
FastPlace 3.0: A Fast Multilevel Quadratic Placement Algorithm
with Placement Congestion Control ∗

Natarajan Viswanathan, Min Pan and Chris Chu
Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011-3060, USA

email: {nataraj, panmin, cnchu}@iastate.edu

Abstract— In this paper, we present FastPlace 3.0 – an effi-
cient and scalable multilevel quadratic placement algorithm for
large-scale mixed-size designs. The main contributions of our
work are: (1) A multilevel global placement framework, by incor-
porating a two-level clustering scheme within the flat analytical
placer FastPlace [27, 28]. (2) An efficient and improved Iterative
Local Refinement technique that can handle placement blockages
and placement congestion constraints. (3) A congestion aware
standard-cell legalization technique in the presence of blockages.
On the ISPD-2005 placement benchmarks [19], our algorithm
is 5.12×, 11.52× and 16.92× faster than mPL6, Capo10.2 and
APlace2.0 respectively. In terms of wirelength, we are on average,
2% higher as compared to mPL6 and 9% and 3% better as com-
pared to Capo10.2 and APlace2.0 respectively. We also achieve
competitive results compared to a number of academic placers
on the placement congestion constrained ISPD-2006 placement
benchmarks [20].

I. INTRODUCTION

In recent years, it has become common to interleave place-
ment with logic synthesis and timing-optimization transforms
to create a physical synthesis design flow. As a result, place-
ment needs to be run repeatedly during the early design stages.
In addition, circuits today often contain over a million objects
that need to be placed. Hence, it is necessary to have efficient
and scalable placement algorithms that produce good-quality
results satisfying various design objectives including conges-
tion, routability and timing.

Existing placement algorithms employ various approaches
including simulated annealing [24,25], partitioning [1,2,7,29]
and analytical placement [4,9–11,16,17,21,27,28]. Analytical
placement algorithms based on the quadratic objective funtion
(also called quadratic placers) are very popular as they are quite
efficient and also give good quality of results. They typically
employ a flat placement methodology [9–11,17,27,28] so as to
maintain a global view of the placement problem.

But, with circuit sizes steadily increasing towards tens of
millions of objects, a flat placement methodology may not be
effective in handling the large problem size. Hence, for better
scalability and solution quality, a hierarchical placement ap-
proach is beneficial. To this effect many modern placers follow
a hierarchical or multilevel approach [3, 4, 13, 15, 21, 26].

An essential constraint that needs to be handled by current
placers is that of placement congestion. Designers often run

∗This work was partially supported by the Semiconductor Research Corpo-
ration under Task ID 1206 and NSF under grant CCF-0540998.

placement algorithms with specific target density values. To
determine the placement density, a pre-defined bin structure is
imposed over the placement region. The density of a bin is then
defined as the ratio of the total area of the movable objects to
the total available free-space within the bin. The target density
basically specifies the maximum possible occupation for any
bin in the placement region. Satisfying the target density con-
straint means that the density of all the bins in the placement
region should be less than or equal to the target density value.
The purpose of the target density is to allow for more room
within a bin for the subsequent routing step. It also creates
space to perform subsequent timing optimization transforms
like buffer insertion, gate-sizing etc.

In this paper we address the two issues of scalability and
placement congestion. We present FastPlace 3.0 - an efficient
multilevel quadratic placement algorithm with placement con-
gestion control for large-scale mixed-size designs. The main
contributions of our work are:

• Incorporating a multilevel framework within the global
placement stage of the flat quadratic placer FastPlace
[27, 28]. This is done by employing two levels of cluster-
ing: an intial netlist based fine-grain clustering followed
by a netlist and location based coarse-grain clustering.

• An improved Iterative Local Refinement Technique to re-
duce the wirelength based on the half-perimeter measure.
This technique is very effective in simultaneously reduc-
ing the wirelength while spreading the objects around the
placement region. It can also effectively handle placement
blockages and placement congestion constraints.

