
Control-Flow Aware Communication and Conflict Analysis of

Parallel Processes∗

Axel Siebenborn1, Alexander Viehl1, Oliver Bringmann1, Wolfgang Rosenstiel1,2

1FZI Forschungszentrum Informatik

Haid-und-Neu-Str. 10-14

76131 Karlsruhe, Germany

[siebenbo,viehl,bringman]@fzi.de

2Universität Tübingen

Sand 13

72076 Tübingen, Germany

rosenstiel@informatik.uni-tuebingen.de

ABSTRACT

In this paper, we present an approach for control-flow aware
communication and conflict analysis of systems of parallel com-
municating processes. This approach allows to determine the
global timing behavior of such a system and to detect commu-
nication that might produce conflicts on shared communication
resources. Furthermore, we show the incorporation of temporal
environment models in order to analyze their influence on the sys-
tem behavior. Based on the determined conflicts, an automated
allocation and binding approach for shared resources to resolve
potential access conflicts is proposed. All analysis steps can be
performed starting with a TLM SystemC model of the entire sys-
tem without any need for user interaction. Finally, a SystemC
model of a Viterbi decoder is used as case study to demonstrate
the capability of our approach.

I. INTRODUCTION

The complexity of systems is steadily increasing and already
today, there are designs integrating more than one processor core
with different instruction sets, various interfaces, memories and
specialized hardware onto a single chip. Already today, the in-
terconnection and communication of the components is a key is-
sue in the design of such systems. Many embedded systems are
composed of different processors and communicate via shared re-
sources. Embedded systems interact with their environment un-
der more or less hard timing constraints. The communication in
such systems has a strong influence on the global timing behav-
ior. Methods are needed to analyze timing properties, average
throughput, as well as worst case response time (WCRT). Cur-
rently, analysis of such systems is usually performed by simula-
tion with the issue of incomplete coverage. Formal methods are
needed to identify the corner cases.

This paper describes new methods for formal analysis of
safety-critical embedded applications with hard time constraints
executed on multiple processors. These systems are usually stat-
ically scheduled and do not allow task preemption. However, a
static schedule can be included as a process by our analysis meth-
ods. Unlike other approaches that operate on task graphs, our
analysis approach can be applied directly on a given SystemC
model as functional representation of the entire system without
any user interaction.The influence of blocking communication
on the timing of the system is considered by identifying syn-
chronizing communication and by determining the time a pro-
cess is stalled at such a communication. With this knowledge,

∗This work was partially supported by the BMBF project VISION under grant

01M3078B and by the DFG project “Communication Analysis for Network-on-

Chip” under grant BR 2321/1-1

the response time of the system can be determined. Whereas the
environment of the system plays an important role the integra-
tion of temporal environment models into our analysis methods
is another important issue. Conflicting access to shared com-
munication resources imposes a major problem on the determi-
nation of the timing of a system. This paper presents a new
approach that allows the determination of potential conflicts on
shared ressources and the avoidance by a conflict free binding
of communication to ressources. A major part of this paper will
be the detailed demonstration of our methods on the model of a
Viterbi decoder.

The following section will review existing approaches from lit-
erature. In Section III, we present our method for communication
analysis. In Section IV, the modeling of the system environment
is discussed including the well established event models. In Sec-
tion V, we present a method to determine conflicting access to
shared resources and the conflict-free binding of abstract commu-
nication to communication resources. Finally, we demonstrate the
applicability of our methods on the SystemC model of a Viterbi
decoder in Section VI.

II. RELATED WORK

Existing approaches on communication analysis can be dis-
tinguished depending on the underlying model of computation
and the addressed application domain. Many approaches intro-
duced in the area of distributed software systems for modeling and
analysing of concurrent, communicating systems are based on
Petri nets, process algebras and communicating automata. Petri
nets provide a universal technique for modeling concurrent sys-
tems. While early approaches are mainly simulation-based, mod-
ern approaches use efficient analysis techniques which are able
to cope with timed Petri nets [8, 14]. However, the applied com-
munication types have to be modeled implicitly. Otherwise, com-
munication analysis is performed without knowledge on concrete
communication types, the control-flow of the processes and com-
munication channels using corresponding places and transitions.
A promising method for analyzing worst case timing behavior
of concurrent systems is based on communicating automata [12],
an extension to timed automata [1, 2]. However, these methods
rely on totally synchronous communication. This quite restric-
tive model reduces the possible degree of concurrency and is not
realistic for communication with buffering and latencies of the
communication channel.

