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Abstract-In a hardware/software codesign environ-

ment compilers are needed that map software compo-

nents of a partitioned system behavioral description onto

a programmable processor. Since the processor struc-

ture is not static, but can repeatedly change during the

design process, the compiler should be retargetable in

order to avoid manual compiler adaption for each al-

ternative architecture. A restriction of existing retar-

getable compilers is that they on[y generate microcode

for the target architecture instead of machine-level code.

In this paper we introduce a bootstrapping technique

permitting to translate high-level language (HLL) pro-

grams into real machine-level code using a retargetable

microcode compiler. Retargetabiiity is preserved, per-
mitting to compare different architectural alternatives

in a codesign framework within relatively short time.

1 Introduction

The” hardware/software codesign” approach increasing-

ly gains importance in digital system synthesis from be-

havioral descriptions. Codesign implies partitioning an

abstract behavioral description into hardware and soft-

ware components forming a system with the specified

behavior and meeting given timing restrictions. Espe-

cially, it aims at designing digital controllers perform-

ing real-time computations. The target architecture

might be a simple system cent aining a programmable

processor (core), a main memory, and several ASICS,

as proposed in [1] (fig. 1). Since communication over-

head implied by a certain system partitioning is hardly

predictable, codesigning a digital system requires sev-

eral iteration steps in general. During the iteration the

necessary hardware and software components change,

causing different core requirements in each step. In

order to simulate the system behavior for a given hard-

ware/software partitioning the hardware components

have to be synthesized and the software components

have to be mapped onto the core. For the latter a com-

piler is needed that translates a HLL program into the

core instruction set. Commercial compilers are avail-

able for some standard processors but never for special

cores. Therefore we recommend using a retargetable

compiler, processing both a HLL program and a proces-
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Figure 1: System Architecture

sor (core) description, and producing machine code for

the described hardware. The compiler retargetability

enables the designer to study different core alternatives

without manually changing the compiler itself.

Several retargetable compilers are mentioned in the

literature [2, 3, 4], among them our code generator

MSSC. MSSC takes both a target structure descrip-

tion and a PASCAL program emitting binary code au-

tomatically, that executes the PASCAL program on the

given structure if possible. A drawback of those compil-

ers (when using it in a codesign environment) is that

only code for the lowest programming level is gener-

ated, i.e. microinstruction. Generating machine code

is not provided by the above compilers. If the target

processor comprises a complex controller with a two-

level interpretation scheme, modelling of the controller

becomes quite difficult. Either it does not fit into a RT-

level hardware model, or the internal controller struc-

ture is not publicly available at all. However, machine

instructions have to be produced for the assembly level

instead of the microcode level. This requires restrict-

ing the compiler to generate only available assembly

instructions, whereas the processor datapath might ex-

pose more parallelism than visible at this level. To

fill this gap in case of an unknown internal controller

structure we apply a “ bootstrapping” technique using

MSSC in a two-phase mode.

We describe the bootstrapping approach using the

TMS320C25 DSP as an example. The MSSC compiler

has been described elsewhere [5, 6], so only a short
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overview is given in the following section. After that

the basic bootstrapping idea is explained, followed by a

detailed description of the two main steps (micro-ROM

generation and machine code generation). The paper

ends with examples for generated TMS machine-level

programs and a conclusion.

2 Microcode generation in the MDS

The retargetable microcode generator MSSC is part of

the MIMOLA Design System (MDS), which supplies

hardware synthesis, generation of self-test programs,

simulation and schematics generation [7]. Each MDS

tool is based on the MIMOLA language that allows

both hardware and software descriptions [8]. Hard-

ware descriptions contain RT modules, their behavior

and their interconnections. For instance, a 32 bit ALU

might be specified in MIMOLA as follows:

MODULE ALU (IN a, b : (31:0);

OUT outp: (31:0);

FCT ctr : (1:0))

BEGIN

outp <- CASE ctr OF

o: a+b;

1: a-b;

2: a;

3: a XOR b;

ENDCASE

END ;

The ALU has two 32 bit data inputs, a 32 bit output,

and a 2 hit control input selecting the ALU function. A

complete hardware description enumerates all modules

and all interconnections (wires). For code generation

one register has to be marked as program counter and

one memory module as instruction storage. Module

interconnections are explicitly given in the MIMOLA

description by enumeration of source and sink ports.

