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Abstract: Adaptive Diagnosis, a paradigm for diagnosis,
is defined. A system based on this paradigm, for IDDQ mea-
surement based diagnosis of bridging faults, is reported.
Experimental evaluation of the system shows it to be sub-
stantially superior to existing systems, especially for larger
circuits.

1 Introduction
Given a circuit and the observed faulty response of the

circuit, diagnosis locates physical faults which result in the
faulty response. It aids in gathering information to improve
fabrication processes.

The prevalent diagnosis paradigm is static diagnosis.
The tasks in static diagnosis are as follows. A diagnostic test
sequence (DTS), targeting a given set of faults F, is precom-
puted. The static DTS is evaluated as to its effectiveness in
distinguishing between faults in the set F (diagnostic sim-
ulation [12]). A static fault dictionary is computed either
independently or as a by product of diagnostic simulation.
Static diagnosis has several disadvantages.
� Diagnostic simulation requires considerable time and
space[17], especially for bridging faults (BFs)[4].
� Static fault dictionaries require considerable space thereby
leading to maintenance problem. The time required to com-
pute them is also very large. The improved techniques[3]
fall apart for larger circuits and fault models with large num-
ber of faults.
� Since detection oriented test set don’t have good diagnos-
tic resolution, they need to be augmented. This results in
large DTS, resulting in storage and maintenance problems,
especially for large circuits and fault models with large num-
ber of faults in them[4].

Static diagnosis is useful when a large number of differ-
ent faulty responses needs to be analyzed. The high cost is
then amortized over the large number of faulty responses.
However, it is often the case that many of the faulty chips
have the same faulty response. Thus, the number of distinct
responses to be analyzed is small. In this case the disadvan-
tages of static diagnosis become important.

BF occurs when two or more distinct nodes of the circuit
are unintentionally connected. BFs model 50% of physical
defects in MOS circuits[8]. Once we target BFs the disad-
vantages of static diagnosis become very significant.

Motivated by this, alternatives to static diagnosis have
been studied[1,2,5,6,16]. In dynamic diagnosis[14], no
static fault dictionary is used. This eliminates the storage
and maintenance problems. The expensive step of diagnos-

tic fault simulation is still required. Storing and maintaining
large DTS is still a problem.

In this paper we first define adaptive diagnosis, a new
diagnosis paradigm. In adaptive diagnosis we do away with
the costly steps of computing static fault dictionaries, di-
agnostic simulation and static diagnostic test generation.
Fault dictionaries and DTS are not stored thereby avoiding
the above problems.

We developed a diagnosis system based on this
paradigm. It assumes BFs between two nodes, and IDDQ
measurement as the testing technique. Experimental evalu-
ation of this system shows it to be substantially better than
existing systems, especially for the larger circuits.

2 Adaptive Diagnosis
Adaptive diagnosis is dynamic in that the DTS is gener-

ated during diagnosis. Figure 1 shows the structure of the
diagnosis system required.

It is also a multi-phase, iterative process. Each phase
consists of two parts. In the first part, a small DTS target-
ing the remaining faults in the fault list is generated. It is
then applied to the circuit under test (CUD). The responses,
which could either be the logic levels at POs, or the quies-
cent power supply current, or a combination of the two, of
the chip to the test sequence are fed back to the diagnostic
test generator (DTG). This information is used in the second
part for fault dropping.

The next phase starts with the reduced fault list. DTG
generates a new set of vectors. The process continues till
no fault dropping is possible, i.e., all faults in fault list are
equivalent. Thus, adaptive diagnosis is always “complete”
with respect to the targeting faults and the measurements it
used. Note that the system requirement is no different from
what is required by static diagnosis.

Ideally, in each phase only one test is generated, making
the DTG “well informed” about the status of the diagnosis
process. But this implies a huge communication overhead.
We therefore generate tests in groups, and each group is pro-
cessed in one phase. The number of phases and the number
of tests in each group depends on the fault model, the fault
dropping, and test generation process.

There is a potential problem with adaptive diagnosis.
The time the CUD spends in the tester (tester time) may be
large because the DTG spends too much time during one or
more of the phases; or the number of phases is too large. For
the case we study we show how this can be avoided very ef-
fectively.



3 An Adaptive Diagnosis System For BFs
A BF between two gate outputs can be detected by IDDQ

measurement iff the two shorted lines have different val-
ues[6]. In Figure 2, the two activated paths on application
of the vector are shown. If BF hG5; G6i exists, a conduct-
ing path from Vdd to VSS is created. The resulting non-zero
IDDQ, detected either by an internal or an external device,
signals the presence of a BF.

