
An Algorithm for the Allocation of Functional Units from

Realistic RT Component Libraries

Roger Ang Nikil Dutt

rangQics. uci.edu dutt@ics.uci.edu

Department of Information and Computer Science

University of California, Irvine

Irvine, California USA 92717

Abstract

Ezisting algorithms in High-Level Synthesis (HLS)
typically assume a direct mapping of hardware descrip-
tion language (HDL) operators to RT units. This
assumption simplifies synthesis to ‘generic RT com-
ponents, but prevents effective use of complex data-
book components, custom designed cells, previously
synthesized RT modules, and RT module generators.
In this paper, we present an algorithm for allocation
in HLS for reuse of existing RT-level components.

This approach can be used to customize HLS tools to
user-specific RT libraries. Our experiments show im-

provements of 10-37% in area over conventional ap-
proaches.

1 Introduction

Most approaches towards high-level synthesis
(HLS) of synchronous circuits from hardware de-
scription languages (HDLs) assume a simple scheme

for mapping behavioral operators to register-transfer

(RT) components. Synthesis tools often assume an
abstract HDL operator directly maps to a single RT
operation which in turn can be performed by a few

generic components. For example, an abstract addi-
tion, such as + in an HDL, will map to an add op-

eration which can be performed by a RT-component
such as an Adder or ALU. While this assumption sim-
plifies synthesis by the use of simple models of generic

RT components, if shifts the task of physical compo-
nent binding to a later stage of technology mapping

that can become very complex for datapath compo-
nents. Such an approach of delayed technology map-

ping at the Boolean level can also prevent effective

reuse of available, previously designed components
such as databook components, customized cells and

modules, and RT module generators.

A simple examination of existing RT-components
from standard data.books reveals many interesting

databook RT-components that are multi-functional
and have multiple outputs, with several functions per-

formed simultaneously. Such components produce

several outputs in a single state, much like a general

functional mapping of inputs to several outputs. Un-
fortunately, this is a mismatch with HDL semantics
which typically have single-function-single-output op-

erators. Consequently, current HLS systems attempt-
ing to use such components will typically ignore some
of their functionality leading to suboptimal usage of

RT components.

Consider the adder shown in Figure 1(a). The be-
havior of the adder is described abstractly in Fig-
ure 1(b). If this description were given to a typical

HLS tool, it would be likely to generate the circuit
shown in Figure 1(c). This is because current ap-
proaches still continue to use a fundamental assump-
tion: each implementation component generates a sin-

gle data result. Although logic optimization can be
applied to the resulting design, this decomposition of
the functionality to the logic gate level is counter-
productive to design reuse at the RT-level. If syn-

thesis is targeting reuse of RT level components that
are automatically generated, previously designed or
synthesized, it would not make sense to “reoptimize”
these components that already have well-characterized

and predictable design characteristics such as timing.
In addition, the redundancies that can be eliminated
through design reuse are more obvious at the behav-
ioral level than they would be at the logic level.
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Figure 1: Adder: (a) RT component, (b) behavior in

VHDL, (c) circuit synthesized from VHDL.

Our work is a step towards a synthesis approach
that attempts to use previously designed or generic
components effectively at the behavioral/algorithmic
level of synthesis. The underlying models for compo-
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uent behavior and how they map to HDLs are geared
towards reuse of customized RT componenk. In this

paper, we present an allocation algorithm employing

this novel representation to more efficiently map ab-

stract behavior to realistic RT-component behavior.

Compared to traditional approaches, this algorithm
exploits more of the functionality of previously de-

signed components and modules, making design reuse
in high-level synthesis more effective. Consequently,
this algorithm produces an improved allocation of

functional units from a user-specified library of com-
ponents.

The rest of this paper is organized as follows: Sec-
tion 2 describes related work. Section 3 describes our

design model. Section 4 outlines the allocation algo-
rithm. Section 5 presents our experiments and results.

Section 6 concludes with a summary.

