An Efficient Path Delay Fault Coverage Estimator

Keerthi Heragu
Dept. of Electrical & Computer Eng.
Rutgers University
Piscataway, NJ 08855-0909

heragu@caip.rutgers.edu

Abstract—We propose a linear complexity
method to estimate robust path delay fault cov-
erage in digital circuits. We adopt a path counting
scheme for a true-value simulator that uses flags
for each signal line. These flags determine the new
path delay faults detected by the simulated vector
pair. Experimental results are presented to show
the effectiveness of the method in estimating path
delay fault coverage.

I. INTRODUCTION

Two commonly used fault models are transition de-
lay faults [5, 6, 10], which represent delay defects at
inputs and outputs of gates, and path delay faults [9],
which consider cumulative delays along combinational
paths. The number of gate delay faults in a circuit is
linearly proportional to the number of gates but the
number of possible paths can be exponential making
it impossible to enumerate all path delay faults in a
large circuit. Still, many existing methods for comput-
ing fault coverage use some form of path enumeration.
Storing of detected path delay faults [8] is also infea-
sible for the above reason.

Pomeranz and Reddy proposed a method [7] for
computing path delay fault coverage with polynomial
time complexity in the number of lines in the circuit.
As the order of the polynomial is increased, better es-
timates are obtained at the expense of increased com-
putation time, which is exponential in the limit, due
to the addition of cutsets in the circuit. For example,
consider the circuit in Figure 1.

Michael L. Bushnell
Dept. of Electrical & Computer Eng.
Rutgers University
Piscataway, NJ 08855-0909
bushnell@caip.rutgers.edu

Vishwani D. Agrawal
AT&T Bell Labs
600 Mountain Avenue
Murray Hill, NJ 07974

va@Q@research.att.com

We will assume that path faults (R-2, 5, 7) and (R-
1, 6, 8) have been detected earlier on separate test pat-
terns. ‘R’ indicates a rising transition on the primary
input (PI) which is at the origin of the corresponding
path. In the Pomeranz-Reddy zero-order approxima-
tion method [7], the set of lines, 1, 2, 5, 6, 7, and 8,
with respect to rising transitions, will be considered
as old-lines as they have been part of a previously de-
tected path fault. If a test pattern that detects the
faults, (R-2, 6, 8) and (R-1, 5, 7), is now applied
to the circuit, their method will not count these path
faults as detected because both paths do not include a
new line (line with the corresponding transition, which
is not part of any previously detected path fault) in
them. To reduce the error resulting in the fault cov-
erage estimation, they add multiple cutsets to the cir-
cuit [7].

3
- 7
5
1
O
2 6
o0
8
4
O

Figure 1: Error in zero-order approximation method

We use an efficient technique to compute the num-
ber of new path faults detected by a vector pair, which
helps us in estimating the delay fault coverage for a
test set. For every gate output in the circuit, we have
twice as many flags as the number of inputs of the gate,
which indicate whether or not each of those input-
output pairs of signal lines have been included in a
previously detected path fault. This information helps
us to avoid the requirement that every detected path
fault should include at least one line [7] that has not
been included in any previously detected path fault

thus improving the approximation. We limit the com-
plexity of our method to O(n) by avoiding the use
of cutsets, where n is the number of lines in the cir-
cuit, as opposed to O(I¥*1) for a kth order approxi-
mation involving subcircuits of I lines each [7], which
1s exponential in the worst case. We present experi-
mental results to demonstrate the effectiveness of our
method.

II. ESTIMATION OF DELAY FAULT
COVERAGE

In a combinational circuit, a test pattern for a path
fault essentially has two vectors to initiate a signal
transition at the origin of the path and to propagate
1t to a primary output. We consider the problem of
determining the number of path faults tested indepen-
dently of gate delays by a given vector pair.