Several approaches exist tailored to the requirements of real-
time systems. Here, we have to distinguish between a parallel
execution of the specified processes on dedicated resources and
a sequential execution of the processes on a single processor us-

1-4244-0630-7/07/$20.00 ©2007 IEEE.

1B-1

32

ing task scheduling. The combination of both aspects are tackled
by an approach [15] addressing parallel and distributed real-time
systems, where all specified processes have to be mapped onto
several processing elements. However, they abstract from the in-
ternal processes and operate on an acyclic task graph. This model
is based on the assumption that each task has a statically deter-
mined execution time and each task starts its execution once all
input signals are available. The main drawback of this model is
the missing support of conditional control structures. Therefore,
the basic task graph model is extended by adding control depen-
dencies [9, 13]. Due to the acyclic structure, the modeling of dif-
ferent communication protocols and data-dependent loops is not
allowed. Recent approaches address general hardware/software
platforms, with respect to user-specified I/O event models [6, 4].
The main issues are caused due to the focus on the I/O stream
behavior and the missing consideration of the control-flow of the
processes.

One of the first approaches that analyze the timing behavior
of a system of communicating processes considering the control-
flow is presented in [5]. This approach is able to handle loops by
a bottom-up evaluation of communicating loop bodies in the loop
hierarchy. It is not applicable for systems with data dependent
loops and branches. In addition, it relies on a correct specified
system without data loss and dead locks. In [10] an analysis tech-
nique has been presented that combines methods for WCET anal-
ysis with an approach for communication analysis for hardware
synthesis [3]. This approach has been extended to consider laten-
cies on communication channels and to determine possible con-
flicts on shared communication resources [11]. In this paper we
present our approach for including temporal environment models
in system analysis. As a case study, we apply our methodology
on a SystemC model of a Viterbi decoder. Furthermore, a novel
approach for back-annotation of determined execution times on
processor models in order to improve simulation accuracy is ex-
plained. We compare the results of our formal analysis approach
with simulation based results.

III. ARCHITECTURAL EXPLORATION

Our approach for communication analysis allows the valida-
tion of the real-time behavior of parallel processes. These pro-
cesses can represent software running on processors or hardware
processes. In this paper, we will focus on software processes.
Hereby two methods that work in two different problem domains
are combined: (1) static timing analysis and (2) communication
analysis [10]. Static timing analysis handles code sequences with
control structures, including loops with bounded iteration counts.
On the other hand, for communication analysis only communica-
tion and the timing behavior between the communication nodes
are of interest.

Timing and communication analysis is performed according to
a given architecture. An example of an architectural specification
is depicted in Figure 1. We use the architectural description for
mapping of functionality and communication to resources and as
constraint to identify potential conflicts on shared resources like
e.g. busses and memories. A modification of the architecture,
the mapping or the functionality allows architectural exploration
based on our analysis methods.

Accordingly, the first step is to decompose the problem for the
two analysis domains. For control-flow aware communication
analysis, only information on the communication and the tempo-
ral and causal behavior between them is of interest. These infor-

R_ADR

W_ADR

NOI_DATA MIN_STATE BLOCKADR DEC_DATA

W_ADR

W_DATA

viterbi_backwardviterbi_forward

bytememvitmem

vitstack

Fig. 1. Internal structure of Viterbi decoder

mation can be compactly represented as a communication depen-
dency graph CDG [3]. The nodes in the CDG represent commu-
nication endpoints, i.e. sending and receiving events. The graph
contains two types of edges: Edges that represent the flattened
control-flow between communication endpoints of a process, and
edges that represent the communication.

A communication dependency graph CDG is a directed, cyclic
graph, that can be constructed based on the control-flow graph
CFG of each process. The edges ecom are given by the com-
munication. Edges ecdg represent the control-flow between two
communication points in the CFG. An edge ecdg between two
nodes in the CDG exists, if there exists a path in the CFG be-
tween the corresponding basic blocks. The latencies cmin, cmax

are attributed to each edge ecdg, which represent the execution
time of the longest and shortest path between the corresponding
nodes in the control-flow graph. These latencies are determined
by static timing analysis [7].

