi-
dates which can be implemented correctly by a selector. For each
such selector we have to figure out which of the input signals to the
input nands of a candidate form the control part of this select bit,
and which signals the data part. We answer this question first with
respect to pairs of input nands of candidates. For each such pair
we are going to find all correct sets of signals which could be used
as the control signal if these two nands were absorbed into a selec-
tor. The data signals are of course implicitly the remaining input
nand inputs. If no data input remains, the constant value 1 is used.
The sets of input signals which can be used as control signals for
an input nand pair are called matches and form a match matrix for

every candidate. Matches are formally introduced by the following
definition:

Definition 9: A match m of a pair (nandi, nandj) of input nands
of a single candidate is a pair of non–empty sets of signals:

m � �Si, Sj
�, Si � Fanin(nandi), Sj � Fanin(nandj)

Si � �, Sj � �, All_1(Si � Sj) � 0

Theorem 1: For a match m � �Si, Sj
�, let c1 ��

sSi
s, the log-

ical and of the signals s  Si, and c2 ��
sSj

s, the logical

and of the signals s  Sj , then c1 and c2 are orthogonal sig-
nals.

Proof: We first prove the (normal) case when Si �	 Sj and
Sj �	 Si. Because of symmetry we only need to prove that
c1 � 1 � c2 � 0. From c1 � 1 it follows that

�v���
sSi

s � 1�. Because there is a match �Si, Sj
�, it follows

that �v�� �
sSi�Sj

s ��
sSi

s��
sSj

s � 0�. This can only be

true if �v��c1 � 1 ��
sSj

s � 0�, from which

c1 � 1 � c2 � 0 follows directly.

In the less likely case that Si � Sj  or Sj � Si , we get the follow-
ing. Again, because of symmetry we only treat one case, Si � Sj.

�Si, Sj
� is a match, so �v�� �

sSi�Sj
s � 0�. Also,

Si � Sj � Sj \ Si � �. We can now write

�v�� �
sSi�Sj

s ��
sSi

s� �
sSj \ Si

s ��
sSi

s� 1 � 0�.
Therefore, �v� c1 � 0. A pair of signals, of which one is always
0, is orthogonal.
�

If we think of the inputs of an input nand as being ordered, we can
represent a match between an input nand with n inputs and an
input nand with m inputs as a pair of two bit vectors of length n
and m respectively, where a 1 in the bit vector corresponds to an
input signal being part of the match, and a 0 to a choice as data sig-
nal. An example of a match matrix is given in Figure 5. All matches
between input nand 1 and input nand 2 are listed in match matrix
entry (2, 1). Of course, the entry in (1, 2) would be identical, we
don’t need to store it. The diagonal does not carry any values either.
But we do have to store n	2� (n� 1) entries if the output nand
has a fanin of n.

Theorem 2: If m � �Si, Sj
� is a match, then

m� � �S�i, S�j�, Fanin(nandi) � S�i � Si,

Fanin(nandj) � S�j � Sj is a match too. If
S�i 
 Si � S�j 
 Sj, we call these matches implied
matches.

Proof: For m holds: All_1(Si � Sj) � 0. This implies

�v�� �
sSi�Sj

s � 0�. We need to proof that
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�v
�� �
s
S�i�S�j

s � 0�.
We know that S�i � S�j 	 Si � Sj. We will define the difference set
Sdiff � S�i � S�j \ (Si � Sj). Now it is easy to see that

�v
�� �
s
Si�Sj�Sdiff

s � �
s
Si�Sj

s� �
s
Sdiff

s � 0� �
s
Sdiff

s�
�

All matches with a gray background in Figure 5 are implied
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Figure 5: Match matrix
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matches. We only included them for entry (2, 1), for the other
entries they can be constructed in a similar way. This observation
leads to the following two rules:

1. When looking for matches, start looking for matches with as
few signals as possible. This way we will find all matches that
could not possibly be implied by another match first, and can
easily skip testing of implied matches.

2. Store only the matches with minimal number of signals. All
matches that are implied from this one can easily be derived
and need not be stored.

There are two other ways we speed up the process of finding
matches. The first property we exploit is given by the following
theorem, which is in a sense the dual of Theorem 2;

Theorem 3: If Si, Sj
� is not a match, then

S�i, S�j�, � � S�i � Si, � � S�j � Sj is a not a match

either.