• A density-aware standard-cell legalization technique.
This technique operates on the segments created in the
placement region due to the presence of blockages. It sat-
isfies segment capacities and congestion constraints and
legalizes the standard-cells within the segments.

The rest of this paper is organized as follows: Section II
gives an overview of the multilevel global placement frame-
work and an outline of our algorithm. Section III describes
the two-level clustering scheme used during global placement.
Section IV describes the improved Iterative Local Refinement
technique and its use in placement congestion control. Section
V describes the density aware legalization and detailed place-
ment techniques. Experimental results are provided in Section
VI followed by the conclusions in Section VII.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

2A-2

135



II. OVERVIEW OF THE ALGORITHM

Our multilevel placement framework is summarized in Fig.
1 and follows the classical hierarchical flow that has been used
in many existing placement algorithms [3, 4, 6, 13, 15, 21].

Netlist based Fine-grain Clustering

Preliminary Placement of 
Fine-grain Clusters 

Netlist and Physical based 
Coarse-grain Clustering 

Global Placement of 
Coarse-grain Clusters 

Placement Refinement of 
Fine-grain Clusters 

Placement Refinement of 
flat Netlist 

Un-cluster 

Un-cluster 

Fig. 1. Multilevel Global Placement Framework.

In Step 1 of the multilevel flow, we create fine-grain clusters
of about 2-3 objects per cluster based on the connectivity infor-
mation of the original flat netlist. In Step 2 we perform a fast
initial placement of the fine-grain clusters. In Step 3 we create
coarse-grain clusters by performing a second level of cluster-
ing. This step considers the connectivity information between
the clusters and their physical locations as obtained from the
initial placement. This creates a good-quality clustering solu-
tion for the subsequent global placement step. In Step 4 we
perform global placement on the coarse-grain clustered netlist
until the clusters are evenly distributed over the placement re-
gion. We then perform a series of un-clustering and placement
refinements in Steps 5 and 6, finally yielding a global place-
ment solution of the original flat netlist.

The entire flow of our placement algorithm is summarized in
Fig. 2. It consists of three stages: (a) global placement using
a multilevel framework, (b) legalization of macro blocks using
the Iterative Clustering Algorithm of [28] followed by a density
aware standard-cell legalization scheme and (c) an effective de-
tailed placement algorithm [22]. The individual components of
the flow are described in more detail in the subsequent sections.

III. CLUSTERING FOR PLACEMENT

Circuit clustering is an attractive method to reduce the place-
ment problem size for large- scale VLSI designs. If clustering
is performed in a careful manner, it can also yield better wire-
length along with faster runtime as compared to flat placement
approaches. In our multilevel framework we use clustering in
a persistent context as defined in [21]. As in, we use clustering
at the beginning of placement to pre-process the flat netlist so
as to reduce the placement problem size.

In our multilevel framework, we follow a two-level cluster-
ing scheme as shown in Fig. 1. In the first level of clustering
we create fine-grain clusters of about 2-3 objects per cluster.
This clustering is solely based on the connectivity information
between the objects in the original flat netlist. Since this clus-
tering is performed before any placement, we restrict it to fine-
grain clustering to minimize any loss in placement quality due
to incorrect clustering. In fact, it was demonstrated in [12] that
building fine-grain clusters can improve placement efficiency
with negligible loss in placement quality.

We then perform a fast, initial placement of the fine-grain
clusters. The purpose of this step is to get some placement in-

Stage 1: Global Placement
     Level 1: Initial Placement 

1. Construct fine-grain clusters using netlist based clustering  
2. Solve initial quadratic program 
3. Repeat 

a. Perform regular Iterative Local Refinement on fine-grain clusters 
4. Until the placement is roughly even 

     Level 2: Coarse Global Placement 
5. Construct coarse-grain clusters using netlist and physical based clustering 
6. Repeat 

a. Solve the convex quadratic program 
b. Perform cell-shifting on coarse-grain clusters and add spreading forces 

7. Until the placement is roughly even 
8. Repeat 

a. Perform density-based Iterative Local Refinement on coarse-grain clusters 
b. Perform regular Iterative Local Refinement on coarse-grain clusters 
c. Perform cell-shifting on coarse-grain clusters 

