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Abstract

Special purpose instruction set processors (lSPS)

challenge compilers because of instruction level par-

allelism, small numbers of registers, and highly spe-

cialized register capabilities. Many traditionally sepa-

rate subproblems in code generation have been unified
and jointly optimized within a single integer linear pro-

gramming (ILP) model. ILP modeling provides a pow-

erful methodology for for generating high-quality code

for a variety of ISPS.

1 Introduction

Instruction Set Processors (ISPS) are finding in-

creasingly wide use in commercial products, because

of their inherent flexibdity and versatility. Compilers

capable of generating code for these chips would dra-

matically hasten their product’s time to market, but

such compilers are not generally available.

One problem is the high quality of code that is often

demanded by the applications . ISP chips are com-

monly employed for digital signal processing (DSP)

with attendant real-time requirements. Furthermore,

if the chip is specially designed to optimize a partic-

ular application, it often has ~tjust enough” hardware

to perform the function. The consequence is often

an unconventional or heavily constrained architecture,

for which available optimizing compilers are poorly

suit ed. Awkward architectural features make genera-

tion of high quality code a difficult task for any one

of the special ISP chips, not to mention a family of

different chip designs.

We have developed both a methodology and a work-

ing prototype that can generate very high quality code

for a variety of special purpose ISP architectures. We

model the entire code generation problem as an in-

teger linear program (ILP), which provides an inte-

grated approach to several traditionally separate sub-

problems in code generation. We not only have a uni-
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fied model of the problem, but one which is sufficiently

abstract that it can be easily adapted to important

variations in the target architecture. We believe this

is the first such integrated approach to retargetable

code generation.

We have concentrated on ISP chips that are spe-

cially designed for DSP applications. The chips in

question have a single ALU that can do a multiply and
accumulate in a single instruction cycle, Although the

instruction repertoire is limited, the instruction words

are long, permitting several things to occur in parallel

during each cycle. These include: one ALU operation

on data; concurrent movement of data to or from the

data memory; loading a register with a constant from

a field of the instruction itself; preparing address reg-

isters with a value for the next access to data memory;

and updating the program count er, possibly to imple-

ment a conditional branch. The ALU is surrounded by

a small number of registers whose capabilities are quite

varied and specialized. Only certain ones may be used

for ALU operations, for writing to data memory, ex-

tracting constants from program memory, generating

addresses, etc. And different registers have different

combinations of capabilities!

Much of the relevant published research has been

oriented toward machines with less instruction-level

parallelism and a friendlier ensemble of registers.

The instruction-level parallelism tends to engender a

pipelined programming style, in which an address is

prepared on one cycle, used to obtain an operand on

another, with the operand being used on yet another.

The parallelism among several such operand streams

differs markedly from the operation parallelism that

conventional compilers might be able to handle.

Most register assignment schemes have stressed

general purpose registers, and have focused on live

variable conflicts in the assignment process, [I-4] for

example. Special purpose registers inspire heuristic as-

signment techniques an”d provide the major bottleneck

when compiling code for ISP chips. Most published

code generation methods, such as [5-8], approach the
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problem by solving a succession of subproblems, usu-

ally employing heuristics. One approach [9, 10] uses

extensive peephole optimization to make the most of

unoptimized generated code. In contrast, we not only

have a code generator that considers the entire prob-

lem at once to obtain an integrated solution, but one

that thrives on special purpose registers.

2 Integrated Code Generation

2.1 The Subproblems that are Included

We begin with a data flow graph (DFG), which is

generated by the front end of an appropriate compiler.

The following subproblems must be handled by a code

generator:

1.

2.

3.

4.

5.

6.

7.

