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Abstract—MultiProcessor Systems-on-Chip (MPSoCs) are in-
creasingly being used to build efficient and cost-effective em-
bedded systems that meet the necessary real-time requirements.
However, programming heterogeneous MPSoCs is highly chal-
lenging. The existing automatic parallelizing techniques, although
effective on homogeneous shared-memory architectures, are in-
sufficient for MPSoCs, which are typically characterized by het-
erogeneous processing elements and memory architectures. The
lack of effective automatic techniques for recoding and paral-
lelization requires designers to manually partition the code and
the data structures in the reference application to generate a
parallel and flexible specification model. Such manual algorithm
partitioning by the designer is time consuming and error prone.
In this paper, we motivate the need for automation in system
specification and present a novel designer-controlled approach to
recode applications written in a C-based System-Level Description
Language. We present six automated source code transformations
that, under the control of the designer, automatically partition
and reorganize code and data structures to create a parallel and
flexible abstract specification model that can be mapped onto a
heterogeneous MPSoC using a top-down system-level design flow.
Our experimental results show significant productivity gains and
quality improvements in the end design.

Index Terms—Code and data partitioning, design automation,
multi-processor systems-on-chip, recoding, source code transfor-
mation, system level design.

I. INTRODUCTION

THE DESIGN of embedded systems imposes a mutually
conflicting set of constraints on the design, such as real-

time performance, low power, low cost, and short time-to-
market. By means of task-level parallelism and by adapting
the system architecture to the application needs, MultiProcessor
Systems-on-Chip (MPSoCs) have emerged as an effective way
to realize complex embedded systems. The need to generate an
effective optimized implementation and the need to speed up
the design process have driven past research in the direction
of configurable processors [1], hardware/software codesign,
flexible platforms [2], on-chip communication networks [3],
new programming models [4], and so on. Despite the decades
of research, a push-button tool/compiler to map a sequential
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application onto a heterogeneous MPSoC architecture is still
not realistic. One major obstacle can be attributed to the hetero-
geneous nature of many MPSoCs, which are typically charac-
terized by specialized processors, irregular memory structure
(shared and local memories), and a custom interconnecting
network.

An effective parallel programming of these MPSoCs is the
key in reaping the potential benefits of MPSoC architectures.
An abstract system-level model, typically known by names
such as specification model or Transaction Level Model (TLM)
or MPSoC specification, forms the basis for this programming.
In particular, this programming involves splitting typically se-
quential application codes into multiple parallel partitions, pro-
gramming each processor, and minimizing the communication
overhead between them. One critical research area, which has
not received much attention, is the development of this initial
specification model, necessary for programming the underlying
MPSoC platform.

For instance, we used the top-down refinement-based
automatic design flow [5], shown in Fig. 1, to design a Moving
Pictures Experts Group Audio Layer 3 (MP3) audio decoder.
In this flow, the design models are shown in ellipses, and the
refinement tasks in between models are shown as rectangles.
The design process starts with an abstract parallel specification
model that is then refined to create models at lower abstraction
levels, including an architecture model, TLM, and Bus-
Functional Model. After a series of refinement steps, an actual
implementation is finally derived. Each of the refinement
steps in the design flow is automated to the extent that model
generation is fully automatic, and the designer has to only make
the design decisions, such as component allocation, mapping,
and scheduling. Due to automatic refinement, the final
implementation of our MP3 decoder was derived in less than
one week. However, the very first design step, i.e., recoding the
sequential C code into an MPSoC specification, took more than
90% of the overall design time [6]. In this paper, we address
this bottleneck of creating a suitable MPSoC specification
from readily available C code so that the overall design time is
reduced.

II. MPSOC SPECIFICATION

The design of MPSoCs starts with an initial specification
model that serves as the golden model for the generation and
validation of all subsequent models. The language in which
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Fig. 1. Motivation: design time of the MP3 decoder in a refinement-based
design flow.

the model is implemented depends on the design flow and the
tools, but System-Level Description Languages (SLDLs), such
as SystemC [7], SpecC [5], and System Verilog [8], are often
used as they can capture systems containing both hardware
and software components at different levels of abstraction.
Concurrency and flexibility are two important characteristics
of this model. Concurrency directly determines the efficient
utilization of the underlying parallel architecture, and flexibility
directly impacts the number of design alternatives that can
be explored. In general, flexibility increases with explicit
separation of computation and the communication in the model.
More specifically, flexibility directly depends on the number
of distinct code and distinct data partitions that communicate
through abstract message-passing channels. During the later
stages of system synthesis, the model flexibility increases
the number of different code, data, and channel mappings
onto processors, memories, and busses, respectively. Often,
code and data partitions can be moved by the designer across
processors and memories to balance computation and optimize
communication.

A. Recoding C Code Into MPSoC Specification

Although it is possible, the system specification model is
rarely written from scratch. More than often, reference models
of applications are reused and recoded into System-on-Chip
(SoC) specifications. Reference implementations in C are pop-
ular choices due to their availability and familiarity, and since
they aptly fit when recoded into C-based SLDLs. However, such
reference applications are usually designed to run on a regular
PC environment with a single processor and are not directly
suitable as an MPSoC specification. The monolithic applica-
tion code and data need to be split into partitions with task-
level parallelism exposed. Generating the MPSoC specification
from a sequential code involves partitioning the code and data
structures, and isolating the partitions so that they can later be
mapped to different architectural components. The source code

transformations to create a flexible and parallel model can be
broadly classified into the following three categories:

1) code partitioning;
2) data structure partitioning and data relocation;
3) flexibility-adding transformations.