9. Until the placement is quite even 

     Level 3: Refinement of fine-grain clusters 
10. Un-cluster coarse-grain clusters 
11. Perform density-based Iterative Local Refinement on fine-grain clusters 
12. Perform regular Iterative Local Refinement on fine-grain clusters 

     Level 4: Refinement of flat netlist 
13. Un-cluster fine-grain clusters 
14. Perform density-based Iterative Local Refinement on flat netlist 
15. Perform regular Iterative Local Refinement on flat netlist 

Stage 2: Legalization 
16. Legalize and fix movable macro-blocks using Iterative Clustering Algorithm
17. Move standard-cells among segments to satisfy segment capacities 
18. Legalize standard-cells within segments 

Stage 3: Detailed Placement 

Fig. 2. Outline of Our Placement Flow.

formation for the next clustering level. Since each cluster in
the first level has only around 2-3 objects, the initial placement
of the clusters closely resembles an initial placement of the flat
netlist. We then create coarse-grain clusters by performing a
second level of clustering. In this level, we consider both, the
connectivity information between the clusters and their physi-
cal locations as obtained from the initial placement. We believe
that generating coarse-grain clusters based on actual placement
information, is better than generating them by a solely netlist
based approach. Also, such an approach would further mini-
mize any loss in (or even improve) the final wirelength.

The key difference between our clustering scheme and the
ones followed in [3, 5, 15, 21] is that we use actual placement
information while forming coarse-grain clusters, whereas the
other approaches generate coarse-grain clusters solely based
on netlist information. Our approach closely resembles that
of [13]. The difference being that [13] uses two-levels of netlist
based clustering followed by physical clustering, whereas we
only use one level of fine-grain netlist based clustering.

For both levels of clustering, we use the Best-Choice clus-
tering algorithm described in [21]. In Fig. 3 we summarize the
modified version of the Best-Choice clustering algorithm us-
ing Lazy-Update speed-up technique to consider our two-level
clustering scheme. From Fig. 3 there are four key parameters
within our clustering scheme:
• clustering ratio: Ratio of the number of objects before

and after clustering.
• s(j, k): The netlist based clustering score between two

objects j and k.
• max cluster area: The upper-bound on the cluster area.
• distance threshold: The distance threshold used for the

physical clustering.
Within our clustering scheme, for each level of clustering we
use a clustering ratio of 2 resulting in a 4× reduction in

2A-2

136



Algorithm Clustering

Phase 1: Construct Initial Priority-queue (PQ) 
      For each object j

         1.  Find closest object k and clustering score s(j, k)

         2.  Insert triple (j, k, s) into PQ with s as the key 

Phase 2: Form Clusters 
      while (number_of_objects > target_number_of_objects) 

         1.  Pick top triple (j, k, s) from PQ 

         2.  if j is marked invalid 

     3.  Re-calculate closest object k′ and clustering score s′(j, k′)
          4.  Insert triple (j, k′, s′) into PQ 

         5.  else 

     6.  if fine-grain clustering

                                  7.  if (a(j) + a(k) < max_cluster_size) cluster j and k into new object j′
                             8.  if netlist + physical clustering

                                  9.  Calculate d(j, k) the distance between j and k

                                 10. if (d(j, k) < distance_threshold and a(j) + a(k) < max_cluster_size)  

                                          cluster j and k into new object j′
    11. Update netlist based on the clustering 

    12. For object j′ find closest object k′ and clustering score s′(j′, k′)
    13. Insert triple (j′, k′, s′) into PQ with s′ as the key 

    14. Mark neighbours of j′ as invalid 

Fig. 3. Best-Choice Clustering Algorithm with Placement Information.

the number of objects in the final coarse-grain netlist. For the
netlist based clustering score between objects j and k we use:

s(j, k) =
Σν∈Nwν

aj + ak

where N is the set of nets connecting the two objects and
wν = 1/k where k is the degree of net ν. To strictly con-
trol the area of the clusters, we set the max cluster area to 5×
average cluster area. This results in the formation of balanced
clusters. Finally, we experimentally set the distance threshold
to 10% of the maximum chip dimension.

