
LibQA - Library Quality Assurance for VHDL Synthesis and Simulation

Ronald B. Stewart, SGS THOMSON Microelectronics

Jon Phillips, Philips Semiconductors

Abstract

LibQA is a quality assurance tool for VHDL synthesis and
simulation models which also performs timing character-
ization. The synthesis model is translated into an FSM,
then graph exploration generates stimuli for VHDL and
electrical simulation. Function, propagation delay, timing
constraint violation, and hazard response are all tested.

1. Introduction

Correct standard cell models are a good foundation for
successful synthesis and simulation. LibQA is a quality-
assurance tool currently in industrial service to compare
Synopsys synthesis models against VHDL simulation
models and against electrical models extracted from lay-
out. Starting from a synthesis model, LibQA generates an
equivalent FSM. Using graph algorithms, LibQA gener-
ates stimuli for simulations. The results of the simulations
give these benefits:

■ Synopsys Technology Library cell model testing

■ VHDL cell model testing

■ Cell timing characterization

In most cases, LibQA is automatic. However, cells which
cannot be defined in the syntax of the synthesis model re-
quire manually supplied stimuli.

The synthesis model is analyzed formally, and the simula-
tion stimuli generated from it are formally correct. Assum-
ing there are no unexpected states in the models, the test
coverage is total, showing that the electrical and VHDL
models implement the specification of the synthesis mod-
el. Others have proven equivalence of certain VHDL mod-
els using formal methods, but this is not practical for a
general production tool. Abstraction of electrical models
has been done so far without proof, and is limited in scope.
Progress on those two fronts should create new opportuni-
ties in model validation.

LibQA also supports inspection of timing models:

■ Cell timing range and monotonicity checks

■ Cell timing graph viewer

■ Cell timing calculator

2. FSM Construction

LibQA translates the Synopsys Technology Library syn-
thesis model into a Mealy machine[1]M = (Q, Σ, ∆, δ, λ,
q0) whereQ = {q0, q1, ... qn} is the set of states,Σ = {a0,
a1, ... an} is the input alphabet,∆ = {a0, a1, ... an} is the
output alphabet, δ is the state transition function mapping
Q×Σ to Q, λ is the output function mappingQ to ∆, and
q0 is the initial state.

For this application, some preliminary definitions relate
the abstract machine to the physical cell model. Define V
={0, 1, Z} the set of signal values, v∈V, and I = {i0, i1, ...
in} ⊂ Vn the set of inputs. The single input transition func-
tion In+1 = f(In, i, v) produces a new input combination
from an old one, so that ij+1 = ij, j¹¹≠n, and in = v.

Σ is defined as a set of all one-signal input signal transi-
tions (i,v),Q is a set of input signal and state variable cur-
rent values, and ∆ is a set of output signals defined in {0,
1, Z}. q0 is defined for each test set so that values on pri-
mary inputs are assigned to the associated qi, and values
taken from the state variables of Synopsys sequential
primitives ff and latch are assigned ‘U’. These conven-
tions are well suited to the waveform generation task
needed to run the simulators.

3. FSM for Combinational Cells

To benefit from the simple graph search algorithms that
generate the test vectors, even the combinational cells are
translated into FSMs. To illustrate the process, here is the
functional part of the synthesis specification for a tristate
buffer with resistive input pull-up:

cell(TRI_BUF) {
pin(Z) { direction : output;

function : “A”;
three_state : “E’” }

pin(A) { direction : input;
driver_type : pull_up; }

pin(E) { direction : input; }
}

The steps are:

1. Define the set of states. There is one state variable for
each input. Var iables are Boolean unless the

driver_type attribute is present, in which case such
variables are on {0, 1, Z}.

Given input signals A and E, Q = A × E is the set of states,
where A ∈{0, 1} and Z ∈{0, 1, Z}. For readability, label
them qAE = {q00, q01, q0Z, ...}

2. Define the input alphabet as the set of all signal transi-
tions on individual signals. For a Boolean input signal,
the transitions are {01, 10}. For signals on {0, 1, Z} the
transitions are {01, 0Z, 10, 1Z, Z1, Z0}.

Thus, label the input alphabet∆ = {e01, e10, a01, a0Z,
a10, a1Z, aZ1, aZ0}.

3. Define the state transition function. In+1 = f(In, i, v).
The table contents are generated by evaluating the defi-
nition over its range.