B. Why Source-Level Code and Data Structure Partitioning?

Due to the absence of effective tools to perform auto-
matic partitioning and mapping of sequential C codes onto an
MPSoC, it becomes necessary to first create models with ex-
plicit features. Explicit models are conducive for automatic
design exploration and synthesis as they can be statically
analyzed by the later design tools. The explicit features that
make the analysis easier include exposing concurrency, explicit
code, and data partitions; explicit locality of data variables;
and so on. As an example, we emphasize the importance for
explicit data structure partitioning.1 In general, partitioning of
composite data structures (structures, vectors) and localiza-
tion of the partitions to processors reduce the communication
between processors. In low-cost MPSoCs, designed for low-
power applications, communication is premium and must be
reduced to gain performance and power benefits. In such cases,
the composite variables in the application need to be partitioned
and explicitly localized to each code partition so that they can
reside in respective local memories.

III. DESIGNER-CONTROLLED APPROACH

Traditional parallelizing compilers could be used to create
an MPSoC specification for the purpose of exposing concur-
rence. However, these completely automatic techniques have
been ineffective for three reasons. First, they are mainly based
on a shared-memory programming model, hence insufficient
to handle heterogeneous MPSoC characteristics such as spe-
cialized custom processors and nonuniform memory architec-
tures. Second, although effective in parallelizing applications
in scientific computing, the completely automatic compilers are
often ineffective in handling real-life embedded source codes.
Embedded source codes, typically obtained as reference codes
from standardizing committees and open-source projects, are
often complex with parallel loops potentially spanning hun-
dreds of lines of code, containing function calls, conditional
statements, and complex dependencies. Third, more than often,
exposing concurrency in embedded applications requires algo-
rithm knowledge and thus cannot be automatically detected by
the compilers. Neither can such knowledge be efficiently fed
into the compiler.

All these reasons call for a designer-controlled approach to
parallelization, where the designer can choose the code to be
parallelized and select data structures to be partitioned and
localized. Instead of attempting to parallelize and create an

1Note that explicit data partitioning is not a necessity in case of shared-
memory-based architectures, where there is only one memory. In such cases,
communication is implicit through a cache-coherence mechanism, and com-
munication is typically optimized using data locality techniques (e.g., loop
transformations [9]).
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MPSoC specification in one single step, we achieve this in-
tractable task using designer-controlled automatic steps. Our
approach to application partitioning and parallelization is con-
trolled by the designer to the extent that all the critical analysis
and the time-consuming code transformations are performed
by a set of automatic transformations, but the decision to
apply them is under the control of the designer. Our goal is
to generate a flexible MPSoC specification model in SLDLs,
such as SystemC and SpecC, from a sequential reference C
model. To achieve this goal, we propose a set of six code and
data partitioning and flexibility-adding transformations on the
C-based source code that can be instantly activated by the
designer “on a button click.”

IV. RELATED WORK

Up to now, the problem of partitioning code and data
structures in a reference application to generate a flexible
parallel MPSoC specification has not received much attention.
The onus of performing this tedious recoding task still relies on
the designer. Our approach toward automated recoding partially
overlaps with related work on parallelizing compilers that we
compare against. We also compare our designer-controlled
approach to a software engineering technique known as
refactoring.

A. Parallelizing Compilers

There has been extensive research in the parallel com-
puting community to automatically parallelize applications.
By means of interprocedural analysis [10], symbolic analysis
[11], and loop transformations, techniques [10], [12], [13]
to extract coarse-grained parallelism have been proposed for
shared-memory multiprocessors. The Intel C compiler [14] for
Pentium-3 and Pentium-4 implements the above techniques to
extract thread-level parallelism for shared-memory architec-
tures. Despite these advanced analysis capabilities, completely
automatic techniques have not been effective even for shared-
memory architectures. Application knowledge is necessary to
parallelize many real-life applications. This has resulted in
OpenMP compilers [15], where the programmer sets OpenMP
directives to parallelize the code. However, all the analysis to
ensure that a piece of code can be parallelized and the resolution
of nasty dependencies must be performed by the programmer.

For distributed computer systems, on the other hand, the
programmer manually writes parallel code using a message-
passing interface [16]. These techniques have been effective
in parallelizing data-extensive scientific applications. However,
these approaches have serious limitations and are not effective
in analyzing real-life embedded applications where loops often
span hundreds of lines of code and contain function calls,
variable accesses through pointers, and complex dependencies
that cannot be automatically resolved.

In contrast, our designer-controlled approach breaks the
overall task of exposing parallelism into a distinct set of trans-
formations that the designer can easily understand and apply
using his application knowledge.

B. Code Refactoring

Refactoring [17] is a software engineering technique used
in object-oriented programming to change the structure of a
program. This paper is different in many aspects. First of
all, our transformations are different from popular refactor-
ings [18]. Second, the intent of our transformations and the
area of application are different from refactoring. Traditional
refactoring is intended toward improving the human readability,
understandability, and maintainability of the source code. Our
transformations are intended to create a multiprocessor specifi-
cation model, and the primary goals are exposing concurrency
and adding flexibility to explore different design alternatives.
Further, refactoring is mainly used in type-safe languages such
as Java. Our strict designer-controlled approach is designed
for embedded source codes in C-based languages by tightly
involving the designer in the recoding process.