IV. CONGESTION AWARE ITERATIVE LOCAL REFINEMENT

The Iterative Local Refinement (ILR) technique is a key
component of our placement flow. It is highly effective in min-
imizing the wirelength while simultaneously distributing the
cells over the placement region. We separate the ILR technique
into two components: a density-based ILR d-ILR and the reg-
ular ILR r-ILR. The core algorithm is the same within both the
components and hence we only describe it in the context of the
r-ILR. We first give an overview of the ILR technique of [27],
followed by the enhancements. We then describe the top level
flow for ILR based placement congestion control.

A. Description of the Technique

During ILR the placement region is binned and the utiliza-
tion of all the bins is determined, following which, the respec-
tive source bins of all the cells is determined. For every cell
present in a bin, 8 scores are computed that correspond to mov-
ing it to the 8 neighboring bins. For calculating the score, it is
assumed that a cell is moving from its current position in a
source bin to the same relative position in the target bin. The
score for each move is a weighted sum of two components: (a)
the half-perimeter wirelength reduction for the move and (b)
a function of the utilization of the source and target bins. For
each cell and bin, a fixed weight is used to compute the score.
The cell is then moved to the bin with the highest positive score.

"contour" matrix
       1

     0.8
     0.6
     0.4
     0.2

 0  5  10  15  20  25  30  35  40  45  50  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 4. Initial Contour Map Depicting Placement Blockages.

During one iteration the above steps are followed for all the
cells in the placement region. It is then repeated until there is
no significant improvement in the wirelength. For the first loop
of ILR, the width and height of the bins are set to 5× that of
the bin used during Cell Shifting. The bin dimensions are then
gradually brought down to the values used during Cell Shifting
over subsequent iterations of the global placement.

B. Enhancements to the ILR Technique

A major drawback with the ILR is that every bin in the place-
ment region, irrespective of if it being sparse or dense, will have
the same weight for the utilization component. This does not
accurately reflect the placement density. A sparse bin should
have a lesser utilization weight so that more cells can be moved
into it, whereas, the weight for a dense bin should be higher to
enable movement of cells out of this bin. In the enhanced ver-
sion of ILR each bin has its associated utilization weight that is
constantly updated based on the placement distribution.

Another extension to the ILR is in handling placement block-
ages. ASIC circuits contain many placement blockages in the
form of fixed macros. Quadratic placers often place a lot of
movable objects on top of the fixed macros. These objects have
to be moved out of the fixed macros in an effective manner with
minimal increase in the wirelength. To handle fixed macros
during placement, we construct a contour map of the placement
region. Based on the fixed macros, each bin in the contour map
has a value of either 1 in case it overlaps with a fixed macro or
0 otherwise. The initial contour map for one of the placement
benchmarks is shown in Fig. 4. We then use a 3 × 3 Laplacian
matrix as a smoothing filter and run it for a specified number of
iterations on the entire map. This removes the sharp edges in
the original contour map creating a smoothed version as shown
in Fig. 5. This smoothing is basically done so that cells can
easily move over and cross a fixed macro if required or slide
down the slope for it to be moved out of the macro.

Based on the above enhancements, for cell i in bin m, if:

• α: Weight for the wirelength component.

• βm: Weight of the utilization component for bin m.

• βn: Weight of the utilization component for bin n.

• γ: Weight for the contour component.

• wli(m): Half-perimeter wirelength when i is in bin m

2A-2

137



"contour" matrix
       1

     0.8
     0.6
     0.4
     0.2

 0  5  10  15  20  25  30  35  40  45  50  0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 5. Contour Map after Smoothing Transform.