2 Related Work

Traditionally, the assumptions made in HLS about
the way operators map to components are very sinl-
ilar to assumptions made in another form of synthe-
sis: logic synthesis. In logic synthesis, boolean oper-
ators map directly to boolean operations which map
to generic logic gates. These generic gates can then

be mapped to a technology-specific implementation [8]
[9]. For example, “and” maps to an and operation im-

plemented as a generic and gate, which can map to
a 0.5 micron CMOS implementation using nor gates.

For logic synthesis, the assumptions used work well
because the basic units used for implementation are
single-function, single-output components, e.g., nand
or nor gates. But for HLS, these assumptions are too
restrictive.

The RT components typically used for implement-
ing designs in HLS are fundamentally different in con-
cept from the logic gates used in logic synthesis. Many
commonly used RT components have multiple oper-
ation modes, i.e., they can perform different opera-

tions in different time steps. Examples of such com-

ponents are Adder/Subtracters, ALUs and Left/Right

Shifters. Consequently, one of the tasks in map-
ping behavior to RT units in HLS is matching dif-
ferent types of operations to such multi-function RT
units. Several approaches have been used in attempts
to solve this mapping problem. In [12], branch-and-
bound search was used to cluster generic operations

into multifunction nodes which would be performed
by generic multifunction units. [4] used graph match-

ing techniques to construct “application specific units”
(ASUs) to be used, for example, in the datapath of a
DSP circuit. These units were constructed from a pre-
define library of “abstract building blocks” (ABBs),

e.g., an adder/subtracter. A mechanism was defined

to map behavior to the ABBs to build the ASUs.

A similar idea was used in [10] but for a different
goal: generating microcode for a programmable ar-
chitecture. This system demonstrated a retargetable
mapper for matching behavior to a given architecture.
However, all these approaches are still based on the
assumption that each RT unit generates a single data

output.

At a conceptual level, the problem of mapping an

HDL model to a set of RT units is” very similar to

mapping a programming lan uage to a set of nlicro-

!’processor instructions, as [10 illustrates. Therefore,
we are attempting an approach analogous to the ap-

proach described in [3]. This approach described a

method that used a table to map intermediate code to
a specific microcode implementation on a fixed, single

processor architecture. However, the problem we are
dealing with is larger in scope. For HLS, the alloca-
tion/binding problem would be analogous to perfornl-
ing the same tasks for multiple processors, where each
processor may have a different instruction set. [7] ex-
tends this idea for synthesis. Instead of a table, this

work proposes a library of “parts. ” Each part may be

able to perform several functions and each function

has a subgraph representation. The proposed algo-

rithm used graph matching to map behavior to generic
parts to be generated later. Along this same line of
thinking, [11] proposed a “template” library and a

regularity extraction algorithm that may be used for
synthesis. But in both of these proposed methods,
the libraries are not sufficiently defined to deal with
components that generate multiple data outputs. In
our work, we use the ideas of having a component li-
brary with templates for the component, define this
library for multi-function, multi-output components,
and demonstrate how such a library may be used to

allocate instances of components for a given behav-
ioral description.

3 Model

In [I], we presented a representation capable of
describing the mapping of behavioral constructs to
multi-function, multi-output RT components. This
representation encompassed the mappings between
three sets of entities:

1. Intermediate behavioral representation — the in-

ternal representation used by a synthesis tool for

circuit specifications, e.g., a Control/Data Flow

Graph (CDFG). This is typically derived from
parsing of an HDL.

2. RT Data Flow Graph (RTDFG) — a combina-
tion of a global data flow graph and a state tran-
sition graph. However, data transformations in
this graph are based on RT functions, which are
functional abstractions for each data output of
the components.

3. RT structure — instances of components. Each

RT component is characterized by sets of RT
functions that describe modes of operation for the

RT component.

The mapping between these structures, illustrated

in Figure 2, is needed for the binding of abstract be-
havioral operations to RT unit functionality. The RT
Data Flow Graph (RTDFG) provides an additional
level of abstraction between the abstract HDL behav-
ior and the RT structure, in order to manipulate this
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Figure 2: Links between behavior represented as a CDFG, RTDFG transformation nodes, and RT structure.

complex mapping. In the RTDFG, each node of the

graph has an associated RT Function. Each node can
be matched to a cluster of HDL behavior, as well as

linked to an instance of an RT component to associate
a component operation to that unit and data values
to its pins. Figure 2 illustrates part of a single state
in a design. The RT Functions DEC and DEC!-ZERO
have been bound to an ALU indicating both functions
can be performed simultaneously on that unit.