Based on the communication dependency graph, a condition
can be formulated that has to be fulfilled for a synchronization
point, that represents a communication synchronizing the control-
flow of the two communicating processes. Each communication
pair (vs, vr) is a potential candidate for a synchronization point.
Let us assume without loss of generality that the receiving node vr

blocks execution, whereas the sender vs does not block. However,
a blocking sender and a non-blocking receiver are handled in the
same way. An obvious condition for synchronization is that the
blocking communication partner is reached before or at the same
time as the non-blocking partner.

The set of nodes on the shortest path from v1 to v2 is denoted
by pathmin(v1 � v2). In the same way, the set of nodes on
the longest acyclic path is denoted by pathmax(v1 � v2). The
function L(p) calculates the latency l of a path p.

A communication C = (vs, vr) with (vs, vr) ∈ ECOM is a
synchronization point SP if

L(pathmax(vsync � vr)) ≤ L(pathmin(v′sync � vs))
∀(vsync, v

′
sync) ∈ SPpre((vs, vr))

Herein the set SPpre((vs, vr)) refers to all previous SP from
which the communication nodes vs or vr can be reached directly,
without passing an other SP. The set of initialization nodes I of
the processes is considered as initial SP for the recursive anal-
ysis of the system. This synchronization condition represents a
criterion for verifying existing synchronization points. By intro-
ducing slack variables xi and xi for each communication Ci that
represent the number of minimal and maximal wait cycles at the
blocking communication endpoint, the condition can be formu-
lated as two synchronization equations(SE).

SE(Cisync � Ci) : L(pathmax(visync � vs))

= L(pathmin(v′
isync � vr)) + xi (1)

1B-1

33

SE(Cisync � Ci) : L(pathmin(visync � vs))

= L(pathmax(v′
isync � vr)) + xi (2)

The condition is fulfilled, if the slack variable has a value greater
than or equal to zero. For the whole system, a system of equa-
tions can be set up. Synchronization points are determined using
an iterative algorithm. Communication with a slack less than zero
will not be considered for the next iteration. The algorithm stops
when the values of all variables in the current system of equa-
tions recur. The determined synchronization points and the slack
variables can be used to determine the WCRT of a system. The
influence of parallel processes to a certain process of the system
is embodied in the slack variables. To determine the worst-case
turn-around time of a process, only the path latencies of this pro-
cesses together with the slack variables have to be considered.

Back-Annotation of Execution Times The determined laten-
cies that are annotated to the edges in the CDG can also be
used for a timed simulation of the original untimed description.
This procedure allows a time-enhanced simulation of the origi-
nal functional model concerning the target platform. The exe-
cution times of the paths that were estimated with the analysis
tool GROMIT[7] can be annotated in the SystemC description by
wait-instructions. The mapping between CDG and source code
is performed using debug information and the consideration of
structural elements like branches and loops. This way, it is possi-
ble to include the temporal behavior of the system in simulation.
Figure 2 presents an example for the annotation in SystemC.

inS

µs500

FR_DATA

...
for(i=0;i<BlockSize;i++) {
thedat=infile.get();
write(thedat, FRDATA);
wait(500,SC US);

}
...

Fig. 2. Timing annotation for simulation in SystemC

IV. ENVIRONMENT MODELS

The environment of a system defines the occurrence of exter-
nal events relating the system. The knowledge of the intended
temporal environment of a system allows the verification of con-
straints and requirements given by the system specification. The
environment can be modeled by additional processes in the CDG.
This way it is possible to model common atomic event models.
Moreover, additional processes provide a powerful way to de-
scribe complex sequences of events.

inS Cin∆t

t

inI

Fig. 3. Periodic signal

outerl

innerl

n inC
inS

inI

Fig. 4. Burst signal

t

ol ilil

Fig. 5. Burst scenario latency of the inner loop li and the outer loop lo

Figure 3 shows a process sending a periodic signal with period
t and jitter ∆t. Figure 4 depicts the modeling of signal bursts

according to the burst scenario shown in Figure 5. The latency
of the inner loop linner describes the interval between the signals
in a burst, the loop counter n denotes the number of signals of a
burst and the latency louter denotes the time between two bursts.
These atomic event models can be combined to model a complex
environment. Incorporating receive nodes, a real interaction be-
tween a system and its environment can be modeled. Figure 6
shows an example for modeling a simple reactive environment.