• wli(n): Half-perimeter wirelength when i is in bin n

• U(m): Utilization function for bin m

• U(n): Utilization function for bin n

• C(m): Contour height of bin m

• C(n): Contour height of bin n
Then, the score for the move from bin m to bin n is given by:

si(m, n) =

α(wli(m)−wli(n))+(βmU(m)−βnU(n))+γ(C(m)−C(n))

C. ILR for Placement Congestion Control

For placement congestion control, the ILR is divided into 2
components. The d-ILR uses the global pre-defined bin struc-
ture used for placement density computation. It then calculates
the utilization and contour height for these bins. Cells are then
moved from source to target bins of the global bin structure.

Once the d-ILR is performed, we then run the r-ILR as before
in which the bin sizes are initially set to a large value and then
decreased over subsequent placement iterations. Fig. 6 depicts
the interaction between the d-ILR and the r-ILR and shows the
decrease in the size of the bins from the d-ILR stage to the end
of the r-ILR stage.

V. LEGALIZATION AND DETAILED PLACEMENT

The aim of the legalization stage is to resolve module over-
laps, present after global placement, and yield a legal non-
overlapping placement. Our legalization stage is divided into
two steps: we first ignore all the standard-cells and resolve
overlaps among the macro blocks; we then fix the macros and
legalize the standard-cells. This is followed by detailed place-
ment. These steps are described in more detail below.

A. Macro Block Legalization

During legalization, we do not want to move the macros
by a significant amount from their global placement positions.
Hence, the goal of the macro block legalization algorithm is to
resolve overlaps among the macros by perturbing them by the
minimum possible distance from their global placement posi-
tions. This is achieved by using the Iterative Clustering Al-
gorithm [28] for macro block legalization. Due to space con-
straints, we refer the reader to [28] for more details.

regular ILR 
Bin structure

density ILR 
Bin structure 

Fig. 6. Bin Structure for Iterative Local Refinement.

B. Density Aware Selective Bin-based Cell Legalization

After macro block legalization, we fix their positions and
treat them as placement blockages for all subsequent steps.
Each row in the placement region is then fragmented into seg-
ments based on the overlap of the row with the placement
blockages. The aim of the density aware standard-cell legalizer
is to satisfy segment capacities as well as placement congestion
constraints and legalize the standard-cells within the segments.

To perform legalization, we create a Regular Bin Structure
(RBS) over the entire placement region. The height of each bin
is equal to the cell row height and its width is equal to around
4× the average cell width. We then determine the utilization
of every bin and segment in the placement region. The utiliza-
tion of a segment is defined as the total width of all the cells
within the segment. If the total width is greater than the seg-
ment width, the segment is considered to be above capacity.

Based on the segment utilizations and placement blockages,
we construct a move map of the entire placement region. For
each bin in the RBS, this map has a value of either 1 for allow-
ing movement of cells into or out of this bin, or 0 otherwise.
For bins that completely overlap blockages we assign a value
of 0 as we do not want cells to be moved on top of the block-
age. If the utilization of a particular segment is greater than
the target density, then a small region of bins in and around the
current segment is assigned a value of 1. This is to allow for
move based legalization to be performed only on these bins.
This is depicted in Fig. 7 where there are two segments that are
above capacity (shown by the diagonal lines). Then, we turn
on move based legalization for only a small set of bins around
the segments (shown by the shaded regions).

Fig. 7. Selective Bin-based Standard Cell Movement.

For moving the cells among the bins we use a technique sim-
ilar to the ILR. The difference being that the score for a move
during legalization is a weighted sum of three components:
(a) the half-perimeter wirelength reduction for the move, (b) a

2A-2

138



function of the utilization of the source and target bins and (c) a
weighted difference of the move map values for the source and
target bins. Since the legalization technique is mainly used to
even out the placement and satisfy segment capacities, a higher
weight is assigned to the second and third components. Once
all the segments are brought within capacity, we assign the cells
to legal positions within each segment.

The key advantages of the selective bin-based legalizer is
that it does not significantly perturb the global placement so-
lution. Secondly, it distributes the cells evenly within the seg-
ments. This helps to satisfy placement congestion constraints.