Proof: If Si, Sj
� is not a match, it follows that

�v
�� �
s
Si�Sj

s � 1� � �v
���s
Si�Sj
s � 1�. Therefore,

for all S�i, S�j�, � � S�i � Si, � � S�j � Sj holds

�v
�� �
s
S�i�S�j

s � 1�, and it is not a match.

�

From Theorem 3 it immediately follows that:
Corollary 4: For any two input nands nandi, nandj of a single

candidate, if Fanin(nandi), Fanin(nandj)� is not a match,

then there are no matches for this input nand pair.
Thus, the first test we do for any input nand pair is to ask the oracle
the value of All_1(Fanin(nandi) � Fanin(nandj)). If the answer is
1, there are no matches for this pair. This single question to the
Boolean Oracle can avoid many other questions to identify the
matches.
The second thing we do is identifying counter examples for
matches by performing random simulations. In each candidates
nomatch matrix we store nomatches.
Definition 10: A nomatch nom of a pair (nandi, nandj) of input

nands of a single candidate is a pair of non–empty sets of
signals:

nom � Si, Sj
�, Si � Fanin(nandi)

Sj � Fanin(nandj), Si � �, Sj � �All_1(Si � Sj) � 1
During random simulation of the circuit after identifying the candi-
dates, we observe the input pins of input nands of candidates and
store the nomatches. With this set of nomatches and Theorem 3 we

can identify many pairs Si, Sj
� as definitely not being matches,

and we do not have to bother the oracle for the decision.
We can now write down the algorithm to find the matches:

Algorithm 1: find matches

 1  for  each candidate {
 2   for  each pair ( nand1, nand2) {
 3    if (All_1( nand1, nand2))
 4     continue;  /* to next pair */
 5    for  each match value m {
       /* lowest numbers of 1s first */
 6     if (m in nomatch matrix)
 7      continue;
       /* to next match value */
 8     if (m is implied match)
 9      continue ;
        /* to next match value */
10     if (Oracle says All_1(m) = 0)
11      add match to match matrix;
12    }
13   }
14  }
The run time of algorithm 1 is quadratic in the number of input
nands of a candidate. If the test on line 3 fails, for a pair with a n
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and a m input nand, we actually must check all
(2n� 1)� (2m� 1) different possible match values. This is a
very bad worst case time complexity, but in practical situations this
algorithm turns out be fast enough even for large circuits. In our
implementation the designer can limit the fanin of output nands
and input nands of candidates to be considered to limit the run time
if needed. By default, we do not consider candidates with more
than 50 input nands, nor input nands with more than 20 inputs.
Table 1 shows how efficiently the heuristics in algorithm 1 limit the
number of times we have to ask the Boolean Oracle if a match is
valid. We have chosen the largest 10 circuits (in terms of number
of connections in the circuit) from the MCNC combinatorial multi–
level benchmark circuits in which we find selectors (see the Results
section and Table 2) to show this. The size of a circuit is not directly
related to run time for our algorithms, but this subset contains the
2 examples consuming the most CPU time. Column ‘total tests per-
formed’ list the number of calls to the Boolean Oracle. Column
‘total tests skipped’ lists the number of times we decided we knew
the answer before asking the oracle. Column ‘initial pair test skip’
shows the number of calls to the oracle we did not make because
the test on line 3 of Algorithm 1 succeeded. Column ‘nomatch skip’
shows the number of times the test on line 6 succeeded. Column
‘implied match skip’ shows the number of times the test on line 8
succeeded, indicating a match was implied by a previously found
match. This number is also equal to the number of matches that
need not be stored. The actual number of matches we did have to
store is listed in column ‘matches stored’. The number of
nomatches we found and stored during random simulation of the
circuit with 1024 input vectors is listed in column ‘nomatches
stored’. The last column lists the CPU time in seconds needed on
an IBM RS6000/370 (approximately 60 MIPS) to run the match
finding algorithm. Table 1 shows that we succeeded in finding all
matches, while making actual calls to the Boolean Oracle only in
a small fraction of the cases. The number of matches stored for each
example indicates the theoretical lower limit for the number of
calls to the Boolean Oracle that need to be made. A real match can
only be found by an All_1 test, as all shortcuts we use lead to a neg-
ative conclusion. All three tests in algorithm 1 contribute signifi-
cantly to this result. The fact that we have chosen not to store
implied matches also limited our storage needs for matches to a
very acceptable number.