4. Define the output alphabet. This is the set of values for
the output pins. Each occurrence ofpin(){direc-
tion:output} is an output. The values are normal-
ly Boolean, but they become {0,1,Z} if the record
three_state is present.

There is one three_state output, Z. The output alphabet is
∆ = {0, 1, Z}.

5. Define the output function mappingQ to ∆. For each
output, evaluate the function and three_state expres-
sions. If three_state is present and evaluates as true, the
output value is Z; otherwise, the output is the value of
the function expression. The independent variables of
the two expressions correspond to the state variables,
but the range of the expressions is Boolean, while that
of the state variables is {0,1,Z}. Because Z is caused
only by the driver_type attribute, a Boolean value is
obtained for every occurrence of Z: pull_up maps Z to

Table 1: δ for TRI_BUF

e01 e10 a01 a0Z a10 a1Z aZ1 aZ0

q00 q10 - q01 q0Z - - - -

q01 q11 - q11 - q00 q0Z - -

q0Z q1Z - q1Z - - - q01 q00

q10 - q00 - q1Z - - - -

q11 - q01 - - q10 q1Z - -

q1Z - q0Z - - - - q11 q10

1, and pull_down maps Z to 0. The evaluation then
proceeds by converting the infix to a postfix tree and
evaluating from leaf to summit. λ is the output func-
tion mappingQ to ∆.

Not surprisingly, the table turns out to be simply the truth
table for the combinational cell. All the other machinery
has been created to give these conveniences:

■ The data structures are identical to those to be used for
sequential cells, supporting the graph algorithms used
to generate test stimuli.

■ Only single input transitions exist, supporting the defi-
nition and application of timing events.

4. Sequential Cell FSM Construction

Synopsys models sequential cells use just two primitives:
ff for flip-flops, andlatch for latches. There is also an
obsoletestate primitive we do not use.

Here is a Synopsys description of a sample flip-flop:

cell(FD3S) {
ff(“IQ”, “IQN”) {

next_state : “(D TE’)+(TI TE)”;
clocked_on : “CP”;
clear : “CD’”;
preset : “SD’”;
clear_preset_var1 : L;
clear_preset_var2 : H;

}
pin(Q) { direction : output;

function “IQ”;}
pin(D) { direction : input };
pin(TE) { direction : input };
pin(TI) { direction : input };
pin(CP) { direction : input };
pin(CD) { direction : input };
pin(SD) { direction : input };

}

The steps LibQA uses to construct its FSM model are:

1. Call construct_ff, which returns an FSM where bool-
ean expressions next_state, clocked_on, and all the
other ff inputs are represented by a single term.

2. Expand the FSM for each ff input expression.

Table 2: λ for TRI_BUF

State qAE q00 q01 q0Z q10 q11 a1Z

Output Z 1 0 0 Z Z Z

3. Construct the output function∆.

FSM * construct_ff() is a function which con-
structs a complete FSM structure which models an ele-
mentary ff. These come in several variations depending on
attributes which concern the preset and clear functions:

■ whether preset and clear exist.

■ the state when clear and set are applied together.

For example, a multiplexed D ff is expressed as:

ff(“IQ”, “IQN”) {
next_state : “(D TE’)+(TI TE)”;
clocked_on : “CP”;

}

The FSM w i l l be cons t ruc ted by fi r s t ca l l i ng
construct_ff to return an elementary FSM for the ff.
Then, new state variables are created for each input, and
each arc to the (now replaced) next_state and clocked_on
variables is replaced by a set of arcs accounting for all the
cases due to the expressions. In the present case,
clocked_on is simple, so re-labeling is all that is needed.

The ff primitive is expanded to:

Table 3: δ for simplest ff

(IQ,
next,
clock)

next
state
Rise

next
state
Fall

clock
Rise

clock
Fall

(0,0,0) (0,1,0) - (0,0,1) -

(0.0,1) (0,1,1) - - (0,0,0)

(0,1,0) - (0,0,0) (1,1,1) -

(0,1,1) - (0,0,1) - (0,1,0)

(1,0,0) (1,1,0) - (0,0,1) -

(1,0,1) (1,1,1) - - (1,0,0)

(1,1,0) - (1,1,0) (1,1,1) -

(1,1,1) - - (1,1,0)

(U,0,0) (U,1,0) - (0,0,1) -

(U,0,1) (U,1,1) - - (U,0,0)

(U,1,0) - (U,0,0) (1,1,1) -

(U,1,1) - (U,0,1) - (U,1,0)

5. Test Sequence Generation

The different types of test sequence LibQA can make are:

