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ABSTRACT 
As wireless platforms converge to multimedia systems, 
architectures must converge to support voice, data, and video 
applications. From a processor architecture perspective, support 
for signal processing (both audio and video), control code, and 
Java execution will be required in a convergent device. 
Traditionally, wireless communications systems have been 
implemented in hardware. Convergent devices must be able to 
roam seamlessly across multiple communications systems. To 
avoid excessive hardware costs, a Software Defined Radio (SDR) 
approach offers a programmable and dynamically reconfigurable 
method of reusing hardware to implement physical layer 
processing. In this paper, we discuss trends in wireless platforms 
which are inherently convergence platforms. We also present the 
Sandbridge state-of-the-art example platform that supports both 
communications and multimedia applications processing. The 
architecture efficiently executes Java, Digital Signal Processing 
(DSP), and control code. Architectural features that reduce power 
dissipation and enable real-time processing are described. All of 
the communications and multimedia processing is executed 
completely in software without specialized hardware support. The 
processor is programmed in C with supercomputer-class compiler 
support for automatic vectorization, multithreading, and DSP 
semantic analysis.   

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems] 
C.1.4 [Parallel Architectures] 

General Terms: Design, Performance 
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Software Defined Radio, Wireless, Digital Signal Processors 
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1. INTRODUCTION 
From the end-user point of view, a modern communications 
device has a color screen, a keyboard, an antenna, audio, and 
video. All these features require high computing capability at low 
power consumption. The performance requirements for mobile 
wireless communication devices have expanded dramatically from 
their inception as mobile telephones.  Consumers are demanding 
convergence devices with full data and voice integration as well 
as a variety of computationally intense features and applications 
such as web browsing, MP3 audio, and MPEG4 video. Moreover, 
consumers want these wireless subscriber services to be accessible 
at all times anywhere in the world. 

The technologies necessary to realize true broadband 
wireless handsets and systems present unique design challenges. 
Wireless handset manufacturers are challenged to deliver products 
that offer expanded services and operate transparently worldwide. 
Product designers are challenged to create extremely power 
efficient yet high-performance, broadband wireless devices. The 
design tradeoffs and implementation options inherent in meeting 
these demands highlight the extremely challenging requirements 
of next generation convergence processors.  

Power dissipation constraints are requiring new techniques at 
every stage of design - architecture, microarchitecture, software, 
algorithm design, logic design, circuit design, and process design. 
With performance requirements exploding as bandwidth demand 
increases, power conscious design becomes more difficult. 
System-on-a-chip (SOC) integration and low voltage process 
technologies will contribute to lower power SOC integrated 
circuits (ICs), but are insufficient as the only solution for 
streaming broadband applications.  

Convergence applications are fundamentally DSP 
applications. A large number of standards exist or have been 
proposed for the wireless and wired communication markets. 
Such a diversity of standards necessitates a programmable 
platform for their timely implementation. Traditional 
communications systems have typically been implemented using 
custom hardware solutions. Chip rate, symbol rate, and bit rate co-
processors are often coordinated by programmable DSPs but the 
DSP processor does not typically participate in computationally 
intensive tasks. Even with a single communication system, the 
hardware development cycle is onerous, often requiring multiple 
chip redesigns late into the certification process. When multiple 
communications systems requirements are considered, both 

7



silicon area and design validation are major inhibitors to 
commercial success.  Therefore, a software-based platform 
capable of dynamically reconfiguring communications systems 
enables elegant reuse of silicon area and dramatically reduces time 
to market by allowing multi-protocol support through software 
modifications instead of time consuming hardware redesigns. 
Such platforms have begun forming the basis for Software 
Defined Radio (SDR). 

The SDR Forum [1] defines five tiers of solutions: 
• Tier-0 is a traditional radio implementation in hardware. 
• Tier-1, Software Controlled Radio (SCR), implements 

the control features for multiple hardware elements in 
software. 

• Tier-2, Software Defined Radio (SDR), implements 
modulation and baseband processing in software but 
allows for multiple frequency fixed function RF 
hardware.  