Software descriptions in MIMOLA may consist of

PASCAL statements, but RT-level programming is sup-

ported, too. All high-level control structures (FOR,

WHILE, REPEAT,... ) are supplied, but there are no

predefine data types besides the bitstring. Other scalar

types may be declared by the user. Definition of com-

plex data types (ARRAY, RECORD) is supported as

well. Hardware and software description together form

the input to MSSC, that translates the given program

into microinstruction for the given programmable hard-

ware structure. MSSC has been described in detail in

[5, 6], we only give a rough summary of the four main

steps here.

1. Program transformation: The software de-
scription is transformed into a RT-level program.

All user variables are mapped onto physical mem-

ory locations, and loop structures are replaced

2.

3.

4.

by conditional jumps. Either default or user-

defined replacement rules are used. The result

is a RT-level program that only may contain IF-

stat ements as high-level elements. IF-statements

can be mapped onto hardware directly using mul-

tiplexer and comparators.

Preallocation: The hardware structure is rep-

resented by the Connection Operation Graph. It

contains vertices for every operation performed

by the modules and edges for their interconnec-

tions. During preallocation suitable assignments

to instruction word fields (versions) are calcu-

lated for each possible hardware operation. Mod-

ule control codes can be allocated directly at the

instruction word and hardwired constants or in-

directly through decoders. The latter feature is

crucial for our bootstrapping technique. Since a

large number of versions might be found for each

hardware operation during preallocation, a spe-

cial data structure is used for efficiently handling

version alternatives.

Code generation: Code generation is done by

pattern matching within the Connection Opera-

tion Graph. Each assignment can be represented

by a data flow tree. If the CO-Graph contains

a matching subtree, the assignment can be allo-

cated immediately. Otherwise, the assignment is

sequentialized. If a statement cannot be allocated

even when using temporaries, MSSC generates an

error message indicating the failure reason and lo-

cation. The result of successful code generation

is a list of allocated microoperations.

Scheduling: Finally the microoperations have

to be packed into complete microinstruction (con-

trol store words). Data dependencies and com-

patibility of microoperations have to be obeyed.

Microoperations executable in parallel are heuris-

tically packed into one control step. Additionally

unused registers and tristate bus drivers must be

disabled.

The final result is a microprogram executing the given

PASCAL program on the target structure.

3 Bootstrapping approach

This section gives an overview of the bootstrapping

technique. A detailed explanation containing examples

is given in sections IV and V. The basic idea for gen-

erating machine-level instead of microinstruction is a

two-phase use of MSSC. In the first phase MSSC pro-

duces a binary program that corresponds to the pro-
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cessor instruction set. This program is stored into a

micro-ROM (a decoder), that serves as an additional

input in the second phase. Extending the hardware

description by the micro-ROM enables MSSC to trans-

late a HLL program into machine-level code in phase

2. This means, phase 1 uses the microcode compiler

MSSC for “bootstrapping” a real HLL to machine code

compiler for a specified processor structure and its ma-

chine instruction set. The whole procedure is shown in

fig. 2.

FF

E
PASCAL

Micro. R0 pros-m

MSSC

mAssembly

program

Figure 2: Basic Idea of Bootstrapping

Phase 1: (Micro-ROM generation)

1. Hardware structure modelling: The target
processor’s RT-structure is described in MIMOLA,

containing the data path, storage modules as well

as a simple microcontroller that uses separate

control fields for each module. This controller is

dropped in the second phase and does not need

to be structurally identical to the real controller.

Therefore, when modelling the target processor

the user only needs knowledge about the data

path and storage/register modules. This informa-

tion can be taken for example from a processor

data book, whereas information about the con-

troller usually is not provided.