Table 1: Efficiency of match finding

name total
tests
done

total
tests
skip

initial
pair
test
skip

no–
match
skip

implied
match
skip

match
es
stored

nomat
ches
stored

cpu
(s)

C5310 1473 11184 84 8242 2858 692 1776 14

C7552 2418 31459 23004 5893 2562 554 1541 44

dalu 873 18794 363 9914 8472 383 1319 16

des 6154 800117 9524 523347 267246 3006 15749 124

frg2 6679 115089 6580 84948 23561 195 1699 40

i10 1527 2.3E6 2.3E6 10491 4711 446 1751 28

i8 2934 83168 2180 61029 19959 1084 5699 38

pair 1275 5464 3588 1560 316 279 1996 21

x1 74543 2.6E9 2.6E9 3.7E6 1.3E6 235 60707 447

x3 1274 28092 13332 11356 3404 245 1472 15

From matches to selectors
We now know if and how pairs of input nands could be part of a
selector. But, of course, we want the selectors to absorb as many of

the input nands of a candidate as possible. In many respects this
is not a simple task. It would be best if we could replace the entire
candidate by a single selector. But in many cases this is not pos-
sible. In general we can replace a candidate by a number of selec-
tors and some of the original input nands, much like in Figure 4.
In many cases, several different configurations will be possible,
some of which could be superior in some respect to others. We cur-
rently use a heuristic algorithm to find a set of ‘good’ selectors for
every candidate. It is based on the concept of growing a selector
consisting of 2 or more input nands by adding one more input
nand to it. A selector is represented for these purposes by a set of
input nands, each with a known partition of inputs into control and
data inputs. A trivial starting point is of course taking a pair of input
nands for which a match, specifying the partitions can be found
in the match matrix. We can try to grow this configuration by
adding one more input nand to it. This is only possible if the new
input nand has a non–empty set of matches with the nands already
chosen. In that case we have to figure out how the control subsets
for construction of the larger selector should be.
As an example. let’s consider the circuit of Figure 5. Remember
that the match matrix does not actually have the gray entries. If we
start with pair nand0 and nand1, we get the following selector:

nand1 nand2
100 100

If we try to add the third nand, the match matrix tells us that we
have the following choices for the control inputs:

nand1 nand2 nand3
100 100

100 100
010 010

The second line is in accordance with our original choice of control
bits for nand0 and nand1, but the third line seems to be a contradic-
tion. However, we have to remember that all implied matches are
real matches too. From Theorem 2 it follows that we can add inputs
to a match and obtain an implied match. This means that we can just
do a bitwise or on the bitvectors. This leads to the following 3 bit
selector:

nand1 nand2 nand3
110 100 110

Or, graphically, to the selector configuration in Figure 6

c0
d0

c1
d1

c2
d2

a

b

a

c

d

e

a

b f

Figure 6: resulting selector circuit

From this we learn that we can add an input nand to a selector if
the new input nand does have at least one match with all nands
already in the selector. We say that the new nand is compatible
with a selector if it has at least one match with all nands already
in the selector.
To find all possible selectors for a candidate with n input nands,
we would have to try to grow selectors towards all possible 2n sub-
sets of input nands of the candidate. This becomes too large a num-
ber very quickly, although it might be feasible for candidates of
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smaller size. We have chosen to use the following heuristic: we
assume the input nands are ordered. We then try to grow selectors
starting from each input nand, adding input nands later in the
ordering if they are compatible. If they are not compatible, we try
the next one. In this way, for each candidate, we obtain a subset of
all possible selectors.

Checking completeness of selectors
In the previous discussions we have only made sure that the control
signals for the selector are orthogonal. But we have not worried
about the possibility of them not being orthonormal. Yet, this might
lead to undesirable high impedance output values in some selector
implementations. Therefore, we check this condition. For every
selector of every candidate we temporarily create the and gates to
get the control input values for this selector. The output nets of
these ands are not connected. Let C be the set of control signals
thus created. We then ask the Boolean Oracle what the value of
All_0(C) is. If it is 1, the control inputs of this selector can be 0 at
the same time, and the selector is incomplete. If we decide to imple-
ment this selector, we will have to make it complete. If
All_0(C)� 0, the selector is complete, and no further action is
necessary.
We can make an incomplete selector complete by adding an extra
bit to it. The data input of this bit is connected to the constant value
0, and the control bit is the logic nor of the other control bits, which
effectively selects this bit when none of the other bits are selected.
As an example, the selector in Figure 6 is complete, because
a b� a b� a� 1.