C. Detailed Placement

To further reduce the wirelength of the placement, we adopt
a modified version of the FastDP [22] detailed placer that can
handle placement congestion constraints.

VI. EXPERIMENTAL RESULTS

FastPlace3.0 was tested on the ISPD-2005 Placement
Benchmarks [19] and the ISPD-2006 Placement Benchmarks
[20]. These benchmarks have been derived from industrial
ASIC designs with circuit sizes ranging from 211K to 2.50M
objects. In addition, the ISPD-2006 benchmark suite has a spe-
cific target density assigned to each circuit.

In Table I, we compare FastPlace3.0 with the latest available
versions of the academic placers mPL6 [4,5,8], Capo10.2 [23]
and APlace 2.0 [15, 16] on the ISPD-2005 Placement Bench-
marks. All the placers were run in their default mode and all
experiments were run on a 2.6 GHZ AMD Opteron 252 ma-
chine with 8 GB RAM.

From Table I, we have on average, 2% higher wirelength
as compared to mPL6 and 9% and 3% better wirelength as
compared to Capo10.2 and APlace2.0 respectively. In terms of
runtime we are 5.12×, 11.52× and 16.92× faster than mPL6,
Capo10.2 and APlace2.0 respectively.

In Table II we compare our results with that of other placers
reported during the ISPD 2005 placement contest. It should be
noted that for the contest, all the placers were given the bench-
marks in advance and there was no limit on the CPU time re-
quired to get the best possible results on the individual circuits.
From Table II, the contest version of APlace is on average 4.5%
better than our placer in terms of wirelength. In [15] the au-
thors report that the entire benchmark set takes 113.2 hrs on a
1.6 GHZ machine and that they are on average 3× slower than
Capo. Based on these results our placer is roughly 34× faster
than the contest version of APlace. It can also be seen that
our results are better than the reported results of all the other
placers during the ISPD 2005 placement contest.

In Table III we compare our results with that of other plac-
ers reported during the ISPD 2006 placement contest. We use
the same scoring function as the contest which is a weighted
function of wirelength, placement congestion and runtime. On
average, we have only 1% higher score than the best reported
results during the contest. Looking at individual results, on 4
of the 8 benchmarks we are better than the best reported results
during the contest.

Table IV gives the runtime comparison of our placer with
other placers in the ISPD 2006 placement contest. This is a

direct comparison of the runtime, as the machine specifications
for the contest are the same as the one on which we ran our
experiments. On average, the runtime of our placer is the least
among all the placers.

VII. CONCLUSIONS

In this paper we describe FastPlace 3.0 an efficient and scal-
able quadratic placer for large-scale mixed-size circuits. It is
based on a multilevel global placement framework and incor-
porates an improved Iterative Local Refinement Technique that
can handle placement blockages as well as placement conges-
tion constraints. We also describe an efficient density aware
standard-cell legalization scheme.

The current implementation produces competitive results
compared to other state-of-the-art academic placers on various
benchmark circuits but in a significantly lesser runtime. Such
an ultra-fast placer is very much needed in present day itera-
tive physical synthesis flows to achieve timing closure without
a significant runtime overhead.

REFERENCES

[1] A. R. Agnihotri, S. Ono, C. Li, M. C. Yildiz, A. Khatkhate C.-K. Koh,
and P. H. Madden. Mixed block placement via fractional cut recursive
bisection. TCAD, 24(5):748–761, May 2005.

[2] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can recursive bisection
produce routable placements. In Proc. DAC, pages 477–482, 2000.

[3] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization for
large-scale circuit placement. In Proc. ICCAD, pages 171–176, 2000.

[4] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed
method for circuit placement. In Proc. ISPD, pages 185–192, 2005.

[5] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced
multilevel mixed-size placement. In Proc. ISPD, pages 212–214, 2006.

[6] C. C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-scale
mixed-size IC designs. In Proc. ASPDAC., pages 325–330, 2003.

[7] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: A
ratio partitioning based placement algorithm for large-scale mixed-size
designs. In Proc. ISPD, pages 236–238, 2005.