2. Assembly instruction modelling: The RT-le-

vel behavior of available assembly instructions is

modelled in MIMOLA. The result is a “program”

that simply consists of a listing of all assembly

instruction behaviors. This “program” forms the

software description for the first MSSC run.

3. Micro-ROM generation: The compiler MSSC

is applied to the hardware description and to the

“program” containing the assembly instruction

behaviors. For technical reasons we assume ev-

ery machine instruction to be executable within

a single cycle. As described later, this means

no severe restriction, however. MSSC generates

a microprogram in which each microinstruction

corresponds to a realization of a certain assembly

instruction. The microprogram is stored into the

declared microinstruction memory.

Phase 2: (Machine code generation)

1.

2.

Controller replacement: The micro-ROM gen-

erated in phase 1 is now assumed to be part of

the target hardware structure. All control lines

still start from the micro-ROM that simply serves

as a decoder here. By addressing a line in the

micro-ROM execution of a certain machine in-

struction can be selected. Addressing the micro-

ROM is now done from the “real” machine in-

struction memory which in its turn is addressed

by the “real” machine-level program counter. As

mentioned in section 2, MSSC is able to allocate

constants via decoders. Since every module only

can be controlled via the micro-ROM, and the

micro-ROM only cent ains microcode for machine

instructions, MSSC is restricted to generate en-

coded machine instructions when applied to the

structure and a HLL program.

HLL program translation: Now the same hard-

ware structure as in phase 1 serves as an input to

MSSC, extended by the micro-ROM. The soft-

ware description in principle could be any HLL

(PASCAL in our case) program. MSSC produces

binary code in which every instruction contains

an address for the micro-ROM (and thus an en-

coded machine instruction) as well as necessary

operands. This binary code can be easily trans-

formed to real machine code by table lookup. The

result is an assembly-level machine program for

the target processor realizing the given HLL pro-

gram.

For a given target processor, phase 1 has to be per-

formed only once. After that any PASCAL program

can be translated into machine code by a single call

of MSSC. Both phases are described in detail in the

two following sections. For better understanding of the

bootstrapping technique, we consider the digital signal

processor TMS320C25 as an example.
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Figure 3: Simple Controller in Phase 1

4 Micro-ROM generation

In phase 1 a micro-ROM is to be generated, in which

every control word realizes exactly one machine instruc-

tion. At first the target structure (here: TMS320C25)

has to be modelled. Most of the data path structure can

be found in [9] and can be written as a MIMOLA hard-

ware description, consisting of 2000 text lines in this

case. Information about the internal controller struc-

ture is not available in [9], but this causes no problems

since we only need a simple microcontroller structure

for phase 1.

The TMS contains a 16 bit program counter and a

4k program ROM. These modules are modelled, too,

but not according to their real functionality in the first

phase. Instead we use the simple controller shown in

fig. 3. The microinstruction storage (MIS) controls

all but the residually controlled modules directly. Its

wordlength is 150 bits in our model. It is addressed by

a microprogram counter (MPC) which is incremented

after each cycle. The software input for MSSC is a

“program” which simply lists all assembly instructions

and their RT-level behavior (in MIMOLA). This in-

formation can also be taken from [9]. The “program”

looks as follows:

PROGRAM Instruct ionSet IS

LABEL ADDK , CMPL , . . .

BEGIN

ADDK: (* add to accu short immediate *)

PARBEGIN

ACC := ACC + ZeroExtend24(PgmROM [PC] . (i’ :0));

PC := “INCR” PC;

PAREND ;

CMPL: (* complement accumulator *)

PARBEGIN

ACC := “NOT” ACC;

PC := “INCR” PC;

PAREND ;

<further instructions>

END ;

This extract shows how the behavior of two simple

assembly instructions might be modellecl in MIMOLA.