• Tier-3, Ideal Software Radio (ISR), extends 
programmability through the RF with analog conversion 
at the antenna.  

• Tier-4, Ultimate Software Radio (USR), provides for 
fast (millisecond) transitions between communications 
protocols in addition to digital processing capability. 

The advantages of a reconfigurable SDR solution versus hardware 
solutions are significant. First, reconfigurable solutions are more 
flexible allowing multiple communication protocols to 
dynamically execute on the same transistors thereby reducing 
hardware costs. Specific functions such as filters, modulation 
schemes, encoders/decoders etc., can be reconfigured adaptively 
at run time. Second, several communication protocols can be 
efficiently stored in memory and coexist or execute concurrently. 
This significantly reduces the cost of the system for both the end 
user and the service provider. Third, remotely reconfigurable 
protocols provide simple and inexpensive software version control 
and feature upgrades. This allows service providers to 
differentiate products after the product is deployed. Fourth, the 
development time of new and existing communications protocols 
is significantly reduced providing an accelerated time to market. 
Development cycles are not limited by long and laborious 
hardware design cycles. With SDR, new protocols are quickly 
added as soon as the software is available for deployment. Fifth, 
SDR provides an attractive method of dealing with new standards 
releases while assuring backward compatibility with existing 
standards. Sixth, any defects found in the field can be fixed by 
changing the software, possibly even transparently to the user, 
without requiring a hardware change or a chip respin. 

In this paper we discuss trends in wireless platforms, which 
are inherently convergence platforms. We also present the 
Sandbridge state-of-the-art example platform that supports both 
communications and multimedia applications processing. The 
architecture efficiently executes Java, Digital Signal Processing 
(DSP), and control code. Architectural features that reduce power 
dissipation and enable real-time processing are described. All of 
the communications and multimedia processing is executed 
completely in software without specialized hardware support. The 
processor is programmed in C with supercomputer-class compiler 
support for automatic vectorization, multithreading, and DSP 
semantic analysis.  

2. HISTORICAL BACKGROUND 
The architecture of a computer system is the minimal set of 
properties that determine what programs will run and what results 
they will produce [2]. It is the contract between the programmer 
and the hardware. Every computer is an interpreter of its machine 
language – that representation of programs that resides in memory 
and is interpreted (executed) directly by the (host) hardware.  