A. Detected Path Data Collection

We use a thirteen-valued algebra for our simula-
tion [4], but the method can be adapted to use any
other multi-valued logic algebra [2]. Each line in the
circuit has a set of flags which indicates whether the
line has been included in a previously detected path
fault. For example, consider Figure 2, where [and
m are the inputs of an AND gate and o is the out-
put. Line o has two sets of flags, SI corresponding to
rising transitions and S2 corresponding to falling tran-
sitions. The set S7 has two flags, which correspond to
the two inputs of the AND gate. Flag r1 indicates
whether the pair of lines, o and I, were part of a pre-
viously detected path fault with a rising transition on
o. Flag r2 represents the same relationship between o
and m. Similarly, set S2 has two flags. Flag fI indi-
cates whether the pair of lines, o and I, were part of
a previously detected path fault with a falling tran-
sition on o. Flag f2 represents the same relationship
between o and m. A 0 on a flag indicates inclusion in

SET S1

SET S2

(0]

[

Figure 2: Maintaining new line information

a previously detected path fault. Thus, a 0 on flag f2
indicates that the signal lines m and o have been part
of some previously detected path fault with a falling
transition on o. A 1 indicates otherwise. We denote

the flags corresponding to a rising transitions as R-
flags and those corresponding to a falling transition
as F-flags. Thus F-flag(o, m) will mean the same as

1.

We need to compute two parameters for each line.
Let new-lines(:) denote the number of newly de-
tected path segments on which transitions propagate
robustly between line i and a primary output (PO), for
a given test pattern. Let old-lines(i) denote the num-
ber of path segments, between line 7 and a PO, which
have been part of previously detected path faults. For
every input of a gate which has a transition robustly
propagated to a PO, the number of new path segments
originating from it and ending at a PO is at least equal
to the sum of the new path segments originating from
the outputs of the gate and ending at POs. Note that
new path segments represent those that have not been
part of a previously detected path fault. In addition, if
the input-output pair has not been part of a previously
detected path fault for the corresponding transition,
the old path segments originating from the gate output
also add to the number of new path segments of the
line under consideration. This information about the
input-output pairs is maintained in the flags on each
line. The flags corresponding to each input-output
pair are updated when the outputs of a gate add to
the number of new-lines of the corresponding input.
The algorithm shown in Figure 3 computes the num-
ber of newly detected path faults after simulating the
circuit for a test pattern. We only consider transitions
that robustly propagate to the outputs.

Figures 4, 5, and 6 illustrate the working of the
algorithm on the ISCAS-85 benchmark circuit cl7.
Each line has a set of parameters as indicated in Fig-
ure 4. The simulated signal values are determined
by a forward pass and the other parameters (new-
lines, old-lines, R- flag, and F-flag) are determined
by a backward pass over the circuit as explained in
the algorithm. We omit the flags on the Pls as they
are unused. The test patterns chosen for illustration
do not occur in sequence but it is assumed that only
these patterns detect new path faults. The detected
path faults in the figures are shown in dotted lines.
The number of path faults detected on the first test
pattern is three, the sum of the new-lines values of all
PIs. The faults are (F-1, 8, 16), (F-6, 11, 15, 17),
and (R-7, 15, 17). R (F) indicates that the PI at
which the path originated had a rising (falling) transi-
tion. For example, consider line 15 which has a falling
transition. The number of new-lines is one (same as
the number of new-lines of line 17) because R-flag(17,
15) was initially one, meaning that the pair of lines,

Algorithm for computing number of newly detected
path faults by a vector pair:

1. for all lines ¢ connected to a PO
if 7 has a rising transition,
if all its R-flags are 1
new-lines(1) = 1 and old-lines(7) = 0
else
new-lines(i) = 0 and old-lines(i) = 1
else if ¢ has a falling transition,
if all its F-flags are 1
new-lines(1) = 1 and old-lines(7) = 0
else
new-lines(i) = 0 and old-lines(i) = 1
else
new-lines(1) = 0 and old-lines(7) = 0

