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Abstract—We propose a fast clock skew scheduling

algorithm which minimizes clock period and enlarges

the slacks of timing critical paths. To reduce the run-

time of the timing analysis engine, our algorithm al-

lows the sequential graph to be partly extracted. And

the runtime of itself is almost linear to the size of

the extracted sequential graph. Experimental results

show its runtime is less than a minute for a design

with more than ten thousands of flip-flops.

I. Introduction

Clock skew scheduling (CSS) is originally proposed to
minimize the clock period[7, 6, 9, 12]. Later, its func-
tionality is extended to slack optimization[13, 4, 8]. By
increasing the slacks of critical paths, the permissible vari-
ations of clock arrival times are enlarged, which makes the
chip more tolerant to process variations.

Currently, the best theoretical time bound for min-
imizing the clock period is O(jm + j2n)[12], where
m(respectively, n) is the number of arcs(respectively,
nodes) in the graph and j is the maximum number of dis-
tinct edges in a shortest trail in the graph. In most cases,
j can be regarded as a small constant, so the runtime is
almost linear to the size of the graph. The best theoretical
time bound for slack optimization is O(nm + n2 log n)[4].

Besides the runtime of CSS algorithms, the time for
generating sequential graphs is also a noticeable overhead.
The sequential graphs are generated by timing analysis
engines as inputs for CSS algorithms. In the sequential
graph, the paths between each pair of flip-flops are mod-
eled as an arc and the maximum delay of the paths is the
weight of the arc.

Recently, Albrecht[2] indicated that the extraction of
sequential graph is time-consuming and implemented a
CSS algorithm which allows the path delays to be ex-
tracted on demand. As additional input, the maximum
delay of any outgoing combinational path from each flip-
flop is calculated beforehand. And during the execution
of the CSS algorithm, the necessary arc weights are got
through callbacks to the timing analysis engine. Since

many timing noncritical paths do not affect the CSS re-
sult, the weights of many arcs do not need extracting.
Thus the runtime of timing analysis engine is reduced.
Albrecht’s algorithm does not consider the slack optimiza-
tion problem. It only minimizes the clock period and the
time complexity is O(nm + n2 log n).

We propose a new algorithm for slack optimization. It
has two important features which are only achieved in pe-
riod minimization algorithms currently: near-linear time
complexity and on demand path delay extraction.

In our algorithm, we use discrete values, i.e. integers, to
measure the arc weights and clock delays. Using integers
simplifies the design and analysis of our algorithm, but
also introduce error. However, RC estimation and timing
analysis also introduce error unavoidably, especially for
pre-route designs. If we choose a small enough time unit,
the error due todiscrete values will be ignorable compared
to other unavoidable error.

After CSS, if the resulted clock delays are changed by
smaller amounts, they are easier to be implemented by the
clock tree synthesis tool. Our algorithm can be extended
to reduce the total adjustment to the clock delays.

The rest of this paper is organized as follows. Section 2
gives formal definitions of the clock period minimization
problem and the slack optimization problem. Section 3
describes our algorithm. Section 4 analyzes our algorithm
theoretically. Section 5 discusses an extension to reduce
the implementation cost. Section 6 presents experimental
results. Section 7 concludes this paper.

II. Problem Formulation

A synchronous circuit with edge-triggered storage ele-
ments (flip-flops) is modeled as a sequential graph G(V, E)
which is strongly connected. In the sequential graph, each
node represents a flip-flop and each arc represents the
paths between a pair of flip-flops. Each flip-flop has its
own clock delay, i.e., the propagation delay from the clock
source to the clock pin of the flip-flop.

Due to space limitations, we ignore the hold time con-
straints related to the minimum delays of paths, though
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Fig. 1. Clock skew scheduling with discrete values

our algorithm can be easily extended to consider them.
Thus only the maximum delays are associated with the
arcs as their weights. The setup times of flip-flops are not
modeled because they can be added to the delays of the
paths. The slack of an arc is calculated as:

slack(eu,v) = Tp − l(u) − w(eu,v) + l(v)

where the Tp denotes the clock period, w(eu,v) denotes
the weight of the arc eu,v and l(v) denotes the clock delay
of the node v. In this paper, we assume they are integers,
that is, integral times of a given delay unit.