[8] J. Cong and M. Xie. A robust detailed placement for mixed-size ic de-
signs. In Proc. ASPDAC, pages 188–194, 2006.

[9] H. Eisenmann and F. Johannes. Generic global placement and floorplan-
ning. In Proc. DAC, pages 269–274, 1998.

[10] H. Etawil, S. Arebi, and A. Vannelli. Attractor-repeller approach for
global placement. In Proc. ICCAD, pages 20–24, 1999.

[11] B. Hu and M. Marek-Sadowska. FAR: Fixed-points addition and relax-
ation based placement. In Proc. ISPD, pages 161–166, 2002.

[12] B. Hu and M. Marek-Sadowska. Fine granularity clustering for large
scale placement problems. In Proc. ISPD, pages 67–74, 2003.

[13] B. Hu and M. Marek-Sadowska. Multilevel fixed-point-addition-based
VLSI placement. TCAD, 24(8):1188–1203, August 2005.

[14] A. B. Kahng, S. Reda, and Q. Wang. APlace: A general analytic place-
ment framework. In Proc. ISPD, pages 233–235, 2005.

[15] A. B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high
quality, large-scale analytical placer. In Proc. ICCAD, pages 890–897,
2005.

[16] A. B. Kahng and Q. Wang. Implementation and extensibility of an ana-
lytic placer. TCAD, 24(5):734–747, May 2005.

[17] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. GORDIAN: VLSI
placement by quadratic programming and slicing optimization. TCAD,
10(3):356–365, March 1991.

[18] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module
placement based on rectangle-packing by the sequence pair. TCAD,
15(12):1518–1524, December 1996.

[19] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The
ISPD2005 placement contest and benchmark suite. In Proc. ISPD, pages
216–220, 2005.

[20] G.-J. Nam. ISPD 2006 placement contest: Benchmark suite and results.
In Proc. ISPD, pages 167–167, 2006.

2A-2

139



TABLE I
WIRELENGTH AND RUNTIME COMPARISON OF FastPlace3.0 WITH mPL6, Capo10.2 AND APlace2.0 ON THE ISPD-2005 BENCHMARK SUITE.

Circuit Half-Perimeter Wirelength Runtime (sec)
FastPlace3.0 mPL6

F P3.0

Capo10.2

F P3.0
APlace2.0

F P3.0
FastPlace3.0 mPL6

F P3.0

Capo10.2

F P3.0
APlace2.0

F P3.0

adaptec1 79383680 0.98 1.15 0.99 294 7.42 15.12 21.66
adaptec2 93084248 0.99 1.08 1.03 466 4.84 12.13 19.68
adaptec3 217804128 0.98 1.05 1.00 1896 3.79 6.67 11.75
adaptec4 201358944 0.96 1.03 1.04 1176 5.75 9.80 21.37
bigblue1 95679992 1.01 1.14 1.05 503 5.44 13.31 16.92
bigblue2 155101744 0.98 1.05 0.99 1150 6.78 11.56 17.42
bigblue3 379882464 0.91 1.05 1.08 3868 2.72 9.83 9.75
bigblue4 832879872 1.00 1.16 1.05 5718 4.22 13.78 16.82
Average 0.98 1.09 1.03 5.12× 11.52× 16.92×

TABLE II
HALF-PERIMETER WIRELENGTH COMPARISON OF FastPlace3.0 WITH OTHER ACADEMIC PLACERS ON THE ISPD-2005 BENCHMARK SUITE.

Placer Circuit Average
adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

APlace 0.94 0.93 0.99 0.93 0.94 1.00 0.955
FastPlace3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.000

mFAR 0.98 0.95 1.02 1.09 1.00 1.05 1.015
Dragon 1.02 1.00 1.07 1.03 1.00 1.09 1.034

mPL 1.04 1.00 1.03 1.12 0.97 1.09 1.041
Capo 1.07 1.05 1.13 1.11 1.01 1.32 1.115

NTUplace 1.08 1.03 1.11 1.23 1.08 1.39 1.153
Fengshui 1.32 1.67 1.20 1.84 1.24 1.25 1.420
Kraftwerk 1.69 1.75 1.56 2.08 1.73 1.69 1.749

TABLE III
FastPlace3.0 COMPARED TO OTHER ACADEMIC PLACERS ON THE ISPD-2006 BENCHMARK SUITE

USING THE ISPD-2006 PLACEMENT CONTEST SCORING FUNCTION.