C. Previous Work

In previous works, we have proposed a subset of our trans-
formations in a different context and in less detail. In [19],
we discussed four of the important transformations to create
parallel and flexible models in a short paper. In this paper,
we discuss those transformations in more detail and add two
new transformations (structure partitioning in Section V-D
and variable rescoping in Section V-F) that are necessary to
complete the parallelization task. We also provide detailed
algorithms for the transformations that are not included in [19].
In the context of data structure partitioning, [19] only covers
vector partitioning. In this paper, we present both partitioning
of structures and vectors. Further, we have previously discussed
variable localization in the context of creating a specification
with contained communication [20]. Reference [6] discusses
the data structures and tools that constitute our source recoding
environment.

In summary, this paper extends the transformations proposed
in [19] and [20] and adds two new ones. We also report
new experimental results that demonstrate the benefits of an
explicitly parallel and flexible design specification toward im-
plementation as an MPSoC.

V. CONTROLLED TRANSFORMATIONS

In this section, we present six program transformations that
implement code and data partitioning to expose parallelism in
loops, rescope variables, and introduce channels to add flexibil-
ity to the model. The designer’s application knowledge is used
between each transformation step to resolve any dependencies
that cannot be handled by the automatic analysis.

A. Loop Splitting

Loop splitting is one of the many well-known loop trans-
formations used in the compiler optimization and parallelizing
community [9], [21]. Our loop splitting transformation creates
different incarnations of the loop with the same loop body,
where each split loop iterates over different contiguous subsets
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Fig. 2. Code changes resulting from loop splitting. (a) Original loop.
(b) Partitioned loops.

of the loop index range. Depending on the trip count and
the number of unrolls specified by the designer, the resulting
partitions are loops with smaller trip count or just straight line
code segments with the induction variable completely replaced
by constants. Fig. 2 shows an example loop with trip count of
16 uniformly split into four loops, each with a trip count of four.
The Cumulative Access Type (CAT) in Fig. 2(a) is described in
Section V-B. Nonuniform splitting involves splitting loops to
have splits with unequal index ranges.

Since the designer can specify the parameters of the loop
to the transformation, loops that are typically not parallelized
by automatic compilers can also be handled. For example,
many automatic compilers attempt to parallelize only for loops,
whose loop boundaries and trip count can be statically deter-
mined. However, often in reference code, it is common for a
programmer to use while structures instead of for structures
to specify loops. The while loops can also be split if the loop
parameters are known.

For reasons of load balancing, the designer might also want
to perform nonuniform splitting of a loop. Unlike the com-
pletely automatic approaches, our designer-controlled approach
provides a way to do so. This is specifically important in
the context of embedded source codes, where loop iterations
exist with different computation load, and in the context of
MPSoC design, where processors with different capabilities are
given.

B. Cumulative Access-Type Analysis

Splitting a loop only creates sequential loop partitions. To
have communication-free parallelism between these loop parti-
tions, the dependents between partitions must be analyzed and
resolved. This static analysis of the loops reveals scalar and

vector variables that are dependent between iterations of the
loop. Our analysis step presents the found dependencies to the
designer in an easy understandable way for resolution.

Variables written in one iteration and read in the other
are considered dependents. We classify cumulative accesses
of the variables within the loop into four CAT categories,
i.e., Read (R), Write (W), Write–Read (WR), and Read–Write
(RW). Fig. 2 shows an example loop with variables with
different CATs. Variables with access-type RW are considered
dependents. Variables with WR access are not dependents
between iterations as they are written first before being read in
the same iteration. Access of scalar dependents (CAT = RW)
must be synchronized between the partitions (as discussed in
Section V-E) to ensure correct execution semantics of the pro-
gram after parallelization. The composite variable dependents,
such as structures and vectors, must be further analyzed and if
possible partitioned to avoid any communication, as discussed
in the next section.

C. Partitioning Vector Dependants

If there exist dependents between the loop partitions, then
it is not possible to have communication-free parallelism. The
scalar dependents must be manually resolved or synchronized
using the transformation presented below in Section V-E. The
vector dependents can be analyzed to check if they can be
partitioned to have communication-free parallelism. In this
section, we present analysis and transformations to check if
a vector can be partitioned into contiguous sections across
different partitions [19].

It is possible to split vector dependents without communi-
cation overhead between the loop partitions only if the array
references in different loop partitions do not depend on the
same array elements. This is a hard problem to solve in the
presence of sparse array accesses such as A[B[i]]. However,
the problem becomes tractable if the array references are
affine expressions, which is often the case in practical source
codes.

For message-passing parallel machines, Tseng and Gaudiot
[22] provide techniques to partition an array across multiple
processors. Communication-free partitioning is possible only if
the array references differ by a constant, i.e., the array reference
is of the form x + b, where x is the induction variable and b
a constant. Unlike this approach, our transformation conducts
a general affine expression (mx + b) analysis of the form
mx + b, where m and b are integers. Extensive work in the area
of affine data access analysis can be found in [23].

Our algorithm to partition the vector consists of two main
parts. First, we check if the vector can be partitioned, and
second, we generate the code to access the new split vectors.

The input to our checking Algorithm 1 are the vector v,
main loop L, and split loops Lp, where 0 ≤ p ≤ NP , where
NP is the number of loop partitions and their parameters.
The algorithm analyzes the array access expressions of the
form mx + b to determine if the vector can be partitioned. If
m1x + b1 and m2x + b2 are two affine references to vector v
in a loop L with induction variable x, iterating from S to E
(inclusive) in increments of ∆x, the condition to be satisfied
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for these two references to be different in the entire iteration
space is

m1x + b1 �= m2(S + k∆x) + b2 (1)

∀k, where 1 ≤ k ≤ ((E − S + 1)/∆x) − 1.
k is the normalized iteration number, and S and E are the

start and end values attained by the index variable x in the orig-
inal loop. The above inequality, if true, ensures that the same
element of the vector is not accessed through two index expres-
sions m1x + b1 and m2x + b2.