For every instruction a label of the same name is de-

clared. The ADDK instruction adds an 8 bit constant

from the instruction word in the program ROM ( ad-

dressed by the real program counter PC) extended by

24 zero bits to the accumulator and stores the result

into the accumulator again. The PC is incremented in

parallel. The CMPL instruction inverts the accumu-

lator and can be modelled similarly. This “ program”

150 . . . . . 0

L
ADDK: 0100 . . . . . . . . . . . . . . . . . . . . . ..OX1l

CMPL: 10 XO . . . . . . . . . . . . . . . . . . . . . . 1101

LARP: XO1l . . . . . . . . . . . . . . . . . . . . . . . . . . ..OO1O

Figure 4: Contents of micro-ROM MIS

is mapped onto the target structure by MSSC. It is

never executed, only the resulting binary code is im-

portant. Since no branches occur, the incremented (fig.

3) is sufficient for modifying the MPC. The generated

microcode is stored into MIS, cent aining a sequence of

150 bit microinstruction then. Each microinstruction

corresponds to a machine instruction (fig. 4). MIS con-

tains as many lines as machine instructions have been

specified, because a suitable hardware model guaran-

tees that only single-cycle instructions are generated.

The initialized MIS is used as one MSSC input in the

second phase. It contains the information about avail-

able machine instructions and their implement at ion by

microinstruction.

5 Machine code generation

In phase 2 a PASCAL program is to be translated into

a TMS machine program. The micro-ROM is now as-

sumed to be part of the target structure and the con-

troller illustrated in fig. 5 is used. This step requires

only minor changes in the RT-model. In the second

phase the TMS 4k program ROM serves as instruc-

tion memory, addressed by the program counter PC.

The microprogram counter MPC of phase 1 is drop-

ped. The modules are controlled by the program ROM

indirectly via the micro-ROM. Thus the micro-ROM

now works as an instruction decoder. Each line in the

program ROM has the following format:

16 bit constant 8 bit address 16 bit operands

The 16 bit constant field is only used in case of two-

word instructions, e.g. jumps. The jump address is
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then stored in the constant field instead of the next

program ROM line, just to avoid the necessity ofgen-

erating two-cycle instructions. This means no severe

restriction, since the above 40 bit control word format

is finally transformed to real machine code format by

a very simple postprocessing step. Most of the TMS

two-cycle instructions may be modelled this way. An

8 bit address field is used for controlling the MIS. So

a certain address corresponds to a certain machine in-

struction. The 16 bit operand fields carry immediate

operands for the current instruction if necessary.

The TMS RT-structure together with the MIS and

an arbitrary PASCAL program now forms the input for

MSSC. In addition, memory locations for user variables

and temporaries can be declared. Code generation for

a single PASCAL statement of the form

a := b+4;

proceeds as follows. We assume the user variables

a and b to be located at addresses O resp. 1 of the

data RAM. At first MSSC recognizes that a temporary

is needed to execute the statement. Using the TMS

accumulator as a temporary, the assignment is sequen-

tialized:

(1) ACC := DataRAM[l] ;

(2) ACC := ACC + 4;

(3) DataRAMIOl : = ACC;

Each statement can be allocated directly now, since

there are corresponding microinstruction in MIS:

(1) ZALS (zero high accu, load low accu)

(2) ADDK (add to accu short immediate)

(3) SACL (store low accu with shift)

Assuming these instructions are located at addresses

1, 2resp. 3of MIS, MSSCwill generate theintermedi-

ate code:

No. 16 bit const 8 bit addr 16 bit operands

(1) xx. . . xx 00000001 Xxxxxxxxoooooool

(2) xx. . . xx 00000010 Xxxxxxxxooooo 100

(3) xx. . . xx 00000011 Xxxxxooooooooooo

The 16 bit constant fields aredon’t cares, since each

instruction occupies only one TMS word. The 8 bit

address fields select the particular instructions in MIS

(1, 2 and 3), and the 16 bit operand fields provide

theinstruction-specific operands: memory address lof

variable b for the ZALS instruction, the 8 bit constant

4 for ADDK, and for SACL the shift value (here: O)

and the address Oofvariablea. This intermediate code

can be transformed to real machine code or mnemon-

ics very easily. Only a table is needed, containing the

information about correspondence between addresses

and instructions in MIS, and about operand field inter-

pretation for each instruction. For the above example

one obtains:

~

Thus, we get a translation of a PASCAL program

into real machine code, immediately executable on the

TMS. As mentioned above, this compilation is retar-

getable, too, i.e. ifthe target structure is changed and

a new micro-ROM is generated, machine-level output

for other processors or cores is produced. Therefore,

several structural alternatives for software components

in acodesign framework can be tried without adapting

the compiler itself. Only the bootstrapping procedure

has to be repeated.