2. for every non-PO line ¢ which is the input of gate G
(having outputs 01 to o, with transitions on them)
if 7 has a transition
new-lines(s) = 0
fork=1ton
new-lines(1) = new-lines(s)
+ new-lines(oy)
if 01, has a rising transition
new-lines(1) = new-lines(s)
+ old-lines(or) xR-flag(or,1))
if 01 has a falling transition
new-lines(1) = new-lines(s)
+ old-lines(or) xF-flag(ox,1))
total-lines = ::f
+old-lines(oz))

old-lines(i) = total-lines — new-lines(i)

(new-lines(or)

else
new-lines(i) = 0 and old-lines(i) =0
The outputs of gate G which do not have transi-
tions do not contribute to the number of paths.
if new-lines(i) 1= 0
fork=1ton
if (new-lines(ox) '= 0) OR
(old-lines(ox) '= 0)
if 01, has a rising transition
R-flag(or,i) = 0
if 01 has a falling transition

F-flag(or,i) = 0

3.1 =1—1
ife>0
go to step 2

4. Total number of new paths detected = Ene'w-
lines(i) where i is a primary input

Figure 3: Computation of number of newly detected
paths by a test pattern (Vector pair)

- |
1jnh|1
i K
0
[
5
Al
0
0
O \
111
Ao
1

—= SIGNAL NUMBER
—» SIMULATION VALUE
—» NEW-LINES()

—» OLD-LINES()

—=R-FLAG(i)
—= F-FLAG(i

Figure 4: First test pattern for ¢17

15-17, has not been part of any previously detected
path fault. After this computation, R-flag(17, 15) is
set to 0 as shown. During the backward pass over
the circuit, flags along signal lines which constitute a
path eliminate the counting of path faults that have
been detected before. The second test pattern detects
three new faults: (F-5, 10, 14, 17), (F-5, 11, 15, 17),
and (F-5, 10, 13, 16). It also detects one previously
detected fault (see Figure 5). The third test pattern
detects (F-6, 10, 14, 17), a new fault, along with two
previously detected faults as shown in Figure 6. The
example clearly illustrates the use of the flags on ev-
ery line in distinguishing the usage of a line with re-
spect to all of the lines immediately preceding it. The
zero-order approximation method [7] would not have
detected the fault (F-6, 10, 14, 17) during the third
test because each of the lines, 6, 10, 14, and 17, have
been included in previously detected path faults. In
practice, this error tends to be large and hence our
method improves the approximation without adding
any cutsets, limiting the complexity to O(n).

B. Computing Fault Coverage

The number of path faults detected by a test set
is computed as the sum of the number of new path
faults detected by every test. The total number of
path faults can be determined in O(n) time, where n

O[nh[0 A
0 Tnh[T
0 0 0
O0— 0 |[L1]1
--------------------- 6 |[1]0]
1|nh|0
|0 l 13 Onhf] [0 1]
0 2 nhpo]|[1] 1] 1
ll%hIlD_ 1 [1]0] 0
5 10 12
H 0 11
1nh[0 i Onh|[1 1[nh|0
3 2 [110]
0 li.. Lo 0
i - >-D
i [O[nh[T
= o |11 L0 0]
6 Hy 15 | Orz)h 1
Tnh[T { Tnh[0 =
||'10| . | | 0 m 1
0 O 1
7
O[nh[L
0
1
Figure 5: Second test pattern for ¢17
1
Tnh[L 8
0 O[nh[0
0 0 0
C— 0 171
— 16 |[1]0]
1nh[1
o 3 Th 1| [0 1 1]
0 2 1nh[0|[1] 1] 0
llrg)hll O— 0 |[1]0] 0
- 5 A0
5 10 14
Tnh[T Olnhj1 f Inhjo| 1]1
0 0 |[L]1] (110]
| D l |
S 11 -
....... Onh[1|| 0|0 >
| 01T 17][0]0]
6 T B g Onh[1
[nh[0 1Jnh[0 0
1 0 [0] 1
1 O— 1

7
Ojnh[L

Ll (=]

Figure 6: Third test pattern for c17

1s the number of lines in the circuit. The number of
path segments originating from each input of a gate to
a PO is equal to the sum of the number of path seg-
ments originating from each gate output to a PO. For
lines connected to POs, this number is set to one. In
practice, the path fault counting can be done during
one of the backward passes over the circuit. It should
be noted that new path faults can be detected by tests
even when they do not include any new lines. This is
because the new line information is maintained only
locally across each gate. For example, a gate input
which is considered old with respect the gate output
can be new with respect to a different line along the
path being considered. Hence this path, which should
actually be counted as detected, is not. Thus, the
fault coverage estimate is always pessimistic, i.e., 1t is
always equal to or lower than the actual fault cover-
age.