The logical organization of a computer’s dataflow and 
controls is called the implementation or microarchitecture. The 
physical structure embodying the implementation is called the 
realization. The architecture describes what happens while the 
implementation describes how it is made to happen. Programs of 
the same architecture should run unchanged on different 
implementations. An architectural function is transparent if its 
implementation does not produce any architecturally visible side 
effects. An example of a non-transparent function is the load delay 
slot made visible due to pipeline effects. Generally, it is desirable 
to have transparent implementations. Most DSP and VLIW 
implementations are not transparent and therefore the 
implementation affects the architecture [3][4][5][6].  
 Execution predictability in DSP systems often precludes the 
use of many general-purpose design techniques (e.g. speculation, 
branch prediction, data caches, etc.). Instead, classical DSP 
architectures have developed a unique set of performance 
enhancing techniques that are optimized for their intended market. 
These techniques are characterized by hardware that supports 
efficient filtering, such as the ability to sustain three memory 
accesses per cycle (one instruction, one coefficient, and one data 
access). Sophisticated addressing modes such as bit-reversed and 
modulo addressing may also be provided. Multiple address units 
operate in parallel with the datapath to sustain the execution of the 
inner kernel. 
 In classical DSP architectures, the execution pipelines were 
visible to the programmer and necessarily shallow to allow 
assembly language optimization. This programming restriction 
encumbered implementations with tight timing constraints for 
both arithmetic execution and memory access. The key 
characteristic that separates modern DSP architectures from 
classical DSP architectures is the focus on compilability. Once the 
decision was made to focus the DSP design on programmer 
productivity, other constraining decisions could be relaxed. As a 
result, significantly longer pipelines with multiple cycles to access 
memory and multiple cycles to compute arithmetic operations 
could be utilized. This has yielded higher clock frequencies and 
higher performance DSPs. 
 In an attempt to exploit instruction level parallelism inherent 
in DSP applications, modern DSPs tend to use VLIW-like 
execution packets. This is partly driven by real-time requirements 
which require the worst-case execution time to be minimized. 
This is in contrast with general purpose CPUs which tend to 
minimize average execution times. With long pipelines and 
multiple instruction issue, the difficulties of attempting assembly 
language programming become apparent. Controlling instruction 
dependencies between upwards of 100 in-flight instructions is a 
non-trivial task for a programmer. This is exactly the area where a 
compiler excels.  
 A challenge of using VLIW processors includes large 
program executables (code bloat) that result from independently 
specifying every operation with a single instruction. As an 
example, a VLIW processor with a 32-bit basic instruction width 
requires 4 instructions, 128 bits, to specify 4 operations. A vector 
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encoding may compute many more operations in as little as 21 
bits (for example – multiply two 4-element vectors, saturate, 
accumulate, and saturate).  
 Another challenge of VLIW implementations is that they 
may require excessive write ports on register files. Because each 
instruction may specify a unique destination address and all the 
instructions are independent, a separate port must be provided for 
the target of each instruction. This can result in high power 
dissipation, which is unacceptable for handset applications. 
 A challenge of visible pipeline machines (e.g. most DSPs 
and VLIW processors) is interrupt response latency. Visible 
memory pipeline effects in highly parallel inner loops (e.g. a load 
instruction followed by another load instruction) are not typically 
interruptible because the processor state cannot be restored. This 
requires programmers to break apart loops so that worst case 
timings and maximum system latencies may be acceptable.  
Signal processing applications often require a mix of 
computational calculations and control processing. Control 
processing is often amenable to RISC-style architectures and is 
typically compiled directly from C code. Signal processing 
computations are characterized by multiply-accumulate intensive 
functions executed on fixed point vectors of moderate length. 
Therefore, a DSP requires support for such fixed point saturating 
computations. This has traditionally been implemented as one or 
more multiply accumulate (MAC) units. In addition, as the 
saturating arithmetic is non-associative, parallel execution of 
multiple data elements may result in different results from serial 
execution. This creates a challenge for high-level language 
implementations that specify integer modulo arithmetic. 
Therefore, most DSPs have been programmed using assembly 
language.  
 Multimedia adds additional requirements to the convergence 
processors. Video, in particular, requires high performance to 
allow the display of movies in real-time. An additional trend for 
multimedia applications is Java execution. Java provides a user 
friendly interface, support for productivity tools and games on the 
convergence device. 

The problems associated with previous approaches require a 
new architecture to facilitate efficient convergence applications 
processing. Sandbridge Technologies has developed a new 
approach that minimizes both hardware and software design 
challenges inherent in real-time streaming convergence 
applications. 

3. PROGRAMMING ENVIRONMENT 
Programmer productivity is also a major concern in streaming 
multimedia DSP and SDR convergence applications. Because 
most classical DSPs are programmed in assembly language, it 
takes a very large software effort to program an application. As an 
example, with modern speech coders it may take up to nine 
months or more before the application performance is known if 
they are coded in assembly language. Then, an intensive period of 
design verification ensues. If efficient high-level language 
compilers for DSPs are available, significant increases in software 
productivity and programming effort can be achieved.  
 A DSP compiler should be designed jointly with the 
architecture based on the intended application domain. Trade-offs 
are made between the architecture and compiler subject to the 
application performance, power, and price constraints.  