Placer Circuit Avg
adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

Kraftwerk 1.01 1.19 1.00 1.00 1.01 1.04 1.00 1.00 1.03
mPL6 1.00 1.06 1.07 1.17 1.00 1.02 1.00 1.00 1.04

FastPlace3.0 1.12 1.15 0.96 1.09 0.98 1.11 0.96 0.93 1.04
NTUplace2 1.02 1.00 1.07 1.16 1.03 1.00 1.04 1.07 1.05

mFAR 1.09 1.23 1.09 1.16 1.09 1.13 1.03 1.04 1.11
APlace3 1.26 1.20 1.05 1.13 1.35 1.21 1.06 1.05 1.16
Dragon 1.08 1.21 1.29 1.90 1.05 1.13 1.03 1.23 1.24
DPlace 1.26 1.55 1.77 1.36 1.14 1.35 1.23 1.25 1.36
Capo 1.16 1.57 1.64 1.44 1.22 1.28 1.32 1.46 1.39

TABLE IV
RUNTIME RESULTS OF FastPlace3.0 COMPARED TO OTHER ACADEMIC PLACERS ON THE ISPD-2006 BENCHMARK SUITE.

Placer Circuit Avg
adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

FP3.0 (sec) 1973 609 816 1619 878 3156 2519 3279
FastPlace3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00×
Kraftwerk 1.67 1.86 1.23 0.56 3.16 2.35 2.12 2.28 1.91×

mPL6 4.19 3.70 7.47 5.99 6.62 3.91 4.78 8.66 5.66×
NTUplace2 5.32 3.55 5.43 4.10 8.51 6.48 5.50 6.55 5.68×

mFAR 3.48 4.17 3.55 1.83 7.25 3.62 4.82 5.94 4.33×
APlace3 10.27 7.07 6.78 7.72 17.07 10.39 11.56 16.73 10.95×
Dragon 1.14 1.62 2.00 0.72 1.69 1.12 1.53 3.02 1.61×
DPlace 1.46 1.69 7.84 0.64 1.88 1.44 1.60 2.90 2.43×
Capo 4.93 4.21 6.92 3.75 7.89 6.61 7.34 16.76 7.30×

[21] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng. A
fast hierarchical quadratic placement algorithm. TCAD, 25(4):678–691,
April 2006.

[22] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed
placement algorithm. In Proc. ICCAD, pages 48–55, 2005.

[23] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut Floorplace-
ment. TCAD, 25(7):1313–1326, Jul 2006.

[24] C. Sechen and A. L. Sangiovanni-Vincentelli. TimberWolf 3.2: A new
standard cell placement and global routing package. In Proc. DAC, pages
432–439, 1986.

[25] W.-J. Sun and C. Sechen. Efficient and effective placement for very large
circuits. TCAD, 14(5):349–359, 1995.

[26] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sarrafzadeh.
Dragon2005: Large-scale mixed-size placement tool. In Proc. ISPD,
pages 245–247, 2005.

[27] N. Viswanathan and C. C.-N. Chu. FastPlace: Efficient analytical place-
ment using cell shifting, iterative local refinement and a hybrid net model.
TCAD, 24(5):722–733, May 2005.

[28] N. Viswanathan, M. Pan, and C. Chu. Fastplace 2.0: An efficient analyt-
ical placer for mixed-mode designs. In Proc. ASPDAC, pages 195–200,
2006.

[29] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000: Standard-cell
placement tool for large industry circuits. In Proc. ICCAD, pages 260–
263, 2000.

2A-2

140



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