Algorithm 1 Check if vector can be partitioned

Input: vector v, start S, end E, indexvar x, increment ∆x, iterations per

partition ipp, loop L

Output: true/false

//Generate list of index expressions of x

2: for every access a to v in L do

expr = a → getindexexpr(x)

4: if expr → affine(x) then

list = list ∪ expr

6: else //nonaffine expr

return false

8: end if

end for

10: kmax = ((E − S + 1)/∆x) − 1

for every expression cmp1 in the list do

12: (m1, b1) = cmp1 → getaffineconsts()

for every other expression cmp2 in the list do

14: (m2, b2) = cmp2 → getaffineconsts()

for (x = S, iter = 0; x ≤ E; x+ = ∆x,

iter + +) do

16: np = iter/ipp //Partition to which iteration

belongs to

k=(m1 ∗ x − m2 ∗ S + b1 − b2)/(m2 ∗ ∆x)

18: rem=(m1∗x−m2∗S+b1−b2)%(m2∗∆x)

//If k is an integer, check if it overlaps with

other partitions

lowRange={l}∀l, (ipp∗(np+1))≤ l≤kmax

20: highRange={h}∀h, 0≤h≤((ipp∗np)−1)

interfereRange = {lowRange ∪
highRange}

22: if k is an integer and k⊂ interfereRange then

24: return false

end if

end for

26: end for

end for

28: return true

The pseudocode of Algorithm 1 implements a modified form
of (1) as

(m1x − m2S + b1 − b2)/(m2∆x) �= k (2)

∀k, where 1 ≤ k ≤ ((E − S + 1)/∆x) − 1, and ∀x, where
S ≤ x ≤ E. The inequality in (2) means that, if the left ex-
pression evaluates to an integer, and if this integer corresponds

Fig. 3. Loop partitions and their iterations, for example, in Fig. 2.

to an iteration number belonging to a different partition, then
the vector cannot be partitioned. This is illustrated in Fig. 3,
which depicts the iterations assigned to each loop partition for
the example loop in Fig. 2. If k falls in the range indicated by the
dotted lines, then for this value of x there will be interference
and partitioning is not possible. The innermost loop (lines
15–24) in Algorithm 1 checks the above inequality for every
value attained by the index variable x.

The vector b in Fig. 2, which is accessed by index expression
i, will pass this check. However, vector a accessed using index
expressions i and 2i will fail the test as some elements are
accessed across different partitions (e.g., elements 4 and 6 of
vector a are accessed between loop partitions 1 and 2). If the
test succeeds, as for vector b, then the main vector can be
replaced with the split vectors as described below.

To replace the main vector with the split vector, we need to
determine the size of the split vectors, which are calculated by
first determining the start and end split points in the main vector.
The start (V PSp) and end (V PEp) of V are computed for each
loop partition Lp with index limits Sp and Ep. Given N differ-
ent index expressions (IE(x)) in the loop body, these limits
are the minimum and maximum values of all IE(x), respec-
tively. That is, V PSp = min(IEφ

n), and V PEp = max(IEψ
n ),

where

IEφ
n = min (IEn(Sp), IEn(Ep)) ∀n 1 ≤ n ≤ N

IEψ
n = max (IEn(Sp), IEn(Ep)) ∀n 1 ≤ n ≤ N.

The pseudocode for computing these limits is shown in
Algorithm 2. The inner loop in lines 5–12 determines the mini-
mum and maximum values for index expression and computes
the start and end of each vector partition. If the vector portions
computed for each loop partition above are nonoverlapping
(V PEp < V PSp+1 ∀p 0 ≤ p ≤ NP − 1), then for each loop
partition, separate vector variables (Vp where 0≤p ≤ NP−1)
with size V PEp − V PSp + 1 are created. An index expression
IEn(x) in loop partition p is normalized with IEn(x) − V PSp

to account for the smaller vector. Now the access to the vector
V in each loop partition (Lp) is replaced with access to vector
partition Vp with normalized index expression. Fig. 4 shows the
loop partitions after splitting the array b. If the split vector is
used by other parts of the program, these partition details are
remembered, and correct split and merge codes are generated.
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Fig. 4. Code after partitioning vector b.

Algorithm 2 Compute the start and end index of each vector partition

Input: start S, end E, increment ∆x, number of partitions nparts itera-

tions per partition ipp, list of index expressions list

Output: Vector partitions Start and End

for (p = 0; p < nparts; p + +) do

2: spart = S + p ∗ ipp ∗ ∆x

epart = S + (∆x) ∗ (ipp − 1)

4: for (i = 0; i < list → numelements(); i + +) do

E = list[i]

6: (m, b) = E → getaffineconsts()

min = min(m ∗ spart + b, m ∗ epart + b)

8: max = max(m ∗ spart + b, m ∗ epart + b)

V PSp = min(min, V PSp)

10: V PEp = max(max, V PEp)

end for

12: end for

D. Breaking Composite Structures

In the previous section, we discussed the splitting of arrays.
In this section, we discuss the partitioning of another type of
composite variable prevalent in C structures. Splitting struc-
tures is of little use in specifications meant for single-memory
architectures. However, it is necessary for creating an explicit
model for a heterogeneous platform with irregular memory
architecture.