The problem of minimizing the clock period Tp through
CSS is formulated as finding an optimal clock schedule l
such that:

∀e : slack(e) ≥ 0 (1)
Tp → min

It can be proven that the minimum clock period achiev-
able by CSS is equal to the mean weight of the critical
cycle (also known as the maximum mean cycle, or MMC
for short) in G(V, E)[10, 14]. When the optimal clock
schedule l equalizes the slacks of the arcs in the MMC,
the feasible clock period is minimized. So the clock pe-
riod minimization problem is also referred as the MMC
balancing problem.

When the path delays and clock delays are discrete val-
ues, the slacks of the arcs in the MMC can not be fully
equalized. Fig. 1 illustrates this, where clock delay is
marked near each node and weight/slack is marked near
each arc. With clock delays measured with integers, Tp is
minimized when there is such a cycle c:

∀e ∈ c : slack(e) ≤ 1 ∧ ∃e ∈ c : slack(e) = 0 (2)

If the delays are measured with real numbers, Tp can
be further reduced by no more than one delay unit. But
this advancement is ignorable when the delay unit is small
enough.

After Tp is minimized, clock delays can be further
scheduled for slack optimization. By placing l(v) at the
middle of its feasible range, the slacks of the incoming
paths and outgoing paths are balanced and thus the slacks
of the critical paths are increased. In practice, l(v) does
not have to be at the middle when the slacks are large

Procedure BalanceMMC ( Tp, G(V, E) )

Input: Tp: the initial clock period.

G(V, E): the sequential graph.

Output: Tcycle: the minimized clock period.

G′: the critical subgraph.

1. while (true)

2. if ({e|slack(e) = 0} = ∅)
3. Tp = Tp − 1

4. calculate {w(ev,w)|Tp ≥ W (v) ≥ Tp − 1}
5. continue

6. //compute critical arcs of G yielding the subgraph G′

7. E′ = {e|slack(e) = 0 ∨ slack(e) = 1}
8. V ′ = {v|∃u : eu,v ∈ E′ ∨ ev,u ∈ E′}
9. G′ = (V ′, E′)

10. V ′
r = {v|v ∈ V ′ ∧ ∀u : eu,v /∈ E′}; V ′

h = V ′ − V ′
r

11. if (G′ contains a cycle c)

12. return (Tp, G′) //the MMC is balanced

13. //compute the increment budget for each vertex

14. EB = {ev,x|v ∈ V ′ ∧ x /∈ V ′}
15. calculate {w(e)|e ∈ EB}
16. foreach v ∈ V ′

h in reversed topological order

17. θ(v) = min{{slack(ev,x) − 1|ev,x ∈ EB} ∪
18. {max(0, θ(w) + slack(ev,w) − 1)|ev,w ∈ E′}}
19. //increase the clock delay for each vertex

20. foreach v ∈ V ′
r : Δ(v) = 0

21. foreach v ∈ V ′
h in topological order

22. Δ(v) = min(θ(v), max{Δ(u) + 1 − slack(eu,v)|eu,v ∈ E′})
23. foreach v ∈ V ′

h : l(v) = l(v) + Δ(v)

Fig. 2. Pseudo code of our MMC balancing algorithm

enough. So the slack optimization problem is formulated
as finding an optimal clock schedule l for a given margin
m such that:

∀v : |min{M(eu,v)} − min{M(ev,w)}| ≤ 1 (3)
where M(e) = min(m, slack(e))

Because of the discrete delays, it may be impossible that
the minimum slack of the incoming arcs equals that of the
outgoing paths. So we just require that their difference is
no larger than one delay unit.

III. Algorithms

We proposed an algorithm named extensive slack
balancing[14] which can utilize a MMC balancing algo-
rithm to solve the slack optimization problem. It is based
on a simple observation: when the most critical circle is
balanced, if we “isolate” it out of the graph, the second
most critical circle will become the most critical one and
get balanced.

We follow this approach. First we propose a MMC bal-
ancing algorithm, and then we give a refined version of
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the extensive slack balancing algorithm[14] and incorpo-
rate the MMC balancing algorithm into it.

Our MMC balancing algorithm is inspired by Burns’
algorithm[3, 11], whose time complexity is O(n2m). How-
ever, the details are diverse because of the discrete delays
and the need for on demand path delay extraction. The
time complexity is also reduced. The basic idea is: tak-
ing the arcs whose slacks are 0 or 1 as the critical arcs,
we incrementally change clock delays to increase the zero
slacks until they are all ones. Then Tp is decreased by
one, which changes the slacks to be 0 again. The algo-
rithm iterates until the critical arcs construct at least one
cycle.