2.2

Map combinations of generic DFG operations

onto more inclusive machine instructions, such as

multiply and add;

Schedule operations on control steps and bind

them to specific functional units;

Assign data (and address) values to registers

when possible;

In case the number of live values exceeds the num-

ber of registers, introduce spills which temporar-

ily store certain values in memory;

Introduce register-to-register copies at certain

points to resolve problems with special pupose

registers and with values that wrap around loops;

Assign registers consistently across control block

boundaries and around loops;

Correctly compact the individual components of

(highly parallel) machine instructions into a min-

imum number of final instructions.

Important Concepts of the Model

Our solution is based on an integer linear pro-

gram. Thus we model all of the subproblems men-

tioned above in terms of linear inequalities, whose

combined effect is to specify the correctness criteria

of any feasible solution. Since all the constraints are

considered together by the ILP, any solution can re-

late and trade off issues that arise within the various

“subproblems”, thus providing an integrated result.

Although the actual constraints in an application

of the model reflect the realities of a particular archi-

tecture, the model is expressed in general terms, such

as sets of registers that could be used for certain DFG

edges and ‘{patterns” that represent more inclusive in-

structions and which cover parts of the DFG. This

gives the model its inherent retargetability. What one

needs to do is change the numbers of registers, sets of

allowable registers for various operations, and patterns

depicting instructions that the machine can support.

An important idea is the way we approach regis-

ter assignment. We have abandoned the conventional

view that stresses “live variable conflict” and mutual

incompatibility, in favor of a scheduling view. When-

ever two DFG edges are mapped to the same regis-

ter, they must use that register in some order; one

live value must be consumed before the other is gen-

erated. This is essentially the same as sequentially

scheduling other objects (like operations) onto other

non-sharable resources (like functional units). This

notion allows special purpose registers to be handled

in a systematic and uniform way.

Another basic idea is that our DFG contains op-

tions from which the ILP may choose. The DFG in-

cludes “extra” edges and operations, which represent

alternative possibilities for use in the final code. For

example, optional spill or copy operations are inserted

into the DFG at places where spills or register copies

might be useful, depending on overall characteristics of

the solution. They appear in the generated code only

if they are required for a correct solution. Another ex-

ample concerns alternative modes of array addressing,

exactly one of which must appear in the final design.

Similarly, the patterns, which relate groups of

generic DFG operations to more inclusive machine in-

structions, may or may not be chosen as final instruc-

tions. The same generic DFG operation may have

several candidate patterns that potentially subsume

it; patterns chosen in a final solution cannot overlap

with each other, and they affect which edges require

registers in the final design. Operations, edges and

patterns that represent chosen elements in the gener-

ated code are called active.

Our model also supports implication among op-

tional objects. For example, some array could be ad-

dressed either by (recomputing its base plus current

offset at each point of access, or by reserving an ad-

dress register and traversing the array using autoincre-

ment. Within certain regions of the code, use of the

address register at one reference point might imply

its use at another. Similarly, selection of an optional

spill at one point requires using related spill code at

associated points that access the same value.

Another useful feature is assignment of the same

register to a set of edges in the data flow graph (DFG).
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One application involves linking up “cyclic” edges,

where one edge represents a value leaving a loop,

and another represents a value – perhaps the same

- (recentering the loop. In general, ability to assign

the same register to different edges enables the correct

interconnection of control blocks when several blocks

are being considered at once.

To support such flexibility, the ILP contains several

constraints that are dynamically enabled or disabled,

depending on the current values of solution variables.

3 The ILP Model

3.1 Operational Assumptions

We assume that a compiler front-end has produced

a DFG and that generic operations have been replaced

by operation sequences that are appropriate to the

given architecture, for example, to correctly handle

data path widths. A set of potential covering patterns

has also been identified but not yet specifically se-

lected. These are groups of primitive DFG operations

which can be combined into single instructions by the

architecture. A classic example is multiply and add.

When such a pattern is chosen, it subsumes the entire

DFG within it – both operation nodes and edges.

The model presented here was developed for ma-

chines with only a single non-pipelined ALU capable

of data manipulation. An ALU operation can occur in

parallel with one or two transfers of data between in-

ternal memory and operand registers or accumulators.