Breaking a C structure consists of creating two new struc-
tures from the subsets of members from the original structure
and replacing all the accesses to the original structure with
accesses to new structures. Fig. 5 shows code changes in a
typical C code segment after splitting the structure s1. As
shown in lines 1–5 of Fig. 5(b), two new structures (s1_part1
and s1_part2) are created with member subsets a and b, c.
For every variable of the original structure type, a pair of
new variables of split structure type is created (lines 6–9).
New structure initializers are obtained by splitting the origi-
nal initializer. Every member access expression involving the
original structure is replaced with an expression formed from
the appropriate variable of the split type (lines 10 and 12).
Expressions such as structure assignments (line 12) result in
two expressions, one for each split variable. Functions as f1()
in line 15, which take structures as arguments, are similarly

Fig. 5. Splitting structure S1 at b. (a) Before. (b) After.

replaced with two split arguments and then optimized to remove
the unused argument.

Pointers to structures are also similarly handled. As shown
in Fig. 6, the initial pointer p is now replaced with two pointers
p_part1 and p_part2. The member access expressions (lines 4
and 5) are modified to use the proper split pointer. Functions
with pointer to structure as argument are also split to create two
arguments and later optimized to eliminate unused arguments,
as shown in lines 10–12.

This transformation is interprocedural and completely au-
tomatic given the structure to be split and the split point in
the structure. Our algorithm can split structures even in the
presence of pointers to structures and pointer structure mem-
bers, and even linked lists are automatically handled. Note that
our approach is very general and handles most of the code in
real-world examples. However, we currently do not handle the
following situations.

1) We do not split structures that are returned as value or
pointer from a function.

2) Expressions involving pointer arithmetic to structures are
not supported. This implies that if the structure is an array
element, then our algorithm will not split the structure.

3) Expressions involving pointer arithmetic to members of
structures are not portable and are not supported.

Barring these few limitations, our automatic transformation
is fast, robust, and effective on many examples.

An advantage of breaking structures is to clear the code from
false dependencies. After splitting structure S1 in Fig. 5, the
function f1() has two parameters of split type (line 15). Simi-
larly, the function f2() in Fig. 6 is also modified to contain two
parameters. However, static analysis reveals that f2() depends
only on s1_part1; thus, part2 of the structure can be omitted
from the argument list. In general, after breaking a structure,
each function is optimized by deleting unused arguments, thus
eliminating false dependencies on unused members. Note that
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Fig. 6. Handling pointers to structures. (a) Before. (b) After.

Fig. 7. Synchronizing access to a scalar dependent. (a) Code before. (b) Code
in each behavior after synchronizing variable p.

our static analysis recursively works on the function call tree so
that indirect dependencies are properly found and supported.

E. Synchronizing Dependent Variables

After loop partitioning, to have complete parallelism, any
scalar dependents in a loop have to be resolved by the designer.
As one option, the designer can use a transformation that syn-
chronizes access to the scalar dependents through channels. We
should note, however, that communication and synchronization
resulting from such dependencies can significantly reduce the
effective parallelism. Thus, this decision has to be made by the
designer. We provide this transformation so that the designer
can quickly create a semantically correct model with explicitly
synchronized dependents and thereby study the communication
by simulation. Explicitly capturing the dependents using chan-
nels can also enhance the readability of the program and aid in
resolving the dependents. We use double-handshake channels
for synchronization, which implement a blocking send() and
receive() communication protocol.2 Fig. 7 shows an example
where the variable p, dependent across the behaviors b0, b1, b2,
and b3, is synchronized using three message-passing channels.
As shown in Fig. 8, synchronizing a variable requires the

2Note that, here, in the specification model, these channels are implementa-
tion independent. They can be later implemented by actual message passing or
through shared memory communication.

Fig. 8. Procedure to synchronize dependents.

creation of NP − 1 number of channels, where NP is the
number of code partitions. Following this, at the beginning and
the end of each loop partition, a receive() and a send() call,
respectively, of the appropriate channel are introduced. This
transformation, when applied to each dependent variable, will
result in a semantically correct specification.

F. Variable Rescoping

For the reference code running on a PC environment, the
scope of a variable (local/global) does not matter much. How-
ever, in case of MPSoC specification meant for a heterogeneous
platform, the location of the variables is critical. For many
design flows, moving a variable to the right program scope
in the specification is a way to control to which memory it
gets mapped to. This in turn is critical in reducing unnecessary
synchronization.

Breaking the composite structures/arrays by itself will not
help in avoiding communication overheads. After splitting a
structure or array, the variable partitions have to be rescoped
to a desired code partition so that it can be mapped to the
desired memory in the target platform. Any global variables left
will be mapped to a global memory resulting in unnecessary
synchronization. Thus, global variables should be relocated to
the appropriate program scope.

Rescoping, in general, means migrating a variable from one
scope to another scope (higher or lower), obeying the access
restrictions, of course. Localizing is a specific case of rescoping
that applies to variables that are completely localized to a
code partition. Localizing a variable to a partition will give an
opportunity to map that variable into the local memory of the
processing element, which will likely reduce synchronization in
the end implementation. Like localizing, rescoping a variable
to a scope higher or making it global might also be desirable
depending on the target architecture. Our transformation auto-
matically rescopes the variable to a specified program scope.
The procedure to implement localizing of global variables is as
follows.

1) Find the lowest common parent behavior accessing the
given variable.

2) Move the variable to the scope corresponding to the
lowest common parent.

3) Provide access to the variable by recursively inserting
ports and function parameters in all the behaviors access-
ing this variable.