Pseudo code of our MMC balancing algorithm is shown
in Fig. 2. Line 2-5 ensures there is at least one zero-
slack arc. Line 7-10 computes the critical subgraph which
contains the critical arcs whose slacks are 0 or 1. The
arcs with zero slacks will be optimized by increasing the
clock delays of their heads. The arcs whose slacks are
1 will keep their slacks unchanged. V ′

r and V ′
h are the

set of roots and the set of heads in the critical subgraph,
respectively. Line 14-18 computes θ, the maximum pos-
sible increment for each head. EB are the bordering arcs
whose slacks are greater than one. They will sacrifice their
slacks to the zero-slack arcs. θ can be viewed as budgets.
The increment of clock delay to each node is not allowed
to exceed its budget, so that no negative nor zero slacks
are created in EB or E′. Line 20-23 computes the real
increment of each head according to its budget and the
requirement of its proceeding critical arcs. To minimize
the total increment, the clock delays are increased “just
enough”.

Like Albrecht’s approach[2], the maximum delay of any
outgoing combinational path from each flip-flop, which
is denoted as W (v) in Fig. 2, is calculated beforehand.
During the iteration of BalanceMMC, the delays of indi-
vidual arcs are calculated by the timing analysis engine
when necessary (Line 4 and 15).

Fig. 3 illustrates one iteration of the loop body in Bal-
anceMMC. Fig. 3(a) shows the initial status. The critical
arcs are drawn in bold lines and the slacks are marked
near arcs. In Fig. 3(b) and Fig. 3(c), the budgets and
clock delays are calculated and marked near the nodes,
respectively.

Although BalanceMMC can work fine with the original
extensive slack balance algorithm, we choose to refine the
original algorithm to eliminate its inefficiency and allow
on demand path delay extraction. The refined version is
shown in Fig. 4.

Firstly, when BalanceMMC terminates, there may be
multiple cycles in G′. It is inefficient to discover and iso-
late the cycles one by one. So we just discover and isolate
each nontrivial strongly connected component (SCC) in
G′. Each SCC may have multiple cycles. The directed
graph G′ can be decomposed into its SCCs in O(n + m)
time[5].
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Fig. 3. An iteration of BalanceMMC

Secondly, before the original algorithm terminates, it
undoes the topological and parametric changes which are
made when isolating the MMCs. This is not necessary
because a CSS algorithm outputs only the clock delays of
the nodes in the original graph. In our refined version the
changes are not undone and the clock delays are given by
the procedure ClockDelay after the algorithm terminates.

Thirdly, we add to IsolateSCC the feature of on demand
path delay extraction. Intuitively, IsolateSCC packs a
SCC c into a single node n. The arcs connecting the nodes
in c to other nodes are replaced with arcs connecting n.
IsolateSCC invokes the timing analysis engine to ensure
that the slacks of the new arcs are conservative (Line 6
and 10):

slack(eu,n) = min{slack(eu,v)|v ∈ Vc} (4)
slack(en,w) = min{slack(ev,w)|v ∈ Vc} (5)

P maps each node in the isolated SCC to the new node
n. It helps the calculation of the clock delays of the nodes
in the original graph.

Fig. 5 shows the process of performing ExtensiveSlack-
Balance on a sequential graph. In Fig. 5, the clock delay
is marked near each node and weight/slack is marked near
each arc. And the critical arcs are drawn in bold lines.

IV. Theoretical Analysis

In this section we prove the correctness and effective-
ness of our algorithms.

In BalanceMMC, only the computation of E′ (Line 7)
may need the weights of all arcs. To ensure on demand
delay extraction is correct, we first prove E′ can be cor-
rectly computed with only known arc weights.

Theorem 1. During the progress of BalanceMMC, if the
weight of an arc eu,v is unknown, then slack(eu,v) > 1.

Proof. If w(eu,v) ≥ Tp − 1, w(eu,v) is known (line 4). If
l(u) is non-zero, w(eu,v) is known (line 14-15). So if the
weight of an arc eu,v is unknown, there are

w(eu,v) < Tp − 1
l(u) = 0
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Procedure ExtensiveSlackBalance( G(V, E), m, Tp )

Input: G(V, E): the sequential graph. m: the margin for slack

optimization. Tp: the initial clock period.