Registers used for memory addressing may be updated

in certain standard ways, such as autoincrement, dur-

ing regular instruction execution. The Motorola 56001

exemplifies such an architecture.

If certain registers are restricted for use with only

certain memories, we assume in this model that

memory-resident data has already been allocated to

a particular memory. This assumption allows us to

know the specific family of resources required by each

data manipulation, data movement, and address cal-

culation operation. This, in turn, permits recognition

of any potential conflict in resources. Such possibilities

must then be circumvented by appropriate scheduling

options within the model.

The model makes no distinction between single-

block and multiblock designs. A DFG spanning sev-

eral control blocks must be structured in such a way

that operations remain within a logically acceptable

set of control blocks. This can be done by intro-

ducing “dummy” nodes to depict points where con-

trol branches and merges. Additional node ordering

constraints keep certain operations between relevant

branch and merge points. Values traversing block

boundaries may either be represented on inter-block

edges or be associated through use of the same regis-

ter on logically connecting edge segments. Inter-block

code movement as such is not addressed here.

3.2 Overview of the Model

There are two basic ways of executing the ILP

model. The simplest and fastest seeks any feasible so-

lution and requires no objective function. Presumably

the number of control steps, t, is prespecified, and any

correctly formed solution within the required number

of control steps is considered equivalent in practice

to any other. The alternative approach treats t as a

variable and seeks a minimum time solution, using the

objective function:

rein(t)

Other cost parameters can also be included, but the

running times to find an “optimum” in one attempt

can be somewhat longer.

The constraints are the correctness criteria for any

solution. The following list summarizes what the con-

straints guarantee and conveys the general strategy of

our

●

●

●

●

●

●

●

●

model.

a basic DFG operation can be included in at most

one active pattern;

a DFG operation is active if it is not covered by

an active pattern and if it is met by at least one

active edge;

an edge is active if it is essential to the design and

not totally within an active pattern;

an edge is inactive if it is totally within an active

pattern;

certain edge sets are either all active or all inac-

tive (because they belong to the same alternative

implementation);

certain edge sets may have at most one active

member (because they represent alternative im-

plementations);

active edges must be assigned to a register that

belongs to an allowable register set;

edges that represent the same value, within a con-

trol block, between control blocks, or wrapping

around a loop, must use the same register (ex-

cept for a copied value);
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●

3.3

active edges impose a strict scheduling order be-

tween the operations that they connect;

active operations that are not related by a path

in the DFG, but that require the same functional

unit, must use that unit in some sequential order;

active edges that are not members of the same

path in the DFG, but that are assigned to the

same register, must use that register in some se-

quential order.

Definitions and Variables

The following symbols index scalar objects:

P covering pattern

i, j, h, k operation (DFG node)

7’ register

An edge of the DFG is identified by the ordered pair

of nodes it connects, e.g., edge (i, j). Ordered pairs of

nodes are used for many other purposes besides iden-

tifying edges within the ILP model.

The model determines which combining patterns,

operations and DFG edges are to be “active” or se-

lected in the final design, the control step for each

activated pattern and operation, and the register as-

signed to each active DFG edge. These results are

conveyed through solution variables, some of which

are nonegative integers and others of which must be

either O or 1. The solution variables (y,t,z,x,u), plus

two auxiliary variables (pjq) for internal use by the

ILP, are defined below:

variable type meaning

Yi intgr step where opi scheduled

t intgr final step = total time

Zp o-1 if 1, pattern p selected

z~ o-1 if 1, Opi activated

Xi j o-1 if 1, edge (i, j) activated

U~j, o-1 if 1, edge (i, j) uses register r

Pij o-1 if 1, ~i must precede opj

qij o-1 if 1, Op; cannot fOllOW O’pj

The following are index sets of scalar objects:

G operations (nodes of the DFG)

1’ operations that could appear last

Bi patterns that cover opi

B~j patterns that cover edge (i, j)