III. RESULTS
We consider the full-scan circuits of the ISCAS-89

benchmarks. To demonstrate the effectiveness of our
method, we compared the results with those from an
existing delay fault simulator [3] using the same set
of vectors [1]. We also compared our coverages with
the zero-order approximation method [7]. The execu-
tion times in Table 1 are for a SUN 4/280 workstation.
The table shows robust coverages for path delay faults.
Our coverages correlate well with the actual fault cov-
erages reported for these vectors by Bose et al[3]. The
speedup obtained will be even higher for larger circuits
because the estimator has linear complexity of O(n),
whereas due to the possibility of exponential number
of paths, the fault simulator can have exponential com-
plexity of O(n x 2"), where n is the number of gates
in the circuit.

We omit the CPU times for the Pomeranz-Reddy
method [7] as they were similar to our method, but
there is a marked improvement in the accuracy of our
coverage estimation. The memory requirements for
both the methods were similar. The error columns in
Table 1 indicate the error in the coverage estimation
for both methods. The large error in the Pomeranz-
Reddy method is because of the requirement that ev-
ery detected path fault should include at least one
line that has not been included in any previously de-
tected path fault, as explained earlier with the exam-
ple of Figure 1. Figure 7 gives the error in estimating
fault coverages by the Pomeranz-Reddy method using
zero-order approximation and our method and illus-

Table 1: Coverage results for path delay faults

Ckt. # Our Estimator Pomeranz-Reddy [7) Bose et al [3] Time

Vect. || Cov% | Error | CPU(s) || Cov% | Error Cov% | CPU(s) || Ratio
$298 704 66.6 1.8 0.8 20.5 47.9 68.4 10.1 12.6
5420 1428 67.6 6.7 2.7 34.1 40.2 74.3 29.3 10.8
s444 1466 49.9 0.5 3.6 15.9 34.5 50.4 32.1 8.9
$510 1476 80.3 5.5 3.5 27.5 58.3 85.8 25.9 7.4
8526 1416 78.8 1.1 3.9 17.3 62.6 79.9 33.5 8.6
s820 1968 89.0 0.7 9.5 19.0 70.7 89.7 61.1 6.4
s832 1992 86.5 0.2 10.2 18.5 68.2 86.7 63.3 6.2
s1196 || 4524 34.7 3.9 37.8 6.8 31.8 38.6 238.3 6.3
$1488 || 3832 86.2 5.5 45.1 11.5 80.2 91.7 242.7 5.4
$1494 || 3852 88.1 2.7 46.1 11.8 79.0 90.8 258.4 5.6

trates the improvement in approximation gained by
our method. Better estimates can be obtained by in-
creasing the order of the complexity polynomial by the
Pomeranz-Reddy method, but this increases the com-
plexity of estimation.

%o Error

Our Estimator O—
Pomeranz-Reddy Estimator +
U e O I N
80 +- o
70 + -
o0F - i
50 | -
0F + _ TEST VECTORSFOR A CIRCUIT WITH 10 BLOCKS
ok + - OTLIITATIIT I}
111111111111111111111
2 I
111001111111111111111
10 - I
O % 111111111111111111100
0 S AN | I’N | Q | 111111111111111111111
~/
200 400 600 203 |:I|-r(1)g80 1200 1400 1600 Figure 8: Basic cell of circuit with an exponential

number of paths

Figure 7: Estimation error in fault coverage

We also conducted experiments on the circuits sug-
gested by Pomeranz and Reddy [7]. The basic block
C1 of the circuits is shown in Figure 8. This block is
repeated a different number of times to obtain cir-
cuits of different sizes. The number of paths in a