Output: l: the clock delay offset for each node. P : the map from

a deleted node to the node which it is packed into.

1. assert Tp > max{W (v)}
2. TS = Tp − m

3. foreach v ∈ V : P (v) = NIL

4. while (true)

5. (Tp, G′)=BalanceMMC (Tp, G);

6. if (Tp ≤ TS) return

7. foreach scc in G′: G=IsolateSCC (G, scc);

Procedure IsolateSCC ( G, c )

Input: G: the sequential graph.

c: a strongly connected component in G.

Output: G: the changed sequential graph.

1. create new node n; l(n) = 0

2. Vc = {v|∃ev,w ∈ c}; Edel = {eu,v |u ∈ Vc ∨ v ∈ Vc}
3. foreach v ∈ Vc: P (v) = n

4. foreach u ∈ Vs = {u|∃v : eu,v ∈ E ∧ u /∈ Vc ∧ v ∈ Vc}
5. create arc eu,n

6. calculate s = min{slack(eu,v)|v ∈ Vc}
7. w(eu,n) = Tp − s − l(u)

8. foreach w ∈ Ve = {w|∃v : ev,w ∈ E ∧ w /∈ Vc ∧ v ∈ Vc}
9. create arc en,w

10. calculate s = min{slack(ev,w)|v ∈ Vc}
11. w(en,w) = Tp − s + l(w)

12. delete the arcs Edel and the nodes Vc from G

13. return G

Procedure ClockDelay( v )

1. delay = l(v)

2. while (P (v) �= NIL)

3. v = P (v); delay = delay + l(v)

4. return delay

Fig. 4. Pseudo code of the refined ExtensiveSlackBalance

And BalanceMMC never decrease l(v):
l(v) ≥ 0

So we have
slack(eu,v) = Tp − l(u) − w(eu,v) + l(v) > 1

Then we prove BalanceMMC finds and balances the
MMC eventually. Two lemmas should be proven before-
hand.

Lemma 2. After the increment of l(v) in each iteration,
the slacks of arcs in E′ are not decreased, and the slacks
of the arcs out of E′ will be no smaller than one.

Proof. If eu,v /∈ E′ ∪ EB , then before increment
slack(eu,v) > 1 (line 7) and the clock delays of u and
v are not changed, so after increment slack(eu,v) > 1.
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(a) the initial graph. (b) after BalanceMMC, clock delays of two
nodes are adjusted and the MMC is A-D-F. (c) IsolateSCC packs
A-D-F into vertex H. (d) after the second call of BalanceMMC, the
MMC is H-E-G. (e) after the second call of IsolateSCC, the MMC
H-E-G is packed into I. (f) after the third call of BalanceMMC.

Fig. 5. The progress of ExtensiveSlackBalance

If eu,v ∈ EB , then θ(u) ≤ slack(e) − 1 (line 17) and
Δ(u) ≤ θ(u) (line 22), so after the increment of l(u) (line
23), slack(e) ≥ 1.

If eu,v ∈ E′, then θ(u) ≤ θ(v) (line 18) and thus Δ(u) ≤
Δ(v) (line 22), so after the increment of l(u) and l(v),
slack(e) is not decreased.

Lemma 3. The set of zero-slack heads, VS0, is defined
as {v|∃u : slack(eu,v) = 0}. And the level of a node v in
VS0 is defined as the maximum number of the zero-slack
heads on a trail in G′ starting from v. At each iteration
of BalanceMMC, if no MMC is found and returned, L =
max{level(v)|v ∈ VS0} is decreased by at least one.

Proof. Let Vf = {v|v ∈ V ′ ∧ ∀w : ev,w /∈ E′}. No MMC
is found, so Vf 
= ∅.

Because ∀e ∈ EB : slack(e) ≥ 2, we have

min{slack(ev,x) − 1|ev,x ∈ EB} ≥ 1 (6)

and thus
∀v ∈ Vf : θ(v) ≥ 1 (7)

Let z denote a zero-slack head whose level is 1. Let ey,z

denote any critical path with zero-slack that ending at z.
From (6) and (7), we know θ(z) ≥ 1, and thus:

0 ≤ Δ(y) ≤ θ(y) ≤ θ(z) − 1
Δ(z) = min(θ(z), Δ(y) + 1) = Δ(y) + 1 (8)

Because of (8), slack(ey,z) will be 1 after the increment
of l(y) and l(z). And from Lemma 2 we know no zero-
slack heads are created. So L is decreased by at least
one.