■ Functional exercise

■ Timing exercise

■ Timing constraint violation

■ Hazard exercise

The C procedures which implement them are described
below. Each returns a linked list ofpath data structures:

typedef Path {
struct Path *p_next;
Arc arc;
Boolean isConstraintTest;

}

5.1 FindPath Procedure

This is a depth-first path enumeration. TheGoodArc and
Done functions are assigned to suit the kind of path need-
ed: state-to-state, all arcs, or all timing arcs. The complex-
ity of standard-cell FSM models is low, so performance is
acceptable. The search algorithm is elementary:

TestSequence *FindPath(node, fsm, GoodArc, Done)
{

for(arc = node->arcs; arc; arc = arc->next) {
if(GoodArc(arc)){

++arc->explored;
path = FindPath(fsm, arc->toState, budget);
--arc->explored;
if(path)

return AppendArc(path, arc);
}
if(budget > 0) {

++arc->explored;
path = FindPath(

fsm, arc->toState, budget-1);
--arc->explored;
if(path)

return AppendArc(path, arc);
}

}
if(Done(fsm))

path = NewPath();
else

path = NULL;
return path;

}

5.2 FindTest Procedure

A test sequence is selected so that every arc of the FSM is
traversed in optimal or near-optimal order. Optimal order
is not useful when finding it costs more than the improve-
ment in simulation time it buys, so sub-optimal paths are
accepted when complexity exceeds a limit.

TestSequence *FindTestSequence(fsm, Done)
{

if(fsm->arcCount > 512)
return FindBudgetCover(fsm, MaxInt);

else {

budget = 0;
do {

test = FindBudgetCover(fsm, budget);
if(test) return test;
++budget;

} while (1);
}
TestSequence *FindBudgetCover(fsm, budget, Done)
{

rootNode = ConnectAllStatesToRoot(fsm);
ZeroAllStatesExplored(fsm);
return FindPath(rootNode, fsm);

}

5.3 Functional Test Sequence

The functional test sequence traverses every arc of the
FSM at least once.

test = FindTestSequence(fsm, IsUnexploredArc,
AllArcsExplored);

Boolean IsUnexploredArc(arc) {
return (arc->explored == 0);

}

Boolean AllArcsExplored(fsm);

5.4 Timing Test Sequence

Only the arcs that result in an output signal change are re-
quired in the timing test sequence. The resulting sequence
is much shorter than the functional test.

test = FindTestSequence(fsm,
IsUnexploredTimingArc,AllTimingArcsExplored);

Boolean IsUnexploredArc(arc)
{

if ((arc->explored != 0)
return FALSE

beginOutput = fsm->output[arc->beginState];
endOutput = fsm->output[arc->endState];
return(beginOutput != endOutput);

}

Boolean AllTimingArcsExplored(fsm);

5.5 Violation Test Sequence

Knowledge of the state of a cell can be lost if a timing con-
straint is violated. A set of classically recognized con-
straint violations is produced for the latch and ff
primitives, suitably expanded according to their associated
expressions. No attempt was made to inspect the FSM try-
ing to recognize these, but this a good opportunity for fu-
ture improvement.

The catalog of constraints is:

■ Minimum Pulse Width. All terms ofclocked_on ,
clear, andpreset expressions are exercised for mini-
mum pulse width.

■ Setup and Hold. All terms ofnext_state are exer-
cised for setup and hold.

■ Recovery. All terms ofpreset andclear are exer-
cised for recovery time in combination with all terms
of clocked_on .

5.6 Hazard Test Sequence

VHDL models can be configured to respond to hazards in
a variety of ways: with transport delays, inertial delays,
glitch X generation, spike X generation, and message gen-
eration. All arcs leading to an output change can be sub-
jected to hazards. Testbenches are generated for all these
behaviors because all possible choices need to be tested.

6. Electrical Testbench Generation

For functional testing, an Eldo[4] electrical simulation file
is generated from the functional stimuli and the environ-
mental information in the synthesis model. The simulation
is carried out, and the output values are captured for every
input change. A defect is reported if any output differs
from the predicted value. If there are hidden states, or
electrical problems, this test may not notice them. The
timing characterization phase, where a range of operating
conditions is applied, can help to spot more subtle prob-
lems.

7. VHDL Testbench Generation

The properties of the VHDL models which need to be test-
ed include functional operation, backannotated timing, X
and report generation in response to glitches and timing
constraint violations. The VHDL testbenches themselves
consist of stimuli and procedures. We need to know if the
models survive the stimuli without fatal errors, if the func-
tional operation is correct, and if the timing values from
the SDF are respected.