n

2C

1C

3S3

2R

S1

C

inI

Fig. 6. Reactive environment model

V. ACCESS TO SHARED RESOURCES

The information gained during communication analysis can be
used to determine conflicts on shared communication resources,
like e.g. busses. The determined synchronization points relate the
parallel processes and allow to put all communication into a tem-
poral order. The relative minimum and maximum latencies of the

Process P1 Process P
2

Process P3 Process P4

C1

C2

C4

C3

1, 2

2, 3

3, 415, 20

4, 6
3, 5

4, 10

5, 11

2, 3 7, 11

1, 2

22, 24

S4S3

I3

R2

I1

R4

I2

S2

S1 R3

I4

R1

Fig. 7. CDG with possible conflicts on communication resources

path between communication nodes, together with the determined
slack variables allow to calculate absolute time intervals for each
communication. Therefore, synchronization points provide abso-
lute timing information, but communication interdependencies in
the entire process system have to be detected. Hence, consider-
ing only absolute time intervals to determine possible conflicts on
communication resources is not sufficient. This problem is illus-
trated in Figure 7 and Figure 8. For example, the communication
C2 and C3 in Figure 7 start their execution during the time inter-
vals [L(pathmin(I2 � S2)), L(pathmax(I2 � S2))] = [7, 15]
and [L(pathmin(I2 � S3)), L(pathmax(I2 � S3))] = [12, 26].
These time intervals are depicted in Figure 8. It has to be men-
tioned that these intervals are related to the starting times of com-
munication, not to the duration. Even if these intervals overlap,
a look at the control-flow of process P2 shows obviously that
these communication will not take place at the same time. This
means that it is indispensable to consider the order of the differ-
ent communication. This order is determined using the control-
flow of the processes. Based on the synchronization points, that
relate the parallel processes, a global temporal order can be deter-
mined. This order can be represented by a so called communica-

1B-1

34

5 10 15 20 25

2C

4C
3C

1C

Fig. 8. Starting time intervals of the communication in Figure 7

tion scheduling graph (CSG): Potentially parallel communication
are grouped to a single node; edges denote the temporal order of
the communication.

In the first step, only the order of communication endpoints
in the CDG is considered. During this step, path latencies are
ignored. In principle, the algorithm is shown in Figure 9. It
starts with the initial synchronization points as the first node in
the communication schedule graph. The current communication
endpoints for each process, i.e. the system state, are stored in a
vector A. The algorithm terminates, if the sequence of A’s is re-
curring. To test this criterion, A has to be stored in a set S for each
iteration of the algorithm. The current vector Acur is stored on a
stack V, together with the current node v of the CSG. The func-
tion update() determines a set A of system states A, based on a
previous system state Aprev . Since the control-flow graph may
include data dependent branches, update() returns a set of state
vectors A, one for each branch in the control-flow graph. State
vectors that are already contained in S will not be considered for
further iteration steps. Figure 10 shows the CSG for the example

A0 := [I1, I2, . . . , In];
S := {A0};
V.push(〈v0, A0〉);
while V �= ∅ begin

〈vprev, Aprev〉 := V.pop();
A := update(Aprev);
for each Acur ∈ A

if Acur /∈ S begin
vcur := ∅;
for each csend, crec ∈ Acur with 〈csend, crec〉 = e ∈ Ecom then

vcur = vcur ∪ {e};
create edge e = 〈vprev, vcur〉;
V.push(〈vcur, Acur〉);
S := S ∪ {Acur};

end;
end;

end;

Fig. 9. Construction of communication schedule graph

in Figure 7. Since there are no data dependent branches in this
example, update() returns just one state vector for each iteration
of the main loop. The underlined entries mark communication,
where both communication partners are contained in the vector.
Since the state vector A3 contains the two communication C3, C4,
these communication form one node in the CSG and are possibly
executed at the same time. In the second step, with the knowl-
edge of path latencies and based on the determined synchroniza-
tion points potentially parallel communication can be checked, if
their time intervals are overlapping. Since C2 is a synchroniza-
tion point in the example, the control-flow will leave S2 and R2 at
the same time, so only the path latencies S2 � S3 and R2 � S4

have to be considered. Since the time intervals for these paths do
not overlap ([5, 11]∩ [15, 20] = ∅), C3 and C4 are never executed
at the same time and accordingly the CSG can be reordered.