Theorem 4. BalanceMMC terminates when it finds a
strongly connected component c, which satisfies

∀e ∈ c : slack(e) = 0 ∨ slack(e) = 1. (9)
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Proof. Because of Lemma 3, if the critical subgraph does
not contain a cycle, after finite iterations, Tp is decreased
by one. When the difference between Tp and the average
weight of the arcs in some SCC is less than 1, the slacks of
the arcs are 1 or 0 because ∀e : slack(e) ≥ 0 (Lemma 2).
Then at the next iteration, the SCC will be a part of the
critical subgraph, which terminates BalanceMMC.

It is worth noting that BalanceMMC may find a
strongly connected component where the slacks are all
ones when zero-slack arcs still exist. In other words, it
may terminate when finding a cycle with arcs whose mean
weight is not exactly the maximum. This penalty in pre-
cision is the cost of using discrete values. Fortunately, the
zero-slack arcs will get optimized in the subsequent calls
of BalanceMMC.

Next we will prove ExtensiveSlackBalance solves the
slack optimization problem.

Theorem 5. When ExtensiveSlackBalancing terminates,
(3) holds if the slacks are calculated with the initial value
of Tp.

Proof. When it terminates, for a existing node u, there is

slack(ex,u) ≥ m ∧ slack(eu,y) ≥ m

So (3) holds.
For a deleted node v, before the invoking of the Iso-

lateSCC which deletes it, it belongs to a cycle. Due to
Theorem 4, (3) holds when v is deleted. Due to (4) and
(5), (3) holds for the initial graph.

Theorem 6. The complexity of ExtensiveSlackBalance
is O(kTpm

′). k represents the maximum possible value of
L = max{level(v)|v ∈ VS0} for any critical subgraph G′

during the execution. m′ denotes the number of the edges
which is ever in the critical subgraph.

Proof. We say an iteration of the loop in BalanceMMC
is trivial when it returns Tp. Because of Lemma 3, if no
cycle is found, after k nontrivial iterations of the loop
in BalanceMMC, Tp is decreased by one. And trivial it-
erations are less than nontrivial iterations because Iso-
lateSCC removes all the cycles. So the total iteration
count is O(2k(Tp − TS)) ∼ O(kTp).

The cost of each iteration of the loop in BalanceMMC
is O(m′). The cost of all the invokings of IsolateSCC is
also O(m′). So the total time complexity of ExtensiveS-
lackBalance is O(kTpm

′).

In real circuits, Tp has bounded values and in our ex-
periments k is no larger than 8. We believe k is a small
number in most cases. So the runtime of our algorithm is
almost linear to the size of the extracted critical subgraph.
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Fig. 6. The distribution curve of non-zero clock delays (slack
optimization for the b19 testcase)

V. Extension

In most cases, the clock delays of many flip-flops keep
zero after CSS because many paths are not timing criti-
cal. A clock schedule which makes small adjustments to
the clock delays is easier to implement because the clock
delays are close to zero. The solution of the slack opti-
mization problem is not unique. A solution with small
adjustments is preferred. The sum of difference between
the obtained clock delay after CSS and the target clock
delay for every flip-flop is defined as the cost of CSS[15].
We use zero as the target clock delay in this paper, so the
cost is

∑ |l(v)|.
BalanceMMC is not cost-efficient. It only increases the

clock delays and never decreases them, so the slacks of
the noncritical arcs which end at the nodes in G′ are not
utilized. If BalanceMMC takes advantage of both incre-
ment and decrement, it can generate a clock schedule with
smaller cost.

In fact, the loop body of BalanceMMC can be eas-
ily modified to be decrement-only: in its loop body just
reversely interpret the direction of each arc and the sign
of each clock delay. So if BalanceMMC executes its orig-
inal loop body and this reversed version interleavingly, it
can utilize the slacks at both directions. Our experiments
show that this extension can reduce the cost remarkably
(see Fig. 6).