4 Algorithm

Using the representation described in the previous
section, the problem of binding behavior to functional
units can be approached as a 2-phase task. In the

first phase of binding, abstract behavior is mapped to
an equivalent set of RT Functions. This set describes
which RT Functions are to be performed simultane-
ously. This set is the input for the second phase of
binding. In this second phase, these RT Functions are
assigned to RT units. The algorithm we present here
is for the second phase of this binding process. The
algorithm does a branch-and-bound search for possi-
ble solutions: recursively transforming the input graph
to find possible bindings of the RT Functions to RT

Units. The algorithm will try each node in the graph
as a starting point. For each node in the graph, the

algorithm will then either bind the node to an already
allocated RT unit, or try an RT unit allocation accord-
ing to component-based cost functions. If a partial so-
lution is worse than or redundant to an already found
solution, further consideration of that partial solution
is abandoned.

Algorithm A describes the procedure for the search
of possible allocations/bindings of RT units. Dur-

ing the first phase of binding, a set describing which
RT Functions can be performed simultaneously is pro-
duced. We define this set as a graph G where, initially,

● there is a node for each RT Function,

● and there is an edge between two nodes if

1. both RT Functions can be performed simul-

taneously on the same type of RT unit, or

2. the RT Functions are not to be performed
simultaneously and both can be performed

by the same type of RT unit.

The edge between the nodes is labeled with the
name of the type of RT unit that can perform the
RT Functions. Figure 3(a) shows a sample graph.

The input design description can be scheduled or not

scheduled. For a description that is not scheduled, the
above edges can be determined from data dependen-

cies.

FORM3TART_LIST(G) orders the nodes in the
graph G into a list, START_LIST, so that nodes con-
sidered good starting points (or most critical) are
searched first. The nodes are rated according to the
cost function:

Cost = max. operation cost x output bitwidth

This cost function is used to provide a measure of the
potential difficulty to implement a given function us-
ing a given component library.

Each function associated with a node in the graph
can be performed by one or more units from a compo-

nent library. Each component must be in a particular

mode of operation to perform that function, e.g., shift
right, increment, count up. The costs of these Un Zt

operations is given by the user in the form of a table.
These costs indicate the relative difficulty of imple-
menting various classes of functions (e. g., arithmetic
functions vs. logic functions). If a function can be
performed by different unit operations, the most ex-

pensive operation is considered for the cost function.
These operation costs are independent of the actual
bitwidth of the data used in the function, so the out-
put bitwidth of the function is also factored in,

In algorithm A, BRANC!H_ON_BIND(n) is the

main procedure that recursively builds possible so-
lutions. RTIUNC!TION( n) is the RT Function as-

sociated with node. n. The graph transformation
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Algorithm A:

STAR7’.LJST = FORM-START-IJST( G),
for all n c START.LJS7’ do BRANCH_ONJ31ND(. );

BRANCH-ON-BIND(. ) {
if RT1UNCTION( n) can’t bind to a RT unit then

find possible bindings and order by RT unit raftng

1: for each possible binding do

this-solution = ALLOCATEANDJ31ND-NEW_UNIT( n);

if AREA(thissolution )> AREA(best501ution )

then go to1; /* try next ‘/

if REDUNDANT130LUTI ON(this_solution)

then go to 1; /* try next */

elseif no RT Functions left then
if AREA(this_solution )< AREA( bestsolution)

then save this-solution as best~olutlon;

else there are RT Functions left,

n = FIND -BINDABLE_FLTNcTION();

if an RT Function can bind to an RT unit

then BRANCH_ON_BIND( n);
else no RT Function can bind to an RT unit

for each remaining RT Function, n do
BRANCH_ONJ31ND(n);

endif
endif

endfor
else RT-FUNCTION( n) can bind to a RT unit m

this-solution = BIND RT-FUNCTION_TO_UNIT( n, m),

if AREA(thiss,olution) >AREA(bestsolutlon)