Our DTG uses a compact representation for BFs[6]. BF
between lines x, y are represented by hx; yi. fhA;Big rep-
resents a set of faults fhu; viju 2 A and v 2 Bg. Represen-
tation fhA;Bi; hC;Di; : : :g means fhA;Big

S
fhC;DigS

: : :. Thus, fhf1; 2; 3g;f4; 5gig represents the set of faults
fh1; 4i; h1; 5i; h2; 4i; h2; 5i; h3; 4i; h3; 5ig. Fault dropping
for BFs using IDDQ is done as in [7].
3.1 The Adaptive DTG System

V (x) is the logic value of line x. Two BFs, hx; yi and
hu; vi, are IDDQ Equivalent iff V (x) 6= V (y) ()

V (u) 6= V (v). Such faults can not be distinguished using
IDDQ measurement alone. The objective of the diagnosis
system is to reduce the set of faults to one IDDQ equivalent
class.

The system consists of a random test generation phase,
a phase of generating tests targeting low controllability
lines, and a phase of deterministic test generation. In be-
tween, after the phase of targeting low controllability lines,
a procedure is used to identify equivalent faults. This pro-
cedure does not generate any test vectors and hence does not
form a “phase”.
StepI (PhaseI): In PhaseI, log(n) number of random in-
put vectors are generated, using equiprobable distribution.
Here n is the number of nodes. Using this test set faults are
dropped.
StepII (PhaseII): PhaseI does not generate all distinguish-
ing tests because all lines cannot be set to 1 or 0 with equal
probability; and lines are correlated. We address the first
issue here and the second in StepIII and StepIV. If line
x is hard to set to 0(1) then we say that x has low 0(1)-
controllability[11].

Consider faults hx; yi, ha; bi and assume that each of
x, y, a, b has low 0-controllability. Then the probabil-
ity that a randomly selected test vector sets one of them
to 0 and the rest to 1 is low. The probability that it sets
three of them to 0 and only one to 1 is even lower. Such
faults are usually not detected during the random phase.
A similar conclusion can be drawn if x, y, a, b have
low 1-controllability. In PhaseII vectors that distinguish
faults between low 0(1)-controllabilities lines are gener-
ated. Line-controllabilities are estimated in phaseI as in
STAFAN[11].

A set of lines with low 0(1)-controllabilities, correspond-
ing to the faults in the fault list, are identified. If line x

has low 0(1)-controllability, we generate test to detect line

x stuck at 1(0). These tests are used to drop faults.
StepIII: At this point faults remaining in the fault list are
highlycorrelated, although not all of them are IDDQ equiva-
lent. We next identify as many IDDQ equivalent faults from
this set of faults.

Figure 3 shows two kinds of IDDQ equivalent faults. In
(a) faults ha; di and hc; bi, involving “cross coupled” NOT
gates, are equivalent (TypeI). In Figure 3(b) faults hxi; yi
and hxj ; yi, where xi; xj 2 fx0; x1; :::; xn�1g, y is an arbi-
trary line in circuit, are IDDQ equivalent if logic functions
F1 = F2 = � � � = Fn�1 (TypeII).

For TypeII, finding if two lines in a given circuit are
equivalent or not is NP-Complete[9]. Therefore, heuristics
are used to determine such sets[15]. Our heuristic[10] is a
generalization of the one used in [15].

To identify TypeI equivalence, for each pair of equiva-
lent fault sets, we search the fault list to find if “cross cou-
pled” NOT gates exists. If it exists, the pair of equivalent
fault sets are equivalent and can be merged into one. For ex-
ample, if hfe; g; jg; fugi, fhfa; b; c; d; f; h; i; kg; fvgig are
two equivalent sets of faults. If he; u; i and hf; vi are equiv-
alent, then fhfa; b; c; d; f; h; i; kg;fvgig and fhfe; g; jg;

fugig form one IDDQ equivalent set of faults.
StepIV (PhaseIII): In PhaseIII, vectors distinguishing all
pairs of as yet undistinguished faults are deterministi-
cally generated to complete the diagnosis process. It is
similar to redundancy identification.

Two faults f = hx; yi, g = hw; zi are IDDQ equivalent
iff in Figure 4 v s-a-0. The test for v stuck-at-0, if it exists,
distinguishes f , g.

In the last phase for all pairs of faults in fault list, by
adding the circuitry of Figure 4, a new circuit is constructed
and handed over to a deterministic stuck-at test generator.

A straight forward implementationof above approach for
PhaseIII results in a large test set. We note that this is not
necessary. A test distinguishing a pair of fault may also dis-
tinguish other pairs of faults. Accordingly, PhaseIII has two
sub-phases.

In the first sub-phase, we select pairs of faults with dif-
ferent 0(1)-controllabilitybecause faults with different 0(1)-
controllabilityare more likely to be “non-equivalent”. Tests
to distinguish these pairs of faults are generated. In the sec-
ond sub-phase, we generates test to distinguishall fault pairs
in fault list, one at a time.

After applying the vectors generated in phaseIII, the re-
maining faults, with their equivalences, are the possible set
of faults. These faults are IDDQ equivalent and can not be
distinguished further by IDDQ measurements alone. Hence
the diagnosis is complete.