However, there are a number of issues that must be addressed in 
designing a DSP compiler. First, there is a fundamental mismatch 
between DSP datatypes and C language constructs. A basic 
datatype in DSPs is a saturating fractional fixed-point 
representation. C language constructs, however, define integer 
modulo arithmetic. This forces the programmer to explicitly 
program saturation operations. A DSP compiler must deconstruct 
and analyze the C code for the semantics of the operations 
represented and generate the underlying fixed point operations.  
 A second problem for compilers is that previous DSP 
architectures were not designed with compilability as a goal. To 
maintain minimal code size, multiple operations were issued from 
the same compound instruction. To reduce instruction storage, a 
common encoding was 16-bits for all instructions. Often, three 
operations could be issued from the same 16-bit instruction. 
While this is good for code density, orthogonality1 suffered. 
Classical DSPs imposed many restrictions on the combinations of 
operations and the dense encoding implied many special purpose 
registers. This resulted in severe restrictions for the compiler and 
poor code generation.  
 Early attempts to remove these restrictions used VLIW 
instruction set architectures with nearly full orthogonality. To 
issue four multiply accumulates requires at least four instructions 
(with additional load instructions to sustain throughput). This 
generality was required to give the compiler technology an 
opportunity to catch up with assembly language programmers. 
Because DSP C compilers have difficulty generating efficient 
code, extensions have been introduced to high level languages [7]. 
Typical additions may include special support for 16-bit datatypes 
(Q15 formats), saturating types, multiple memory spaces, and 
SIMD parallel execution. These additions often imply a special 
compiler and the code generated may not be emulated easily on 
multiple platforms. As a result, special language constructs have 
not been successful.  

Libraries 
Due to the programming burden of traditional DSPs, large 
libraries are typically built up over time. Often more than 1000 
functions are provided, including FIR filters, FFTs, convolutions, 
DCTs, and other computationally intensive kernels. The software 
burden to generate libraries is high but they can be reused for 
many applications. With this approach, control code can be 
programmed in C and the computationally intensive signal 
processing functions are called through these libraries. 

Intrinsic Functions 
Often, when programming in a high-level language such as C, a 
programmer would like to take advantage of a specific instruction 
available in an architecture but there is no mechanism for 
describing that instruction in C. For this case intrinsics were 
developed. In their rudimentary form, an intrinsic is an asm 
statement such as found in GCC.  
 An intrinsic function has the appearance of a function call in 
C source code, but is replaced during pre-processing by a 
programmer-specified sequence of lower-level instructions. The 
replacement specification is called the intrinsic substitution or 
simply the intrinsic. An intrinsic function is defined if an intrinsic 

                                                                 
1 Orthogonality is a property of instruction set architectures that allows 

any operation to be specified with any combination of other operations. 
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substitution specifies its replacement. The lower-level instructions 
resulting from the substitution are called intrinsic instructions [8]. 
 Intrinsics are used to collapse what may be more than ten 
lines of C code into a single DSP instruction. A typical math 
operation from the ETSI GSM EFR speech coder, L_add, is given 
as: 

/* GSM ETSI Saturating Add */ 
Word32 L_add( Word32 a, Word32 b ) { 
 Word32 c; 
 c = a + b; 
 if ((( a^b ) & MIN_32 ) == 0) { 
  if (( c^a) & MIN_32 ) { 
    c = (a < 0) ? MIN_32 : MAX_32; 
  } 
 } 
 return( c ); 
} 

Many DSPs use intrinsics to implement the L_add operation as a 
single instruction.  Early intrinsic efforts, like inlined asm 
statements, inhibited DSP compilers from optimizing code 
sequences [8]. A DSP C compiler could not distinguish the 
semantics and side effects of the assembly language constructs 
and this resulted in compiler scheduling hazards. Other solutions, 
which attempted to convey side-effect free instructions, have been 
proposed. These solutions all introduced architectural dependent 
modifications to the original C source.  
 Intrinsics which eliminated these barriers have been explored 
[8]. The main technique is to represent the operation in the 
intermediate representation of the compiler. With the semantics of 
each intrinsic well known to the intermediate format, 
optimizations with the intrinsic functions were easily enabled 
yielding speedups of more than 6x. 
 The main detractor of intrinsics is that it moves the assembly 
language programming burden to the compiler writers. More 
importantly, each new application may still need a new intrinsic 
library. This further constrains limited software resources. 