~j registers suitable for edge (i, j)

The following are sets of operation pairs

E the DFG edges

U potentially conflicting over ALUs

V potentially conflicting over registers

U contains unordered operation pairs. However, E

and V both contain ordered pairs. U identifies op-

erations that: (i) use the same functional uni,t, bus,

memory, or other non-register resource; and (ii) are

not otherwise ordered by the DFG or other consid-

erations. If (i, j) is in U, variables Pij and pji must

be defined. Similarly, if (i, j) is in V, variable qij will

be defined. Membership means that: (i) opi may con-

sume a value from the same register in which opj stores

its result; and (ii) the operations are not otherwise

preordered and could possibly conflict.

Finally, we have sets of edge settx

set index constituent sets

A mutually exclusive alternatives

D : mutually dependent for activation

cc requiring same register

Exactly one edge from each set A. must be acti-

vated. Dd may contain a set of edges that all require

the same activation status. It may also contain an

“implicant” edge whose activation implies activation

of a number of other members from the set. The sets

of Cc identify edges that all require the same regis-

ter. Such edges are often interlock segments or seg-

ments that wrap around a loop to convey a value to

successive iterations. They are logically “connected”,

though physically separate in the model.

3.4 The Constraints k Detail

At most one combining pattern may cover any op-

eration:

(1)

PEB<

From any set of alternative edges, A=, exactly one

edge must be either activated or covered by a combin-

ing pattern. Ordinary, non-alternative edges are also

handled by constraint (2). Such an edge is the sole

member of some A= and must either appear in the fi-

nal design or be covered by a pattern. An edge that

is not alternative and has no possible covering pattern

has its xij = 1 from the outset,

(Lj)eA~ pc~ij

Each active edge must be assigned exactly one reg-

ister from a suitable register set:



(3)

Membership in C. means that edges (i, j) and (h, k)

must be assigned the same register. R, represents the

intersection of register sets &j available to individual

edges in Cc. Constraint (3) assigns only one regis-

ter to an edge, which insures that each summation in

constraint (4) selects only a single value of ‘r) with a

coefficient of 1. Therefore, each summation identifies

the assigned register, and the constraint enforces the

same assignment to both edges. (Here we assume that

both involved edges are required in the design; a more

general version allowing optional edges is available.)

Vc, (i, j) E cc, (h, k) e cc :

Constraint (5) governs the activation of sets of op-

tional edges. Each edge set, Dd contains an “impli-

cant)’ edge, (h, k), and ‘m’ total optional edges. If

edge (h, k) is activated, the left-hand side becomes n,

which forces the summation to be at least n. When n

= m, the entire edge set, Dd is activated together or

entirely left out of the final design.

Vd : if Xhk + at least n edges of Dd:

(5)

(i,j)ED.

Constraints (6) and (7) govern scheduling of oper-

ations that are connected by edges of the DFG. As-

suming edge (i, j) exists, constraint (6) forces opi to

strictly precede opj in the schedule, when that edge

is not covered by a pattern. (Note that even inacti-

vated optional edges imply strict ordering – when not

covered. ) However, if the edge is covered by a com-

bining pattern, constraint (6) allows ~pi and Opj to

occur on the same step and constraint (7) requires it.

N is a very large constant, which makes the right-hand

side of (7) large when the summation is O. Therefore,

failure to cover edge (z, j) effectively deactivates this

constraint, and selection of a cover fuses the two op-

erations into the same control step.

(6)

V(i, ~)6E:yj<yi+(l– ~ZP)X.N (7)

pEB~j

Constraints (8), (9), and (10) govern scheduling of

operations that are noi! connected by a DFG edge, that

use the same riwources , and could possibly conjlict by

being scheduled on the same control step. Constraint

(8) forces zi to 1 if oPi is activated. This condition

is characterized by opi having an activated outgoing

edge. (If opi has only incoming edges, an appropriate

index adjustment is required. ) Constraint (9) forces

either Pij or pji to 1 when both opi and opj are ac-

tive. Constraint (10) forces Opi to strictly precede opj

if pij is 1, and opi to follow Opj if Pji is 1. Con-

straint (10) prevents both pij and Pji from being 1.