A0 = [I1, I2, I3, I4]

A1 = [R1, S1, R2, R3]

A2 = [R4, S2, R2, R3]

A3 = [R4, S3, S4, R3]

A4 = [R1, S1, R2, R3] = A1

3C 4C

I

2C

1C

Fig. 10. Communication schedule graph for the example in Figure 7

Resource Allocation and Binding In the following, a method
for allocating a minimal number of communication resources, e.g.
a bus, and for binding communication to these resources will
proposed. Allocation and binding is an important and well un-
derstood topic in the area of high-level synthesis and optimizing
compilers. Approaches in this area are based on coloring of con-
flict graphs and clique partitioning of compatibility graphs. With
these two types of graphs, the relation between elements to be
mapped to shared resources can be expressed. Conflict graphs
have edges between nodes that can not share a resource while
compatibility graphs have edges between nodes which may share
a resource. A proper node coloring of the conflict graph pro-
vides a solution to the resource sharing problem. Each color cor-
responds to a resource and the minimum number of colors cor-
responds to the minimum number of shared resources. In our
case, the nodes in these graphs represent communication. In or-
der to construct a method based on these approaches, the commu-
nication schedule graph has to be transformed accordingly into
a conflict graph. For the construction of the conflict graph, the
communication schedule graph is traversed and edges are drawn
between all communication that are present in one node in the
communication schedule graph.

VI. CASE STUDY: VITERBI DECODER

As an example, the described methods will be applied to
a SystemC description of a Viterbi decoder provided by Infi-
neon. The decoder consists of several parallel processes, com-
municating via signals with a non-blocking send and a block-
ing receive behavior. The decoding is performed by the pro-
cesses viterbi forward and viterbi backward. The
system is implemented on a multiprocessor platform, whereas the
two decoding processes are mapped to µC cores, vitmem and
bytemem are mapped to memory modules, and vitstack is
realized as hardware. To validate the system, the following in-
formation has to be determined: (1) the maximum data rate, the
system is capable to process, (2) the maximum delay between in-
put and output signal, and (3) the maximum output data rate.

Additionally, the internal communication have to be checked
for deadlocks or data loss. For that purpose, the methods for com-
munication analysis described in Section III will be applied. Fig-
ure 11 shows the analysis work flow. The source code is compiled
as assembler code of the target machine. The program SPLITTER

performs the decomposition of the problem into the communi-
cation structure of each process and the control-flow graph of
the code between two communication. Using our tool for exe-
cution time analysis (GROMIT) the minimal and maximal execu-
tion time of the communication free parts are determined. The
results of the execution time analysis are annotated on the edges
ecdg of the single processes. The global CDG is composed of the
communication structure of all processes. The resulting CDG is
shown in Figure 12. The annotated latencies in this figure rep-

1B-1

35

inS

l in,init

l in,per

encoder

R3

R4

d0

d1

d2

vitmem_w

R6

d0

d1

d2

vitmem_r

R8

R9

d0

d1

d2

bytemem_w

R11

R13

vitstack

R10

d0

d1

d2

bytemem_r

R14

filewrite

R2

1667,2245

23,84

3764, 4759

43,135

111,248

1924,2343

1460,1859

3764, 4723

R5

R7

0x

VIT_MINSTATE

15x7x

7x

15x

BM__BLOCKADDR

viterbi_forward

viterbi_backward

250 ,488

124, 537

41,130

40, 114

40,100

54,235

49,156

89,431

90, 424

C5

C11

I

I I

S7

I

I

S12

S14

I

S13

I

I

S3

S4

S5

C2

I

S8

S9

S6

S11

Fig. 12. CDG of the Viterbi decoder

Gromit

Composer

Compiler Splitter

CDG
.xml
CDG.c

.cpp .lst

.spo

CDG
.xml

Fig. 11. Analysis work flow

resent the best-case and worst-case execution time of the code
between the communication in clock cycles on a PowerPC750-
processor. The processes encoder and filewrite represent
the environment. To calculate the maximum input data rate, the
smallest value for lin,per has to be determined that leads to a syn-
chronization:

I � C2 :

min (lin,init) ≤ 2254

C2 � C2 :

min (lin,per) ≤ 4759 + 8 ∗ 135 + 7 ∗ 4723 + 2343 + 1859

≤ 43102

To prevent data loss, communication C5 has to be a synchro-
nization point. The synchronization equation (according Equa-
tion (2)) for that communication can be formulated as follows:

C5 � C5 :

1859 + x2.2 + 15 ∗ (4759 + 8 ∗ 135 + 7 ∗ 4723 + 248 + x2.1)

+3764 + 8 ∗ 43 + 7 ∗ 3764 + 1924

= 537 + 130 + 114 + 100 + x7.3

+15 ∗ (424 + 130 + 114 + 100 + x7.2 +

7 ∗ (431 + 100 + x7.1)) + 235 + 156 + x5.1

Obviously, it is necessary to set up the system of equations for all
involved communication to solve this equation. Considering the
restricted space, in this paper we just present the result:

⇒ x5.1 = 557403

This means that the signal VIT MINSTATE leads to a synchro-
nization of the two processes.

WCRT Based on the determined slack times, the WCRT of the
system can be calculated. The following equations determine the

time between the first occurrence of the input signal and the emis-
sion of BM BLOCKADDR (communication C11) .

Lpathmax(C2 � C5)

= 15 ∗ (3764 + 8 ∗ 43 + 7 ∗ 3764 + 111 + x2.1)

+4759 + 8 ∗ 135 + 7 ∗ 4723 + 2343

= 740243

Lpathmax(C5 � C11)

= 124 + 41 + 40 + 40 + x7.3 + 7 ∗ (89 + 40 + x7.1)

+15 ∗ (90 + 41 + 40 + 40 + x7.2 +

7 ∗ (89 + 40 + x7.1)) + 235

= 122088

Lpathmax(C2 � C11)

= 740243 + 122088 = 862331

The calculated maximum slacks can be used as well for deter-
mining the maximum time between the regular occurrence of a
signal. The calculation of the maximum period of communica-
tion C5 returns the following result:

Lpathmax(C5 � C5)

+4759 + 8 ∗ 135 + 7 ∗ 4723 + 2343

= 754463

These results have been validated by the annotation of execution
times back to the SystemC description according to the example
in Figure 2 and its simulation. However, using our method an
error has been detected in the original description. Due to a non-
blocking communication, there was no synchronization between
the processes vitmem r and viterbi backward resulting in
data loss. Our analysis approach allows further modification of
the architecture towards design space exploration. We analyzed
the Viterbi decoder using multiple configuration. Some selected
results are depicted in Figure13. We calculated the global min-
imum slack for communication VIT MINSTATE (C5). A pos-
itive value guarantees the synchronization of the two processes
that are mapped to processors. A positive value of x2 repre-
sents a guaranteed synchronization of communication C2 with-

1B-1

36

conf. # viterbi viterbi Iin,per x5 x2
forward backward

1 233 MHz 233 MHz 200 µs 2906 µs 6 µs
I-cache I-cache
D-cache D-cache

2 233 MHz 100 MHz 200 µs 1495 µs 6 µs
I-cache no cache
D-cache no cache

3 100 MHz 100 MHz 500 µs 6294 µs 49 µs
I-cache I-cache
D-cache D-cache

4 233 MHz 100 MHz 1500 µs 22283 µs 46 µs
no cache I-cache
D-cache D-cache

Fig. 13. Analyzed system configuration

out any need to buffer incoming data from the temporal environ-
ment. A further decreased clock frequency of the processor run-
ning viterbi forward down to 50 MHz in configuration 1-3
would cause data loss in communication C2 and C5.

The calculated results can be used in further computations for
identifying possible conflicts while accessing shared resources.
Based on synchronization points, the global sequential order of all
communication can be determined. For that purpose, the method
presented in Section V will be applied to the Viterbi example.
The resulting CSG is shown in Figure 14. It is apparent that there
are multiple potentially conflicting accesses on shared communi-
cation resources. Based on the CSG, the conflict graph shown in
Figure 15 has been constructed. The nodes represent communi-
cation whereas edges between the nodes embody the competition
for communication resources. The coloring of the conflict graph

C3C12 C3C13 C C143

C3C11 C4C11

C2 C12 C2C13 C2C14

C C124 C C134 C C144

64

C C2 7 C C73 C C74

C

I

C2

C3

C4

C5

C6C2 C C63 C

C3 9 C C4 9

C2C11

C

C8C2 C3 C8 C C4 8

C C2 9

Fig. 14. CSG for Viterbi
decoder

C6

C7

C8

C9

C5

C4

C3

C2

C11

C12

C13

C14

Fig. 15. Conflict graph

delivers the solution for the issue of static binding and allocation.
The presented example requires two communication resources for
guaranteed conflict free access.