High-level DSP Compilation 
The above discussion focused on source-level semantic 
mismatches between C code and DSP operations. The solutions in 
the industry are not ideal. However, even after providing compiler 
solutions for the semantic gap, there is still the difficult challenge 
of implementing supercomputer-class optimizations in the 
compiler. 
In addition to classic compiler optimizations [10], there are some 
advanced optimizations which have proven significant for DSP 
applications. Software pipelining [11] in combination with 
aggressive inlining has proven effective in extracting the 
parallelism inherent in DSP applications. Interestingly, some DSP 
applications (speech coding for example) do not exhibit 
significant data dependence. A program that is data dependent 
will give significantly different execution times and execution 
paths through the program depending upon what data input the 
program receives. When programs are not heavily influenced by 
the dataset choice, profile directed optimizations may be effective 
at improving performance [12]. In profile driven optimization, the 
program is executed based on a set of data inputs. The results of 
the program and the execution path through the program are then 
fed back into the compiler. The compiler uses this information to 
group highly traversed paths into larger blocks of code which can 
then be optimized and parallelized. These techniques, when used 

with VLIW scheduling [13], have proven effective in DSP 
compilation. However, they still can be more than two times less 
efficient than assembly language programming. 

Another challenge DSP compiler writers face is parallelism 
extraction. Early VLIW machines alleviated the burden from the 
compiler by allowing full orthogonality of instruction selection. 
Unfortunately this led to code-bloat. General purpose machines 
have recognized the importance of DSP operations and have 
provided specialized SIMD instruction set extensions (e.g. 
MMX/SSE, Altivec, VIS). Unfortunately, compiler technology 
has not been effective in exploiting these instruction set 
extensions, and library functions are often the only efficient way 
to invoke them.   

Exploiting data parallelism is an important factor in 
optimizing for DSP applications. While both a VLIW and vector 
datapath can exploit such parallelism, extracting it from C code 
can be a difficult challenge. Most VLIW scheduling techniques 
focus on exploiting instruction level parallelism from code 
sequences. However, they do not exploit data parallelism. To do 
this, vectorizing compilers are needed. For a compiler to be able 
to vectorize loops coded in C, it may have to significantly reorder 
the loops either splitting or jamming them together, depending on 
the nesting depth. These techniques are typically only found in 
supercomputer compilers but they greatly assist in uncovering 
data parallelism from arbitrary C code. 

4. SANDBRIDGE SDR SOLUTION 
Sandbridge Technologies has designed an SDR processor capable 
of executing DSP, embedded control, and Java code in a single 
compound instruction set optimized for handset radio applications 
[17][18]. The Sandbridge Sandblaster® design overcomes the 
deficiencies of previous approaches by providing substantial 
parallelism and throughput for high-performance DSP 
applications, while maintaining fast interrupt response, high-level 
language programmability, and very low power dissipation. 

The microarchitecture of the Sandblaster® processor is 
multithreaded and all threads of execution operate simultaneously. 
An important point is that multiple copies (e.g. banks and/or 
modules) of memory are available for each thread to access. The 
Sandblaster® architecture supports multiple concurrent program 
execution by the use of hardware thread units (called contexts). 
The architecture supports up to eight concurrent hardware 
contexts. The architecture also supports multiple operations being 
issued from each context.  The Sandblaster® processor uses a 
unique form of multithreading called Token Triggered Threading 
(T3), which consumes much less power than other form of 
multithreading.  

The Sandbridge tools implement all of the expected standard 
optimizations but also extend the optimizations into areas that 
were previously only explored by supercomputing designers. 
Since applications are growing at more than a compounded 44% 
per year in terms of the number of lines of C code required, it is 
no longer feasible to consider building new systems from libraries 
or assembly coding techniques. The Sandbridge programming 
paradigm represents the first true standard high-level language 
compilable platform for convergence devices [14]. 
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Figure 1. Communications Systems Results as a Percentage of 
SB3010 utilization (600MHz processor) 

Figure 1 shows the results of a number of additional 
communications systems as a percentage of a 600MHz SB3010 
platform. Particularly, 802.11b, GPS, GPRS, AM/FM radio, and 
Bluetooth, and WCDMA are shown. A notable point is that all 
these communications systems are written in generic C code with 
no hardware acceleration required. It is also notable that 
performance, accuracy, and concurrency can be dynamically 
adjusted based on the mix of tasks desired. 