4 Merging selectors
In many cases it is possible to merge selectors found in different
candidates into one larger selector. In fact, the ability to do this has
proved important to construct large selectors. In many cases logic
synthesis, or other restructuring, will change a circuit such, that the
algorithms described in this paper only find small selectors ini-
tially.
One type of merging we can perform is when a selector output is
connected (perhaps inverted) to the data input of another selector.
We call this input merging. This situation is pictured for a simple
example in Figure 7.

Figure 7: merging selectors: input merge
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The second type of merging is pictured in Figure 8. In this case an
input nand, which is part of a selector, is also an output nand of

another selector. We call this, for obvious reasons, halfway merg-
ing. It is entirely equivalent to input merging with an inverter
between the selectors.

Figure 8: merging selectors: halfway merge
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5 Results
The main results of this paper can be found in Table 2. It shows the
selectors found in the entire set of MCNC multi–level combinato-
rial benchmark circuits (76 circuits). On the initial circuits we per-
formed only some basic redundancy removal and a straight–for-
ward conversion to nands. When we searched for selectors, we
limited ourselves to candidates with at most 50 input nands. Each
input nand was limited to 20 inputs. Both limitations assured us
that we would have reasonable run times. The 6 circuits marked
with 2) hit these limits, and were not fully explored, but some selec-
tors were found nonetheless. The 4 circuits marked with 1) did run
into the limits, and produced no selectors initially. On these exam-
ples we performed kernel factoring, after which they did not run
into the limits any more and produced some selectors. In the bench-
mark circuits not listed in the table (C1355, C17, C432, C6288,
cm138a, cm42a, decod, i3, i4, i5, majority, vda) we did not find any
selectors.
Figure 9 summarizes the estimated saving in terms of the number
of transistors for all benchmark circuits. It is obvious that quite a
few circuits show considerable savings, up to 82%.
Table 2 lists all the selectors found in the circuits. Please note that
there are no columns for 9 and 11 input selectors, because these
were not found in this test.
The table column labeled ‘total sel bits’ gives the sum of all selector
bits in the previous columns, to give an indication of the total selec-
tor contribution. In a pass transistor implementation this would be
the total number of transistors used in all selectors. The column
‘trans. before 100%’ gives an indication of how many transistors
the circuit used before the selectors were found. Because the cir-
cuits are transformed to nands only, this number is twice the total
number of inputs to nands. This assumes a one–to–one mapping
of nand expressions to nands from the library, which is of course
not entirely accurate, but it is a good indication. The ‘100%’ indi-
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Figure 9: transistor count savings over all MCNC benchmark
examples
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cates that this number is used as a reference for other values. Col-
umn ‘tr. after %’ gives the percentage of transistors in nands left
after putting in the selectors and their surrounding logic (ands to
and the data and control bits, nors to generate the control signal
for the extra selector bits added to make incomplete selectors com-
plete). Clearly, in many cases a substantial amount of the original
logic is replaced by selectors. Column ‘tr. sel %’ gives the number
of transistors used in the selectors and the and–logic for the control
and data bits. We assume this and–logic is also performed by serial
pass transistors to the selectors. The quantity is expressed as a per-
centage of the original number of transistors. Column ‘tr. nors %’
gives the amount of transistors needed for the nors. Again we take
twice the number of inputs to the nors here. This amount too is
expressed as a percentage of the original transistor count. It is an
indication of how much extra logic was necessary to make incom-
plete selectors complete. As you can see, in most cases this number
is very small. Column ‘total %’, adds the previous three columns,
to show the total % of transistors left after replacing nands by
selectors.
Figure 10 summarizes the number of selectors of different sizes
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num
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Figure 10: number of selectors of a specific size found in all
MCNC benchmark examples

found in all benchmark examples combined. It clearly shows that
many selectors were found, most of which were 8 bits wide or less.
The final column of table 2 shows how much CPU time (in seconds
on an IBM RS6000/370, a 60 MIPS machine) was spent to find and
construct the selectors.