then return; /* stop search */
if REDUNDANTSOLUTION( thissolution)

then return; J* stop search’*/
elseif no RT Functions left then

if AREA(this~olution) <AREA(best_solution)

then save this-solution as bestsolution;
else there are RT Functions left,

n = FIND J31NDABLEYuNcTIoN( ),

if an RT Function can b]nd to an RT unit

then BRANCH-0 NJ31ND(n);

else no RT Function can bind to an RT unit

for each remaining RT Function, n do

BRANCH_ONJ31ND(n);

endif
endif

endif

}

ALLOCATEAND.BIND.NEW_UNIT(n) allocates a
new RT unit and binds the RT Function of node n

to that unit. BIND-RTIUNCTION_TO.UNIT(n)
binds the RT Function of node n to an al-

ready allocated unit. AREA(solution) is the es-
timated area cost for the RT units allocated to

solution. REDUNDANT-SOLUTION (solution)
determines if solution, the current partial solution,

is a subset of a possible solution already found.
FIN D_BINDABLE.RT_FU NCTION( ) returns a node

from the graph whose RT Function can bind to an
already allocated unit.

Initially, all RT Functions are unbound and no

RT units have been allocated, so all nodes in the
graph have an associated RT Function (see Figure 3a).
The algorithm begins on a selected nocle and re-

cursively applies the routine BRAN CH-ON.BIND( ).
The algorlthm w]ll try each node as a potential
starting point to find alternative solutions. III

BRANCH_ON-BIND( ), if the RT Function for the se-

lected node cannot bind to an available RT unit, or
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Figure 3: Example bindings. (a) Initial Graph. (b) First
possible allocation and binding of node 1. (c) Binding of

node 3 to AddSubtl. (d) Binding of node 2 to Add_Subtl
to form solution.

no RT units are allocated yet, a list of units that can
be bound to that function is made. This list is or-
dered by RT unit ratings, which rates how many of

the remaining functions in the graph a. unit can cover.

sum of operation costs

Unit rating =
of nodes that can bind to unit

area of unit

ALLOCATEAND-BIND-NEW-UNIT() is applied to

each of these possible bindings to produce a partial
solution (see Figure 3b). However, if the RT Func-
tion for the selected node can bind to an available

RT unit, BIND-RT_FUNCTION-TO_ UNIT() is ap-
plied (see Figure 3c). In either case, the partial so-
lution produced is abandoned if it is larger than the
best solution found so far, or is redundant to another
solution.

If no suitable binding or allocation is found, the
current partial solution is abandoned. If all the RT
Functions have been bound, then the solution is saved

if it is smaller than the best solution found. Otherwise,

FIND.BINDABLE-RTIUNCTION( ) selects which,
if any, RT Function should be bound to an available
unit. If an RT Function can bind to an available unit,
BRANCH_ON_BIND() is applied to the node for the
selected function. Else, BRANCH -ON-BIND() is ap-
plied to each of the remaining function nodes in the
graph.

On first examination, the theoretical complexity of
algorithm A seems prohibitive. In the worst case, al-
gorithm A has a complexity of mn + n, where n is the

number of nodes, or RT functions, in the graph and
m is the number of components in the user-specified

library. However, such a case can only occur if every

RT function in the graph could be performed by any

RT component in the library. From a practical stand-
point, large inst antes of such a case will never happen
because each RT function typically can only be per-

formed by a few types of components. Consequently,

algorithm A ran on the order of n3 complexity for the
experiments we have run. We believe further exper-
iments will show this algorithm runs in the average

case in n’ time, where c is a constant,.

167



Synopsys GENUS

Example Multi-I/O Single Func. YO cliff. Multi-I/O Single Func. c~ cliff.

facet + 514 598 14.0 745 83 1 10.3

k’PA 2865 3366 14.9 3453 4462 ~26

GCD 247 420 41.2 265 423 :17.4

M2901 142 32.1 130 202 35.6

Table 1: Allocation results (in 2-input nand/nor gates) of two approaches and percentage differences.