VI. Experimental Results

We choose seven testcases from the IWLS 2005
benchmarks[1]. Table I shows their characteristics. Our
algorithm is written in Java and runs on a 2.0GHz
Opteron processor. The Burns’ algorithm[3, 11], our algo-
rithm and its extension are used to solve the MMC balanc-
ing problem and the slack optimization problem for these
testcases. The delay unit is 5ps, which is reasonably small
considering that the timing differences between pre-layout
and post-layout designs are usually tens of picoseconds.
The results are shown in Table II.

The full sequential graphs are extracted by Synopsys
PrimeTime. Currently we query arc weights from the se-
quential graphs to emulate the callbacks to PrimeTime.
The presented runtime does not include the time for tim-
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TABLE II
The results of experiments

MMC balancing Slack optimization (m = TMAX − TMMC + 100ps)
id Burns ours ours ext Burns ours ours ext

rt cost rt %arc cost k rt %arc cost k rt cost rt %arc cost k rt %arc cost k
1 38.8 5.1 0.7 31.4 4.1 3 0.6 42.0 2.0 2 165.4 187.3 17.0 76.5 204.0 6 11.1 92.7 30.5 6
2 50.3 4.0 0.7 7.4 2.7 2 0.8 13.0 1.0 1 358.9 338.7 30.5 67.8 316.8 5 20.1 83.8 95.4 5
3 422.6 64.2 5.1 29.8 59.4 2 4.8 44.3 28.2 4 956.1 463.1 64.9 50.1 477.3 7 46.9 58.7 106.1 4
4 16.6 53.5 8.8 6.0 45.9 2 8.5 12.9 14.7 2 95.8 778.3 17.1 24.0 748.8 3 14.6 86.8 228.0 3
5 3.9 1.2 0.1 4.5 0.01 1 0.1 9.5 0.01 1 29.7 373.6 4.2 36.2 353.0 4 3.9 93.6 190.2 7
6 3.6 22.3 0.3 42.0 22.4 2 0.3 62.0 7.6 2 10.13 285.0 2.2 67.1 274.2 8 1.2 90.0 42.7 5
7 39.8 8.9 0.3 11.9 3.4 2 0.2 7.2 0.01 2 124.3 311.8 10.5 80.1 299.0 7 8.3 65.5 65.6 7

Burns: the Burns’ algorithm ours: our algorithm ours ext: our algorithm with the extension
rt: runtime of the algorithm (in second) %arc: the percentage of the arcs whose weights are queried.

cost: the sum of the obsolete values of the clock delays (in ns)

TABLE I
The characteristics of testcases

id name #nodes #arcs Ext TMAX TMMC

1 b17 1432 167077 746 1968 1951
2 b18 3306 395432 2818 2783 2765
3 b19 6604 791300 5034 3356 3290
4 ethernet 10580 252306 813 2223 1655
5 pci bridge 3427 83086 118 1367 1315
6 usb fuct 1785 26374 26 1353 1283
7 DMA 2279 129089 347 1378 1369

Ext: runtime of the extraction of the sequential graph (in second)
TMAX : maximum delay of all the paths (in ps)

TMMC : maximum mean delay of the cycles (in ps)

ing analysis. Instead, we use the percentage of the arcs
which have ever been queried to represent the runtime for
timing analysis.

The runtime of our algorithm is much shorter than the
time for timing analysis. The maximum of the parameter
k in the experiments is only 8. The experiments also
show k is independent of the circuit size, so we believe in
larger circuits, it is still a small number. This strengthens
our confidence of the near-linear time complexity of our
algorithm. Thus for larger circuits, its runtime is still
expected to be shorter than that for timing analysis.

When the decrement of Tp is small, that is, the differ-
ence between TMAX and TMMC is small, the reduction
of the runtime in path delay extraction is remarkable be-
cause only a small portion of the arc weights need ex-
tracting. When the decrement of Tp is large, almost all
the arc weights are extracted, so the reduction in runtime
is limited.

The extension of our algorithm reduces the cost dra-
matically. However, it needs more arc weights extracted
to work.

VII. Conclusion

We propose a novel clock skew scheduling algorithm
for clock period minimization and slack optimization. Its
advantages are three folds: (1) it is fast in theory (almost
linear) and in practice, (2) it allows on demand delay
extraction, (3) it both increases and decreases the clock
delays to reduce the cost.
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