6 Conclusions
The theory and algorithms presented in this paper allow automatic
mapping to selectors based on Boolean properties of signals in the
circuit. Although the algorithms have an exponential worst case
run time complexity, for practical circuits they are fast enough. We

have shown that there is a large potential to area savings when pass
transistor selectors would be used in the MCNC benchmark cir-
cuits.
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Table 2: Results on all MCNC multi–level benchmark circuits.2

name number of selectors of size total
sel
bits

trans.
before
100%

tr. after 

tr. sel %

tr. nors 

total %

C
P

U
 (s)

2 3 4 5 6 7 8 1
0

1
2

1
3

1
4

1
5

1
6

bits 100% r %

% s %

% s)

9symml 14 2 31 750 77 6 1 84 2.6
C1908 38 1 84 1802 68 7 1 76 6.2
C2670 2) 29 2 25 164 2440 56 8 0.2 76 14
C3540 17 17 13 1 6 4 4 2 1 1 297 3948 63 11 1 75 27
C499 48 96 1856 69 5 0 74 4.4
C5315 77 15 78 3 526 6482 45 10 0.5 56 23
C7552 158 2 23 8 454 8266 66 7 0.9 74 45
C880 11 8 46 1336 88 13 3 94 4.6
alu2 2) 2 3 3 1 1 2 1 1 79 1360 61 12 8 81 17
alu4 2) 2 4 1 3 5 3 1 1 1 1 140 2726 61 12 8 81 50
apex6 15 67 5 11 322 2674 39 14 5 58 8.9
apex7 7 10 1 51 902 71 9 5 85 3.1
b1 2 4 46 57 9 0 66 0.6
b9 4 8 500 91 2 0 93 1.6
c8 15 7 1 55 710 43 17 3 63 3.7
cc 1 3 312 97 1 1 99 1.1
cht 35 1 73 678 16 20 0 36 2.8
cm150a 1 16 198 7 26 0 33 1.3
cm151a 1 8 100 32 20 0 52 0.9
cm152a 1 8 86 7 28 0 35 1.2
cm162a 4 8 174 82 5 0 87 1.0
cm163a 4 8 172 81 5 0 86 0.9
cm82a 2 4 100 76 4 0 80 0.6
cm85a 4 8 198 80 4 0 84 1.0
cmb 3 6 168 79 6 0 85 0.9
comp 1 4 368 95 2 1 98 1.4
cordic 8 16 358 75 4 0 79 1.7
count 16 48 544 47 15 0 62 2.2
cu 1 1 6 224 84 4 0 88 1.0
dalu 69 47 279 4278 61 9 3 73 17
des 2) 143 67 36 4 11 55 10 1182 15144 35 12 3 50 124
example2 21 7 8 1 100 1098 52 11 5 68 4.7
f51m 2 1 4 23 788 77 7 0 84 13
frg1 1) 1 2 556 98 0.4 0 98 1.9
frg2 50 79 1 341 4622 60 13 1 74 40
i10 152 27 9 10 1 1 484 8218 66 8 2 76 28
i1 2 6 168 85 5 5 95 0.9
i2 2) 1 2 876 99 0.3 0 99 3.4
i6 1 66 266 1752 22 20 0.3 43 7.7
i7 2 64 260 2188 19 15 0 34 11
i8 23 64 1 32 522 5538 45 11 0.5 57 39
i9 8 56 248 1954 33 13 0.7 47 9.1
k2 1) 1 16 2 1 62 3104 89 3 3 95 8.5
lal 1 1 5 612 95 1 1 97 1.8
mux 1 16 198 7 26 0 33 1.5
my_adder 16 64 930 48 12 0 60 3.8
pair 95 44 2 330 5812 70 7 0.6 78 22
parity 1 2 240 95 1 0 96 0.8
pcle 1 7 31 238 30 19 19 68 1.3
pcler8 1 7 31 302 56 15 15 86 1.4
pm1 1 3 246 92 3 2 97 1.0
rot 18 14 2 2 96 3372 80 6 1 87 84
sct 3 6 502 90 3 0 93 1.6
tcon 8 16 98 2 16 0 18 0.9
term1 5 10 3 52 1422 83 7 3 93 5.5
t481 1) 1 1 1 1 14 294 76 7 6 89 2.6
too_large 1) 3 8 30 2402 94 2 1 97 6.4
ttt2 17 5 49 1130 71 10 2 83 4.7
unreg 32 64 456 44 21 0 65 2.1
x1 2) 8 2 22 4326 95 2 0.2 97 447
x2 1 1 5 166 70 11 0 81 0.9
x3 46 32 16 252 4386 73 8 2 83 15
x4 9 13 20 137 2020 58 10 2 70 8.1
z4ml 2 1 10 628 87 4 0 91 13
total 1191 568 528 42 67 65 20 2 1 1 2 2 3 7572 75

1) No selectors initially, only after  kernel factoring
2) Not fully explored , fanin limit exceeded
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