5 Experiments

We conducted experiments with this algorithm us-
ing two component sets. For the first set, the com-

ponents were either generated from modules avail-
able with the Synopsys tools or were synthesized from

VHDL models [13]. Gate counts for the co ponents in
the library were der”ved using Synopsys ~3.O design

tools targeting LSI ~ 1.() micron CMOS technology.

The figures represent the equivalent number of 2-input
nand/nor gates required to implement the allocated
units. For the second component set, gate counts

for the components in the library were derived either
using gate estimators in GENUS, a generic compo-
nent database [6], or by hand optimized and counted
schematics. These numbers represent the number of
technology independent, equivalent 2-input logic gates
to implement the allocated units.

Table 1 shows results comparing our approach
against an approach assuming a direct mapping of

HDL operators to RT units. Facet+ is a modified ver-
sion of an example description from [14], a carry input
was added for the additions in the description. FPA

is a model of a IEEE standard 32-bit floating point
adder/subtracter [5]. GCD is a description of an 8-bit
greatest common divisor circuit [5]. The AM2901 is a
model of a 4-bit ALU [5].

Each approach allocated units to an unscheduled
description from a given library of components. Unit
sharing was determined by data dependencies in

the model and mutual exclusiveness of conditional
branches. These allocations will satisfy an as-soon-as-
possible or as-late-as-possible schedule of the descrip-
tion. The results show the total estimated gate counts

for the allocated RT units. More detailed descriptions
and discussions of the algorithm, component libraries,
and examples can be found in [2].

The savings shown were obtained by exploiting the
special functionality of various RT components. For
facet+, there were several additions of three variable

where the third variable was a carry input,. Traditional

synthesis would require two adders to accomplish this

addition in a single time step. However, our approach
recognizes this as a single addition of two inputs with
a carry input, resulting in an allocation with two fewer
4-bit adders.

For the FPA, the description included simultane-
ous less than and equal 10 comparisons of the same

two 8-bit variables, and an equal to ~er-o comparison
of a 2&bit variable. Our algorithm recognized that
the comparisons of the &bit variables could be gener-

ated simultaneous by a single comparator, while the
direct operator mapping approach allocated a com-

parator for each comparison. Also, our algorithm rec-
ognized that the equal to zero comparison could be
perform by an ALU in the library which could also per-
form the 28-bit add and subtract required elsewhere in

the design. In contrast, the direct operator mapping
approach allocated a 28-bit comparator and a 28-bit
adder/subtracter for the same operations.

The GCD circuit also had simultaneous less than

and not equal comparisons of the same variables, and
once again, our approach found that one less compara-
tor was needed. For the AM2901, the writer of the
description needed to generate a carry output from
the addition of two inputs and a carry input. Again,
for the carry input, the addition was written as an
addition of three variables. Also, the writer extended
the addition variables to be 5-bits wide so that the

5th bit of the output could be used as a carry output.
By recognizing these expressions as a special, stylized
description of a 4-bit addition with carry input and

output, our algorithm allocated a single 4-bit ALU for
the addition and subtraction operations. In contrast,
the direct operator mapping approach allocated two 5-
bit wide Adder/Subtracters for the same operations.

Our experiments on these examples show significant
savings in area (between 10% to 3770). We believe our
approach can be used effectively to allocate realistic,
user-defined library components efficiently.

6 Summary

We have presented an algorithm for allocating RT
components for the abstract operations within a be-

havioral description of a digital circuit. The algorithm

employs a representation of RT units that recognizes
their multi-output capability. This enables usage of
technology specific, RT unit information in HLS, and
reduces the need for complex estimation and charac-
terization, and technology mapping in HLS. It also

enables effective reuse of previously designed custom

components, and customization of synthesis tools to

user-specific RT libraries. We have shown that this

approach makes a significant improvement, about an

average of 25Y0, over conventional allocation methods
when applied to sets of custom RT components.

We intend to continue this work for the mapping of
HDL syntax/constructs to RT Functions, and the allo-

cation of interconnection units, registers, and memory
units. We also intend to examine how scheduling can
be performed with our new represent atiou, and how
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scheduling concerns can be correlated with allocation
and binding and vice versa.
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