7.1 VHDL Procedures

7.1.1 qa_input

Apply STIMULUS_VALUE to the cell.

procedure qa_input(
signal STIMULUS: out STD_ULOGIC_VECTOR;
STIMULUS_VALUE: in STD_ULOGIC_VECTOR);

7.1.2 qa_function

This procedure verifies the function only - not the timing.

 procedure qa_function(
signal ACTUAL: in STD_ULOGIC_VECTOR;
signal EXPECT: out STD_ULOGIC_VECTOR;

 EXPECT_VALUE: STD_ULOGIC_VECTOR;
 OLD_STIMULUS, CURRENT_STIMULUS: string;

 DELAY: time);

7.1.3 qa_timing1

This procedure verifies function and timing for a single-
output cell.

 procedure qa_timing1(
signal ACTUAL: in STD_ULOGIC_VECTOR;
signal EXPECT: out STD_ULOGIC_VECTOR;
OLD_EXPECT_VALUE, EXPECT_VALUE:

STD_ULOGIC_VECTOR;
OLD_STIMULUS, CURRENT_STIMULUS: string;
DELAY: time);

An excerpt shows how functional and timing errors are de-
tected:

wait for DELAY;
expect <= EXPECT_VALUE;
if OLD_EXPECT_VALUE /= EXPECT VALUE then

wait for 1 ps;
if(DELAY = 0 nS) then

wait for 10nS;
if(ACTUAL /= EXPECT_VALUE) then

NEVER := true;
end if;

elsif (ACTUAL /= EXPECT_VALUE) then
LATE := true;
wait for 10 nS;

if (ACTUAL /= EXPECT_VALUE) then
NEVER := true;

end if;
elsif (ACTUAL’last_event /= 1 ps) then

EARLY := true;
end if;

if(LATE or EARLY or NEVER) then
-- write an error description to L
assert false report L.all severity Warning;

end if;
end if;

7.1.4 qa_timing2

Verify function and timing for a two-output cell. The code
is a development of the method of qa_timing1. All func-
tional and timing errors on both signals are reported.

 procedure qa_timing2(
signal ACTUAL: in STD_ULOGIC_VECTOR;
signal EXPECT: out STD_ULOGIC_VECTOR;

 OLD_EXPECT_VALUE, EXPECT_VALUE:
STD_ULOGIC_VECTOR;
 OLD_STIMULUS, CURRENT_STIMULUS: string;
 DELAY1, DELAY2: time);

7.2 VHDL Stimuli

VHDL header and closing statements are generated from
the FSM structure. The test sequence generation proce-
dures return apath data structure for each kind of test:
function, timing, violation, and glitch. Each of these is
translated into VHDL stimuli. LibQA generates the con-
stants that provide delay values for the stimuli and the
constants for the SDF, the test benches can detect timing

errors in the models. This is an excerpt from the timing
test for an inverter; other tests follow similar lines.

architecture TEST of TB_IV is
 signal STIMULUS: std_ulogic_vector(1 to 1);
 signal EXPECT, ACTUAL:

std_ulogic_vector(1 to 1);
 signal CLOCK: std_logic := ‘0’;
 begin

test : process
 begin
 qa_input(STIMULUS,”0”);
 wait for 100 ns;
 qa_input(STIMULUS,”1”);
 qa_timing1(ACTUAL, EXPECT,

“1”, “0”, “0”, “1”, IV_tpdA_Z_F);
 wait for 100 ns;
 qa_input(STIMULUS,”0”);
 qa_timing1(ACTUAL, EXPECT,

“0”, “1”, “1”, “0”, IV_tpdA_Z_R);
 wait for 100 ns;
 assert false report “end of test”

severity failure;
 end process test;
 inst: IV
 port map(A=>STIMULUS(1),Z=>ACTUAL(1));
end TEST;

8. Timing Characterization
LibQA starts with an existing synthesis model, generates
test patterns, runs electrical simulations, and produces a
characterization database. Another program, U2STF [3],
generates the new synthesis model set from the character-
ization database. A separate synthesis model is necessary
for each operating condition (process, temperature, volt-
age) to avoid derating errors.