Given the destination scope, the procedure to implement the
general rescoping is as follows.

1) Validate the destination scope to obey access restrictions.
2) Move the variable to the destination scope.
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3) If rescoping to a scope at a lower level, delete any un-
used connections; if rescoping to a level above, establish
new connections by inserting new ports and function
parameters.

Determining accesses to variables is performed across func-
tions and behaviors by tracking parameter or the port. When
a variable is accessed through pointer indirection, a simple
flow-insensitive and context-insensitive pointer analysis is used
determine all the accesses. In the presence of ambiguity, safe
assumptions are made to generate the correct code.

G. Summary

In the previous section, we discussed six different transfor-
mations to partition the code and data structures to create an
MPSoC specification. As mentioned in the beginning of the
paper, concurrency and flexibility are the important characteris-
tics of this model. Transformations such as loop splitting, CAT
analysis, and vector splitting are primary toward creating code
partitions and resolving dependencies between them to expose
concurrency. The transformations to break structures and to
rescope variables add flexibility into the model by explicitly
isolating the code and data partitions. Such clearly isolated
code and data partitions result in more design explorations by
increasing the number of mapping opportunities later in the
design flow.

VI. INTERACTIVE RECODING

In this section, we will present an effective way to make our
transformations available to the designer.

A. Need for Interactive Recoding

Creating an MPSoC specification model from a reference C
code involves some decision making and many mundane textual
operations. Although most of the recoding can be automated,
some of the decision making can only be done by the de-
signer. For example, although the transformation to break a
structure/vector is completely automatic, the decision about the
specific variable to be split should be made by the designer.
Although it is possible to automatically break all variables in
the application, this is not desired. Note that the composite
variables in the initial application are used for keeping re-
lated information together. By splitting more than necessary
variables/loops, the readability of the code will be negatively
affected. Further, to suite the target heterogeneous architectural
platform, a target-specific modeling style needs to be employed.
In essence, we believe that, at this first step in the design flow,
it is critical for the designer to be in complete control. Our
interactive approach therefore closely keeps the designer in
the loop.

B. Source Recoder

Following these arguments, we have proposed an automatic
source recoder [6]. Our source recoder is a controlled interac-
tive approach to implement analysis and transformation tasks.

Fig. 9. Conceptual structure of the source recoder.

In other words, it is an intelligent union of editor, compiler,
and powerful transformation and analysis tools. The conceptual
organization of the source recoder is shown in Fig. 9. Unlike
other program transformation tools, our approach provides
complete control to generate and modify a specification model
suitable for the design flow. By making the recoding process
interactive, we rely on the designer to concur, augment, or
overrule the analysis results of the tool, and use the combined
intelligence of the recoder and the designer for the modeling
task. Our recoder supports the remodeling of SLDL models at
all levels of abstraction. It consists of the following five main
components:

1) a textual editor (based on Qt and Scintilla) maintaining
the textual document object;

2) an Abstract Syntax Tree (AST) of the design model;
3) preprocessor and parser to convert the document object

into AST;
4) transformation and analysis tool set;
5) code generator to apply changes in the AST to the docu-

ment object.

The parser and the code generator support C and SpecC
source codes. The analysis results of each transformation are
remembered in the AST and automatically get carried to the
subsequent transformations. The transformations are instantly
performed and presented to the designer. The designer can also
make changes to the code by typing, and these changes are
applied on-the-fly, keeping it updated all the time. More details
of this interactive environment are discussed in [6].

VII. EXPERIMENTS AND RESULTS

In this section, we will show that our designer-controlled
approach is both feasible and effective. We will provide exper-
iments and results that support four aspects of our approach.

1) We discuss the interactivity of the source recoder and
show that our designer-controlled interactive approach is
feasible and sufficiently responsive.

2) We describe a case study that creates a parallel and
flexible specification of an MP3 audio decoder.

3) We provide the results of implementing the MP3 decoder
specification using the SoC Environment (SCE) [24] to
demonstrate the created flexibility and effectiveness.

4) We present the productivity gains achieved using our
source recoder compared to manual coding of a specifi-
cation model.
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TABLE I
DESIGNER INTERACTIONS FOR DIFFERENT OPERATIONS

TABLE II
EXECUTION TIME OF DIFFERENT TRANSFORMATIONS [IN SECONDS]

A. Interactivity

In our approach, the task of creating a parallel specification is
addressed through multiple iterative designer-controlled trans-
formations instead of a single monolithic completely automatic
compilation. In this section, we will look at the amount of inter-
activity associated with each of these transformations. Table I
shows that only few designer interactions are needed to invoke
these transformations. By interaction, we mean the number of
inputs the designer has to provide to the transformation. The
table also shows the inputs needed for each transformation. For
example, before splitting a loop, it may be necessary to specify
the loop parameters. Specifically, this operation requires only
one designer interaction to specify the loop if the other para-
meters of the loop can be automatically determined as in the
case of for loops with constant parameters. On the other hand,
in the worst case, it requires five designer interactions to specify
the loop, i.e., the index variable of the loop, start, end, and
the trip count. Vector splitting requires two interactions, one to
specify the vector, and one to specify the number of partitions.
Both loop splitting and vector splitting are preceded by the
step of setting loop parameters. Splitting structures takes one
interaction to specify the split point, and rescoping of variables
requires one interaction to specify the destination scope.