Table 2: Coverage estimation for circuit with expo-
nential number of paths

| Blks | # Vect. | Faults | Detected | CPU(s) |

10 23 6,140 6,140 0.5
20 43 6,291,452 | 6,291,452 0.6

circuit C,, where the block is repeated n times is
N(C,) = N(Cp_1) x2+ 2. This simplifies to N(C))
= 3 x 2" — 2. We applied tests which detect every
slow-to-rise and slow-to-fall path faults in the circuit.
Table 2 shows the results. The number of blocks is
given first, followed by the number of tests applied.
The fault coverages obtained by our method and the
Pomeranz-Reddy method [7] had no error.

The tests were chosen in such a way that every test
pattern detected path faults originating from differ-
ent PIs. Hence, for every test pattern, the PIs that
originated at the paths being tested were new lines
and hence the Pomeranz-Reddy method worked cor-
rectly. But this is not always the case as we saw for
the benchmark circuits above and the improvement in
our method is very significant.

IV. CONCLUSION

Our linear complexity method of estimating the
coverage for path delay faults has good accuracy. We
compared our results with a fault simulator [3] to il-
lustrate the difference in their complexities. We also
compared our results with a fault estimator [7] to il-
lustrate the vast reduction in the error in estimating
the coverage. Only full scan circuits were considered
but the method can easily be extended to non-scan
synchronous circuits. We are currently investigat-
ing methods to compute fault coverage with zero er-
ror without increasing the complexity of the proposed
method.

ACKNOWLEDGMENT

The research reported here was supported by the
Center for Computer Aids for Industrial Productiv-
ity (CAIP), an Advanced Technology Center of the
New Jersey Commission on Science and Technology
at Rutgers University.

References

[1] P. Agrawal, V. D. Agrawal, and S. C. Seth.
Generating Tests for Delay Faults in Non-scan
Circuits. IEEE Design & Test of Computers,
10(1):20-28, March 1993.

[2] S. Bose, P. Agrawal, and V. D. Agrawal. Logic
Systems for Path Delay Test Generation. In Proc.
EURO-DAC, pages 200-205, September 1993.

[3] S. Bose, P. Agrawal, and V. D. Agrawal. Path
Delay Fault Simulation of Sequential Circuits.
Trans. VLSI Systems, 1(4):453-461, December
1993.

[4] T. J. Chakraborty, V. D. Agrawal, and M. L.
Bushnell. Delay Fault Models and Test Gener-
ation for Random Logic Sequential Circuits. In
Proc. Design Automation Conf., pages 165-172,
June 1992.

[6] T. Hayashi, K. Hatayama, K. Sato, and
T. Natabe. A Delay Test Generator for Logic
LSI. In Proc. IEEE International Conf. on Fault
Tolerant Computing (FTCS 14), pages 146-149,
June 1984.

[6] E. P. Hsieh, R. A. Rasmussen, L. J. Vidunas, and
W. T. Davis. Delay Test Generation. In Proc.
Design Automation Conf., pages 486-491, June
1977.

[7] I. Pomeranz and S. M. Reddy. An Efficient
Non-Enumerative Method to Estimate Path De-
lay Fault Coverage. In Proc. International Conf.

CAD, pages 560-566, November 1992.

[8] M. H. Schultz, F. Fink, and K. Fuchs. Parellel
Pattern Fault Simulation of Path Delay Faults.
In Proc. Design Automation Conf., pages 357—
363, June 1989.

[9] G. L. Smith. Model for Delay Faults Based Upon
Paths. In Proc. International Test Conf., pages
342-349, November 1985.

[10] J. Waicukauski, E. Lindbloom, B. K. Rosen, and
V. S. Iyengar. Transition Fault Simulation. IEEE
Design and Test of Computers, 4(2):32-38, April
1987.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