When a ‘p’ value remains O, its corresponding con-

straint (10) is deactivated by including (large) N. The

chosen ‘p’ value, if any, enforces exactly one of the

possible scheduling orders.

V(i, j)e U: Zi+Zj<l+pij+pji (9)

V(i, j) EU:yi<yj +(l–pij)XiV (lo)

Constraints (11) and (12) perform a similar order-

ing function between edges that are assigned the same

register and could be active concurrently if not “sched-

uled” in some sequential order. When edges (h, i) and

(~, k) are both active and have been assigned the same

register, constraint (11) forces either qij or ~kh to be 1.

The former causes the destination of edge (h, i) to be

scheduled no later than the source operation of edge

(j, k). The other choice of q causes the destination of

edge (j, k) to finish by the time edge (h, i) receives a

value. The actual ordering is imposed by constraint

(12). Again, when ‘q’ remains O, it causes constraint

(12) to be satisfied automatically.

Vi, j, h, k where (i, j’) E V, (h, i) E E, (j, k) G E :

VT ~ Rhi ~ Rjk ~

~hi + Xjk + Uij. + Ukhr <3 + qij + qkh (11)

V(i, ~)e V:y~<yj+(l–~ij)XN (12)

The total number of control steps in the design is

bounded below by the step on which any possible ‘%-

nal” operation is scheduled. If ‘t’ is predetermined,

the entire schedule is limited to ‘t’ steps. If ‘t’ is vari-

able, the largest ‘y’ value in F determines the total

number of steps.

Vi~F:yi<t (13)
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3.5 Application of the Model

Running a monolithic ILP on a large constrained

problem may take considerable time. But this mode

of operation is not necessary. Since all of the physi-

cal resources on the chip are already committed, the

number of control steps (or their weighted sum) re-

mains the only quantity to minimize. If M represents

the minimum number of steps in which the given al-

gorithm can run on the target architecture, then any

M-step solution that satisfies the constraints is equiv-

alent to any other. Hence, an optimum solution can

usually be found very quickly by attempting a series

of feasible solutions, in which the maximum number of

steps allowed in each attempt is reduced from before.

When the ILP fails to find a feasible solution that re-

quires M-1 steps, we know that the previous M-step

solution is the best possible.

Although this technique usually provides solutions

in tens of seconds, we must still be wary of the amount

of Iattitude within the ILP formulation. One approach

is to break a program into smaller, more manageable

pieces. We first identify critical regions, such as inner-

most loops, optimize these, and propagate the results

to surrounding regions as boundary conditions.

In addition, we either perform or propose several

preprocessing steps that can further constrain the

search, without precluding optimality, As an example,

when one set of currently live edges can definitely use

general purpose registers, we arbitrarily assign these

edges to registers in advance. All such assignments

are equivalent in practice, and the ILP is spared from

evaluating all the equivalent permutations.

4 Conclusion

So far the code generator has been tested on fairly

small examples, typically four cent rol blocks cent ain-

ing about 20 to 30 operations, One reason is that

the code generator is not yet fully integrated with our

compiler front end. Nevertheless, the tests show ob-

ject code of considerable complexity that is as good

as hand-crafted code for these examples. The tech-

nique is definitely promising, especially for its ability

to handle highly parallel instruction formats and het-

erogeneous register sets.

Our current work involves introducing several pre-

processing analysis algorithms to eliminate clearly un-

desirable scheduling options, insert spills that will

surely be required, rationalize array referencing, op-

timize circular buffer usage, and provide more focused

constraints for the ILP itself. A new version of the ILP

will handle architectures with more than one possibly

pipelined ALU. Of course, we must still investigate the

range of architectures over which our model is effec-

tive.
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