Table II shows the time to execute each of the transfor-
mations on a 3-GHz Pentium-4 Linux machine for different
examples. The times indicated are in seconds, and the table
shows the combined time to run the transformations and to
update the graphical interface. However, it does not include the
time to specify the inputs to the transformations. In general,
the execution time of the transformations depends on the size
of the example and the number of changes introduced by the
transformation. The table shows the execution times for the
transformations on some typical objects (loops and variables).
We provide these results to show that our source recoder is
sufficiently responsive on real-life embedded source codes (and
not to prove the runtime efficiency of the algorithms). All times

Fig. 10. MP3 code structure. (a) Sequential MP3 code structure. (b) Parallel
MP3 code structure.

are less than a second even for the programs that span thousands
of lines. They can be instantly applied and realized.

B. MP3 Design Example

As mentioned in the beginning of this paper, the main
advantage of giving control to the designer is to enable the
parallelization of a real-life embedded source code that requires
application-specific knowledge (and cannot be done by the
existing state-of-the-art parallelizing compilers). To corrobo-
rate this claim, we use our experiments with an industrial-
strength design example, i.e., a fix-point MP3 audio decoder.3

An abstract code structure of the reference sequential code
[25] is shown in Fig. 10(a). The two loops implementing
Stereo + Imdct + Alias operations (Loop-A) and Synthesis
Filter (Loop-B) are at a different functional hierarchy (indicated
by rectangular boxes), and each loop spanned hundreds of
lines of code. In the MP3 decoder, the processing of the left
and right channels of a stereo MP3 stream is independent.
However, this was not apparent in the reference code. We tried
parallelizing the C code using the Intel C compiler [14], one
of the few compilers that can detect coarse-grained parallelism
on a shared-memory platform. The compiler was only able
to detect five small loops implementing array copy and array
initialization, each spanning just one to four lines of code.
The computation within these loops was less than 2% of the
overall computation of the application. The loops containing the
algorithm-level parallelism in Fig. 10 could not be parallelized
due to a function call within the loop, false dependencies, and
the statically unknown trip count of the loops.

Thus, parallelizing compilers are ineffective in exploiting
parallelism at the algorithmic level.

The array variables shown in Fig. 10 (sbsample, filter, and
pcm) are the main vector data of interest between Loop-A and
Loop-B. sbsample is the output of Loop-A and the input of
Loop-B, whereas filter and pcm are only used by Loop-B. Since

3We have also performed the same transformations with a floating-point
model of an MP3 decoder and obtained very similar results as shown in
Section VII-C.
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Fig. 11. Structures splitting in MP3 example.

the synthesis filter accounted for the most significant chunk
of computation, we decided to parallelize Loop-B. Splitting
Loop-B also requires splitting filter and pcm vectors so that
they can be made private to each code partition. Since sbsample
is also accessed in Loop-A, splitting it requires the generation
of split data structures (copying of data from sbsample to
sbsample1, sbsample2) at the end of loop-A. Since Loop-A
and Loop-B had identical parameters (start, end, and iterations)
and accessed sbsample using the same array references, the
copying of data was easily avoided by splitting both loops. This
simultaneous analysis of the two loops, which are in a different
functional hierarchy, and considering the effect of splitting
one vector in the other part of the program, requires a global
knowledge of the program, which is only known to the designer.
This is the main advantage of our approach. The designer
can invoke the transformations on a specific program scope
(context), independent of the rest of the program, and achieve
the desired model by invoking the necessary complementing
transformations on the dependent program scopes.

Further, the three vector splits were not standalone variables,
but were part of the C structures (mad_synth, mad_pcm, and
mad_frame), shown in shaded boxes in Fig. 11. In order to
create a specification that can be easily mapped onto different
processing elements, we need to explicitly separate the vector
variables from these structures. Since each structure split gen-
erates two structures, a series of eight splits were necessary to
separate the six vector partitions into independent structures,
shown in emphasized boxes in Fig. 11.

In the end, using the transformations available in our source
recoder, we arrived at the parallel code shown in Fig. 10(b).
The transformations applied to arrive at this specification are
summarized below.

1) Split Loop-B into two parts.
2) Find scalar and vector dependents in Loop-B using CAT

analysis.
3) Split vector dependents filter and pcm at the first

dimension.
4) Localize filter1, filter2 and pcm1, pcm2 to Loop-A.
5) Split Loop-A into two parts.
6) Split sbsample into two parts at the first dimension.

7) Iteratively split the three structures mad_synth, mad_pcm,
and mad_frame to isolate the six vector pieces (eight
splits in total are needed as shown in Fig. 11).

8) Localize the split vectors into each loop partition.
By having these transformations automated, we could arrive

at the partitioned model in minutes, which would otherwise
have taken hours. Since there were no scalar dependents be-
tween the two partitions, there exists no communication be-
tween the newly created partitions of the loop.

C. Implementation and Evaluation

The primary purpose of a flexible parallel specification is to
enable multiple design explorations. With the model created in
Fig. 10, we could explore two distributed parallel design al-
ternatives and two shared-memory-based parallel architectures
for both fixed-point and floating-point MP3 decoders. Fig. 12
shows these generic architectures. Note that the shared memory
and the first-in first-out (FIFO) shown in Fig. 12 are mutually
exclusive. That is, in the shared-memory implementation, the
memory is used instead of the FIFO blocks, and vice versa
for the distributed memory implementation. In the distributed
version, the processing elements have private memories and
communicate by passing the data over the buses. In the shared-
memory architecture, a shared memory houses the variables
shared by the three processing elements.