6 Examples

In this section we show some examples for generated

TMS assembly code. Phase 1 of the bootstrapping pro-

cedure has to be performed only once, in our model

MSSC needs 135 CPU sec for that task. Regarding

phase 2 we first consider a small program for Euclidian

greatest common divisor computation:

PROGRAM gcd IS

VAR u, v, t: Integer;

BEGIN

REPEAT

IF U < V THEN BEGIN

t:=u; ~:=v; v:+,

END ;

u := u-v

UNTIL U = O;

END ;

After termination of the REPEAT loop, variable v

contains gcd(u, v). MSSC generates the following code

for this example within 48 CPU sec. (AR denotes TMS

internal auxiliary register, help is a temporary located

at DataRAM[lOl]):
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1: ZALS

2: SUBS

3: SACL

4: ZALS

5: BGEZ

6: LAR

7: SAR

8: LAR

9: SAR

10: LAR

11: SAR

12: ZALS

13: SUBS

14: SACL

15: LAR

16: SAR

17: ZALS

18: BNZ

o
1

101
101

12

AR1, O

AR1,2

AR1,l

ARI, O

AR1,2

AR1 ,1

0

101

AR1,101

AR1, O

o

1

//ACC :=u

//ACC ;=ACC-v

//help :=ACC

// ACC :=help

// IF ACC >= O GOTO 12
/lARI :=u

//t,=u

// AR1 :=V

//u:=v

II ARI := t

//v:=t

II ACC :=U

// ACC := ACC - v

// help := ACC

// ARI := help

//u :=AR1

// ACC :=U

// IF ACC <> 0 GOTO 1

This code isnot optimal, for example thelines3 and

4 maybe dropped. Those superfluous instructions arise

from the fact, that MSSC does not yet include book-

keeping of temporary locations beyond single state-

ments. Also the compilation speed cannot compete

with a commercial target-specific compiler, but that is

the price for retargetability. Important here is the abil-

ity to map software components onto a certain target

structure without compiler redesign. Future versions

ofMSSC will include global book-keeping oftemporary

locations.

Another exampleis the translation of the elliptical

wave jilter, a typical DSP application mainly consist-

ing of arithmetical operations [10], into TMS code. Due

to the limited space, we only mention the results here:

MSSC generates 184machine instructions for38 PAS-

CAL statements within 239 CPU sec.

7 Conclusions

We introduced a bootstrapping technique allowing re-

targetable machine code generation using a retargetable

microcode compiler. This approach extends the range

of target architectures which can be handled by retar-

getable compilers based on true structural hardware

descriptions. Inorder togenerate only valid assembly

instructions, although no information about the inter-

nal controller structure is available, requires alarge de-

coder to be integrated into the hardware model. The

purpose of the bootstrapping technique is to generate

the required decoder automatically. This is achieved

by a two-phase use of the microcode generator MSSC.

The feasibility of this approach has been shown for a

real-life example. Further DSP models are currently

investigated. We plan to employ the MIMOLA high-

level synthesis tool for obtaining the hardware model

instead of using a manual specification.

Due to its retargetability the outlined approach cann-

ot compete with target-specific compilers regarding

compilation speed. Regarding the code quality, super-

fluous instructions might arise during code generation.

but this is only due to a technical limitation of MSSC.

Work is in progress to overcome that limitation. We

predict that retargetable compilers will become an es-

sential tool in hardware/software codesign. In this coll-

text, the disadvantage of lower compilation speed is

more than compensated by retargetability.
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