VII. CONCLUSION

In this paper, an approach for analyzing parallel, communicat-
ing processes has been presented. Unlike other approaches in this
area, the control-flow of the processes is considered during anal-

ysis. A method has been presented to determine communication
that cause a synchronization of processes. These synchroniza-
tion points temporally relate processes and global performance
parameters like the response time of the whole system can be de-
termined. The modeling of the temporal environment of the sys-
tem by additional processes and the incorporation with our analy-
sis approach have been introduced. Furthermore, we showed the
ability of this approach to provide much more possibilities for
accurate environment description than the common event stream
models. Based on an approach for communication analysis, an
algorithm for detecting parallel and potentially conflicting com-
munication has been presented. The result of this method can be
used to perform a conflict free binding of communication to com-
munication resources. However, this approach is not restricted to
communication resources. It can be applied to determine conflict-
ing access to arbitrary shared resources, opening a broad applica-
tion area. Furthermore, we briefly explained a method to back-
annotate determined execution times to SystemC models for en-
abling a time-enhanced simulation. The described methods have
been applied to an example, the SystemC description of a Viterbi
decoder consisting of multiple communicating processes. In this
example, the existence of synchronization between processes, the
maximum input data rate, and the worst case response time have
been determined. The evolved methods provide a powerful basis
for formal timing analysis of embedded systems.

REFERENCES

[1] R. Alur. Timed Automata. In Proceedings of Computer-Aided Verification, 1999.

[2] S. Bradley, W. Henderson, and D. Kendall. Using Timed Automata for Response Time
Analysis of Distributed Real-Time Systems. In Proceedings of Workshop on Real-Time
Programming WRTP, 1999.

[3] O. Bringmann. Synchronisationsanalyse zur Multi-Prozess-Synthese. Logos Verlag
Berlin, 2003.

[4] S. Chakraborty, S. Künzli, and L. Thiele. A General Framework for Analysing System
Properties in Platform-Based Embedded System Designs. In Proceedings of DATE,
Munich, 2003.

[5] S. Dey and S. Bommu. Performance Analysis of a System of Communicating Processes.
In Proceedings of ICCAD, 1997.

[6] R. Henia and R. Ernst. Context-Aware Scheduling Analysis of Distributed Systems with
Tree-shaped Task-Dependencies. In Proceedings of DATE, 2005.

[7] A. Hergenhan and W. Rosenstiel. Static Timing Analysis of Embedded Software on
Modern Processor Architectures. In Proceedings of the DATE 2000 Conference, Paris,
France, 2000.

[8] M. A. Marsan, A. Bobbio, and S. Donantelli. Petri Nets in Performance Analysis: An
Introduction . In Lecture Notes in Computer Science, volume 1491. Springer-Verlag,
1998.

[9] P. Pop, P. Eles, and Z. Peng. Performance Estimation for Embedded Systems with Data
and Control Dependencies. In CODES, 2000.

[10] A. Siebenborn, O. Bringmann, and W. Rosenstiel. Worst-case performance analysis of
parallel, communicating software processes. In Proceedings of the Tenth International
Symposium on Hardware/Softwarw Codesign, 2002.

[11] A. Siebenborn, O. Bringmann, and W. Rosenstiel. Communication Analysis for Sys-
tem on Chip Design. In Proceedings of the Design Automation and Test in Europe
Conference (DATE), 2004.

[12] W. Stark and S. A. Smolka. Compositional Analysis of Expected Delays in Network of
Probalistic I/O Automata. In IEEE Symposium on Logic in Computer Science, 1998.

[13] Y. Xie and W. Wolf. Allocation and Scheduling of Conditional Task Graph in Co-
Synthesis. In Proceedings of DATE, Munich, 2001.

[14] A. Yakovlev, L. Gomes, and L. Lavagno. Hardware Design and Petri Nets. Kluwer,
2000.

[15] T.-Y. Yen and W. Wolf. Performance Estimation for Real-Time Distributed Embed-
ded Systems. In IEEE Transactions on Parallel and Distributed Systems, volume 9,
November 1998.

1B-1

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