We used the ARM7TDMI and Coldfire processors for
the fixed and floating-point implementations, respectively.
Fig. 12(a) shows the main decoder mapped to the processors
and the two parallel synthesis filter partitions mapped to two
custom hardware blocks. Fig. 12(b) shows an alternative where
the decoder and the left filter are executed on the processor
and only the right synthesis filter is mapped to a hardware
accelerator. Note that all these architectures are only possible
due to the flexibility added by our transformations. We have
implemented each design alternative using the SCE [24].

Tables III and IV show the results for the fix-point and
floating-point implementations, respectively. For each design,
the tables list the main components and their clock frequencies,
as well as the performance achieved in decoding one frame of
MP3 data. Note that, for a bit rate of 96 000 bits/s and sampling
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Fig. 12. Generic architectures explored for fix-point and floating-point MP3 decoder. (a) Multiprocessor architecture 1. (b) Multiprocessor architecture 2.

TABLE III
FIX-POINT MP3 DECODER IMPLEMENTATIONS

TABLE IV
FLOATING-POINT MP3 DECODER IMPLEMENTATIONS

frequency of 44.1 kHz, a frame must be decoded in less than
26.12 ms. This timing constraint is only met by five out of the
ten possible architectures, as shown in the last row of Tables III
and IV. The floating-point architecture Arch-5 was not feasible
as the Coldfire bus cannot support more than two masters. Note
that the required performance was met only due to the explicit
parallelism exposed by our transformations. This clearly shows
that the parallelism exposed in the specification using the source
recoder is indeed effective.

D. Productivity Gains

As motivated in Section I, the manual recoding of a C
reference code into an MPSoC specification is immensely time
consuming. Automating this recoding task, even partially, can
significantly reduce the overall design time of the system. In
this section, we will estimate these productivity gains.

In addition to the MP3 example, we used our source recoder
to parallelize and partition a Joint Photography Experts Group
(JPEG) picture encoder. Table V shows the transformations
performed on these examples (which could not be parallelized
by [14]). The table lists the number of loops, vectors, and
structures that were recoded. Table VI shows the time taken
to implement these transformations. The automated recoding

TABLE V
IMPORTANT TRANSFORMATIONS APPLIED ON DIFFERENT EXAMPLES

time is the time our source recoder took, including the time
needed by the designer to enter his decisions in the dialog
boxes. The manual time is the time we estimate it takes to
manually implement the same transformations. For both MP3
decoders, we actually measured the manual time by manually
implementing them. For the JPEG encoder, the amount of
manual effort was estimated based on the experience with the
MP3 decoder and the number of recoding operations needed
to be performed. Both manual and automatic recoding were
conducted by the same designer. The times indicated are only
the recoding time and do not include the decision making time
which will be the same in both cases.

In general, measuring productivity is a difficult task. Factors
such as designer’s experience and tools used must be considered
for the accurate measurement of productivity gains. Further,
experiments with multiple designers are necessary. However,
since we achieve productivity factors of multiple orders of
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TABLE VI
PRODUCTIVITY GAINS

magnitude (see Table VI), we conclude that more accurate
measurements will not significantly change the result that the
approximate time to recode a model using our source recoder is
on the order of minutes, whereas manual recoding takes hours.
We conclude that, despite not being completely automatic, our
controlled approach results in significant productivity gains.

VIII. CONCLUSION

Concurrency and flexibility are two critical features of an
MPSoC specification. Concurrency in the specification is nec-
essary to exploit the parallel resources available on MPSoCs.
Flexibility in the specification is necessary for freedom in
design space exploration.

Two main factors limit today’s compilers in automatically
generating a parallel and flexible MPSoC specification from
a sequential monolithic application: first, the heterogeneous
nature of MPSoCs with customized processors and nonregular
memory hierarchy; and second, the complexity of the unstruc-
tured input application.

Completely automatic compilers, although successful in ex-
tracting instruction-level parallelism on shared-memory archi-
tectures, cannot expose a task-level parallelism that requires
application-specific knowledge.

In this paper, we have proposed a designer-controlled ap-
proach to create a parallel and flexible MPSoC model. We
proposed a set of six code and data partitioning transformations
that can split loops and composite variables to expose concur-
rency and create flexibility.

In our approach, the task of creating a specification is based
on iterative designer-controlled transformations instead of a
monolithic completely automatic compilation. The discrete
transformation steps are combined by the designer to create
a desired specification model. Our transformations implement
recoding tasks that are intuitive even to a programmer with
limited compiler knowledge.

Our interactive source recoder integrates these transforma-
tions and interprocedural analysis functions with a text-based
editor that assists the designer in modeling and remodeling
the input specification. It can be employed on C and C-based
SLDLs, including SpecC [5] and SystemC [7], to automatically
perform complex transformations. Programming issues in the
reference code, which limit the effectiveness of most of the
existing compilers, are overcome by involving the designer in
the loop.

In our designer-controlled environment, the transformations
are quickly and efficiently applied on the program. Our experi-
mental results show that this approach is feasible and effective.
The added flexibility and parallelism result in a specification
model that is most suitable for the target MPSoC platform and
the design flow. Finally, we have shown that the automation of
recoding results in a significant productivity gain.

In a broader perspective, the MPSoC programmability is a
critical problem that needs to be addressed by further automa-
tion to keep up with the growing customer demand and rising
system’s complexity. The approach described in this paper can
be seen as a significant first step into this direction. More
research, however, is clearly necessary.

In a future work, we plan to work on further transformations.
In particular, we would like to expose functional parallelism
in addition to the presented data parallelism. We also intend
to increase the analyzability and synthesizability of the design
models.
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