We have also run multimedia benchmarks such as H.264, 
MPEG4, and MP3 on the SB3010. The total utilization for CIF 
images is typically less than 5% of an SB3010 platform. 
Convergence devices should dynamically adapt to multiple coding 
schemes for both communications and multimedia standards. The 
SB3010 platform provides precisely this dynamic adaptation.  

Figure 2 shows the SB3010TM baseband chip. It contains 
four Sandblaster® cores and an ARM microcontroller that 
functions as an applications processor. It also contains a number 
of internal digital peripheral interfaces for moving data in and out 
of the chip such as AD/DA for Tx and Rx data, TDM ports, and 
an AMBA bus. A high-speed Universal Serial Bus (USB) 
provides easy connectivity to external systems. Control and test 
busses such as JTAG, SPI, and I2C allow the chip to control RF 
and front end chips. 

Silicon for the chip is available and fully functional. It runs 
at up to 800MHz per core providing more than 12 GMACs per 
chip. Measured results for a synthesized version of this chip have 
achieved 600MHz operation at 0.9V. The typical power 
dissipation is 150mW providing the most power efficient 
processor design in its class. 

In addition to processor chips, Sandbridge also provides 
reference designs including digital and RF boards.  Figure 3 
shows the SB3010 digital board. The development platform 
comes enabled with 8MB of external SRAM, 32MB of external 
Flash, and 256MB of external SDRAM. Other peripherals include 
USB host and client interfaces with “On-the-Go” capabilities, 
AC-97 with Microphone and S/PDIF, IrDA, UARTs, LCD, PS2, 
Keypad, SD Card, MMC card, and Ethernet.  

The entire SB3010 Digital Card is powered from a single 
120-240V wall adaptor and attaches to any PC or laptop through a 
single USB connection. The software that runs on the card is 
unmodified from the software that executes in the simulation 
environment. It is identical from a programmer’s perspective. The 
Sandbridge runtime takes care of all of the administrative chores 
associated with loading and executing programs. The card can 

also be used stand-alone. A full Linux suite is available on the 
onboard ARM with built-in LCD controller. 
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Figure 2.   SDR SB3010 Baseband Processor 

    

 

Figure 3. SB3010 Digital Card 

  

5. Summary 
As wireless platforms converge to multimedia systems, 
architectures must converge to support voice, data, and video 
applications. These convergent devices must be able to roam 
seamlessly across multiple communications systems. To avoid 
excessive hardware costs, a Software Defined Radio (SDR) 
approach offers a programmable and dynamically reconfigurable 
method of reusing hardware to implement physical layer 
processing. To achieve software implementations of 
communications systems a number of fundamental problems must 
be addressed. Streaming multimedia systems are inherently DSP 
systems. Power efficiency of DSP systems has been a concern 
when contrasted with hardware implementations. However, the 
extensive choices of communications systems have made the 
complexity of hardware designs intractable. This makes SDR 
solutions attractive but previous software programming 
environments have been highly labor intensive, traditionally 
resulting in assembly language coding which may also be 
intractable when multiple communications systems are 
considered.  
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Sandbridge Technologies has introduced a completely new and 
scalable design methodology for implementing multiple 
communications systems on a single SDR chip. Using a unique 
multithreaded architecture specifically designed to reduce power 
consumption, efficient broadband communications operations are 
executed on a programmable platform. 
 The processor is combined with a highly optimizing  
vectorizing compiler with the ability to automatically analyze 
programs and generate DSP instructions. The compiler also 
automatically parallelizes and multithreads programs. This 
obviates the need for assembly language programming and 
significantly accelerates time-to-market for streaming multimode 
multimedia convergence systems. 
 To validate our approach, we implemented a number of 
communication physical layers  and multimedia systems including 
H.264, MPEG4, MP3, WCDMA, 802.11b, GSM/GPRS, and 
GPS.  

In addition to the software design, we also built RF cards for 
each communications system. With a complete system, we 
execute RF to IF to baseband and reverse uplink processing in our 
lab. Silicon is available for the SB3010 platform and our 
measurements confirm that our communications and multimedia 
designs execute within field conformance requirements in real 
time completely in software. 
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