Propagation delays are measured with the timing test pat-
terns previously described. The Eldo electrical simulator
has primitive functions to do the measurements. One sim-
ulation is done for each point in the timing table. Both
propagation delay and rise time are measured for all tim-
ing events in each run, while load capacitance and input
rise time are parameters which change for each run. One
Eldo description used for an inverter is:

* LibQA Characterization Simulation
.GLOBAL VDD GND
VVDD VDD 0 2.700
VGND GND 0 0
.TEMP 125.00000
.option eps=1e-8
.include global/models.worst
.include IV/subckt
X0 Z A IV
C0 Z 0 0.018140pF
VA A 0 PWL(
+ 0US 0.00
+ 250PS 0.00 1000000PS 0.00
+ 1000250PS 2.70 2000000PS 2.70
+ 2000250PS 0.00 3000000PS 0.00
+)
.extract tpdUD(A, Z,

+ vthin=1.080000,vthout=1.620000, after=1US)
.extract tfall(Z,
+ vh=2.295000, vl=1.350000, after=1US)
.extract tpdDU(A, Z,
+ vthin=1.620000, vthout=1.080000, after=2US)
.extract trise(Z,
+ vh=1.350000, vl=0.405000, after=2US)
.print tran V(Z)
.tran 1us 3us
.END

Often, a set of related events have negligible differences in
propagation delay. LibQA groups these into equivalence
classes. Where necessary, the classes are differentiated us-
ing sdf_cond attributes. This ability to decide which tim-
ing events to use gives an important contribution to
accuracy.

Timing violations are measured with the violation test pat-
terns previously described. A violation test tells whether
the observable outputs failed to arrive at the expected val-
ue. A binary search on pass/fail gives a numerical result,
but at more expense than the simpler delay measurements.
Because each simulation run tests all the constraints, a
separate binary search record is maintained for each one.

9. Timing Report Generation

LibQA tests the characterization database rather than the
completed synthesis model because individual derating in-
formation is merged into global derating k_factors, so
good scrutiny is not possible there. LibQA checks for
properties that experience has linked to characterization
problems. Statistics for each class of event are calculated,
and individual events are compared to the statistics. These
statistics are also used during synthesis model regenera-
tion to calculate the k_factors. Some specific tests are:

■ Monotonicity. Timing functions are tested for monoto-
nicity with respect to all of their independent variables:
input rise time, load, temperature, voltage, and process.

■ Range. Check the range and domain of all timing func-
tions. No timing should ever be negative, non-numeric,
or infinite.

■ Extreme values. For each class of event, the ten ex-
treme cases are reported in ranked order. This can be
interesting reading.

10. Timing Graph Viewer and Calculator

The timing graph viewer reveals timing properties difficult
to recognize in tabular data. Timing characterization can
produce subtle problems, but looking at every timing

graph for a library will often reveal defects. The graphs
can be output in printable format.

LibQA’s calculator gives a numerical evaluation for any
timing in the library.

11. Results
LibQA was used to develop a 151-cell l ibrary of
0.5micron CMOS standard cells. Two of the cells (bus-
keepers) required hand-generated stimuli because they had
the ‘dont_use’ property and no functional description. Us-
ing a Sparc 10, functional verification using Eldo took 72
minutes, and some flip-flops having set and clear inputs
were found incorrect when set and clear are applied to-
gether. Characterization for the library took 49 hours. As a
result of the timing report, some of the max_cap values
were corrected, and the choice of transition time and
net_capacitance sample points were optimized. The
VHDL simulation took 130 minutes, and an array out of
bounds error due to a hand edited cell, and a number of un-
detected violations were revealed. The development time
for LibQA was less than the time previously spent prepar-
ing tests, the coverage was much higher, and new classes
of testing were applied. Finally, the time-to market for our
latest library was significantly faster than the previous
generation, and there have been no bug reports on the li-
brary.

12. Conclusions
LibQA is an industrial tool used to support the production
and test of VHDL synthesis and simulation models. The
application of formal methods increases precision and
lowers costs. LibQA requires manual stimuli for cells
which cannot be expressed in the syntax of the synthesis
models, but it is fully automatic for 147 of 151 cells in a
0.5 micron CMOS standard cell library.

13. References
[1] “Introduction to Automata Theory, Languages, and

Computation”, Hopcroft and Ullman, Addison-Wesley
Publishing Co., 1979

[2] “Library Compiler Reference Manual” Synopsys, Inc.,
March 1994

[3] “U2STF User Guide”, SGS-Thomson Microelectron-
ics, November 1994

[4] “ELDO Electrical Circuit Simulator”, Anacad, No-
vember 1994

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