4 Experimental Results
The proposed system was implemented using C++ on

SUN 4. ISCAS85 and scan version of ISCAS89 benchmark
circuits were used. We randomly generated 500 faults to



simulate 500 faulty circuits. The experimental results were
obtained using all BFs involving two gate outputs only. Any
other set of faults can also be used. We used this extensive
fault model to stretch the system.

We present the performance of our system and compare
it with a static diagnostic test generation system(SDTG)[4],
as well as, a system that uses stuck-at (SSF) test sets. The ra-
tionale for comparing with a SSF test set is twofold. Firstly,
it might be possible to use the SSF test set, which is read-
ily available, for diagnosis. In this case, we are interested
in ascertaining if this approach is superior to what we pro-
posed. Secondly, one could start with the available SSF test
set (rather than the random test set we use) and augment it in
a similar manner. In this case we are interested in knowing
if this leads to a better diagnosis approach.

We call the remaining faults after diagnosis residual
faults. In our comparison we use the following figures of
merit. The most important criteria is the number of residual
faults. In our approach the residual faults always reduces to
one equivalence class. The second important criteria is the
size of the test set. Size of the test set is very important for
IDDQ measurement based analysis because IDDQ measure-
ment is a very slow process.

Table 1 presents the performance of our ADTG system.
The data under column Residual Faults are the (average Ave,
maximal Max) number of residual faults. Note that the num-
ber of faults cannot be reduced any further. They are the best
you can get if you use only IDDQ measurement. Data under
column Vectors(Time) are the (average, maximal) number
of input vectors generated(time used, in CPU seconds) us-
ing the proposed system. Time does not include the time for
down loading the vectors into the tester, making the IDDQ
measurements and getting back the faulty response.

Table 2 presents a comparison between our system and
the system which uses SSF test sets for diagnosis. The SSF
test set used is from ATALANTA[13]. The data under AD
is from our system, and the data under SSF is from using
the SSF test set. Time for SSF is only the time required for
fault dropping. The two systems share all the diagnosis pro-
cedures except that our system generates the tests dynami-
cally and SSF uses the precomputed SSF test set.

For smaller circuits, the number of residual faults are
about the same in both cases. But for large circuits ADTG
gives substantially better results, both on an average as well
as in the worst case. For example, see S15850.1, S35932,
S38584.1, � � �. Note that ADTG will never result in a larger
residual set than SSF because ADTG is a complete diagno-
sis system where as SSF is not. In addition, the performance
of SSF, so far as reducing the number of faults is concerned,
is inconsistent.

Another important advantage of ADTG over SSF is the
small size of the test set. In all cases (except for C6288), the
average number of IDDQ measurements required, if ADTG

is used, is substantially smaller. The average is almost al-
ways less than half the SSF test set size. Even if we take
the worst case number of vectors generated by ADTG it is
substantially smaller than the stuck-at test set. This is very
crucial for IDDQ measurement based diagnosis since IDDQ
measurement is very time consuming and can adversely af-
fect the total diagnosis time. In addition, it also points to the
fact that a stuck-at test set is not a good starting point for dy-
namic diagnostic test generation.

Table 3 gives the comparison between our system and
SDTG system[4]. The data under AD are the average and
maximal number of vectors(times) over 500 instances. The
data under SD are the vectors(times) the system gener-
ated(used). We have not reported data on the residual set
size because ADTG will always out perform SDTG. On an
average ADTG requires much less measurements (smaller
test set). However, the major difference between these two
systems, as we can see from the given table, is the test gen-
eration time. Even the worst case time for ADTG is order of
magnitude smaller than SDTG. In fact, SDTG could not be
used to generate tests for any thing beyond C7552. On the
other hand we were able to use ADTG effectively for all the
benchmark circuits.
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Circuit Residual Faults Vectors Time
Ave Max Ave Max Ave Max
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Table 1: Performance of ADTG for METAL

Circuit Residual Faults Vectors Time
Ave Max Ave Max Ave Max

AD SSF AD SSF AD SSF AD SSF AD SSF AD SSF
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Circuit Vectors Time
AD SD AD SD

Ave Max Ave Max
C1355 40.83 83 78 0.7804 2.8 668.43
C1908 36.62 69 74 3.691 83.18 1116.73
C2670 27.33 54 36 8.095 124.7 1331.03
C3540 37.84 106 65 4.248 171.2 2246.38
C5315 29.98 61 45 68.68 29950 3415.43
C6288 28.05 47 53 3.392 125.3 3104.72
C7552 33.24 68 58 7.365 87.55 8230.52
S1196 44.79 69 55 0.9994 7.3 626.58
S1238 33.51 68 70 0.9722 2.76 703.80
S1423 32.56 52 40 0.8032 14.51 687.45
S5378 26.91 140 113 1.029 5583 10152.9

Table 3: Comparison with SDTG System (METAL)
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